Value distribution of p-adic meromorphic functions

Kamal Boussaf Jacqueline Ojeda*

Abstract

Let K be an algebraically closed field of characteristic 0 , complete with respect to an ultrametric absolute value. Let f be a transcendental meromorphic function in K. We prove that if all zeroes and poles are of order ≥ 2, then f has no Picard exceptional value different from zero. More generally, if all zeroes and poles are of order $\geq k \geq 3$, then $f^{(k-2)}$ has no exceptional value different from zero. Similarly, a result of this kind is obtained for the $k-t h$ derivative when the zeroes of f are at least of order m and the poles of order n, such that $m n>m+n+k n$.

If f admits a sequence of zeroes a_{n} such that the open disk containing a_{n}, of diameter $\left|a_{n}\right|$ contains no pole, then f and all its derivatives assume each non-zero value infinitely often. Several corollaries apply to the Hayman conjecture in the non-solved cases. Similar results are obtained concerning "unbounded " meromorphic functions inside an "open" disk.

1 Introduction and results

Notation and definitions: Let K be an algebraically closed field of characteristic 0 , complete with respect to an ultrametric absolute value \mid. \mid. Given $\alpha \in K$ and $R \in \mathbb{R}_{+}^{*}$, we denote by $d(\alpha, R)$ the disk $\left\{x \in K||x-\alpha| \leq R\}\right.$ and by $d\left(\alpha, R^{-}\right)$the disk $\{x \in K||x-\alpha|<R\}$, by $\mathcal{A}(K)$ the K-algebra of analytic functions in K (i.e. the set of power series with an infinite radius of convergence) and by $\mathcal{M}(K)$ the field of meromorphic functions in K.

[^0]In the same way, given $\alpha \in K, r>0$ we denote by $\mathcal{A}\left(d\left(\alpha, r^{-}\right)\right)$the K-algebra of analytic functions in $d\left(\alpha, r^{-}\right)$(i.e. the set of power series with a radius of convergence $\geq r)$ and by $\mathcal{M}\left(d\left(\alpha, r^{-}\right)\right)$the field of fractions of $\mathcal{A}\left(d\left(\alpha, r^{-}\right)\right)$. We then denote by $\mathcal{A}_{b}\left(d\left(\alpha, r^{-}\right)\right)$the K-algebra of bounded analytic functions in $d\left(\alpha, r^{-}\right)$and by $\mathcal{M}_{b}\left(d\left(\alpha, r^{-}\right)\right)$the field of fractions of $\mathcal{A}_{b}\left(d\left(\alpha, r^{-}\right)\right)$. And we set $\mathcal{A}_{u}\left(d\left(\alpha, r^{-}\right)\right)=$ $\mathcal{A}\left(d\left(\alpha, r^{-}\right)\right) \backslash \mathcal{A}_{b}\left(d\left(\alpha, r^{-}\right)\right)$and $\mathcal{M}_{u}\left(d\left(\alpha, r^{-}\right)\right)=\mathcal{M}\left(d\left(\alpha, r^{-}\right)\right) \backslash \mathcal{M}_{b}\left(d\left(\alpha, r^{-}\right)\right)$. As in complex functions, a meromorphic function is said to be transcendental if it is not a rational function.

Recall that we call exceptional value or Picard value for a meromorphic function f (in K or in a disk $d\left(a, R^{-}\right)$) a value $b \in K$ such that $f-b$ has no zero. Similarly, we call quasi-exceptional value for a transcendental meromorphic function f in K or a function $f \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$a value $b \in K$ such that $f-b$ has finitely many zeros.

Notation: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$. For every $\left.r \in\right] 0, R[$, we know that $|f(x)|$ admits a limit when $|x|$ approaches r while keeping different from r. This limit is denoted by $|f|(r)$. Particularly, if $f \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$, then $f(x)$ is of the form $\sum_{n=0}^{\infty} a_{n} x^{n}$ and then $|f|(r)=\sup _{n \in \mathbf{N}}\left|a_{n}\right| r^{n}$ [4], [5].
Given $f \in \mathcal{M}(K)$, a value $b \in K$ is called a special value for f if $\lim _{r \rightarrow+\infty}|f-b|(r)=0$. Similarly, consider $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$and let $g(x)=f(a+x)$. A value $b \in K$ is called a special value for f if $\lim _{r \rightarrow R}|g-b|(r)=0$.

Many previous studies were made on Picard's exceptional values for complex and p-adic functions and their derivatives and particularly on various questions related to the famous Hayman Conjecture [1], [6], [7], [9], [11].

Here we mean to study whether the derivatives of a meromorphic function may admit a quasi-exceptional value. Certain study was made on the same topic concerning complex functions in [1], [10]. But the tools used in that study, such as properties of normal families, have no analogue on a p-adic field. Here we shall use other methods, particularly the non-Archimedean Nevanlinna Theory.

Let us now recall the Hayman conjecture. Given a transcendental meromorphic function in \mathbb{C} and $b \in \mathbb{C}^{*}$, as conjectured by Hayman, we know that $f^{\prime}+b f^{m}$ has infinitely many zeroes that are not zeroes of f for every $m \geq 3$, while counterexamples exist for $m=1,2$. Now, on a field such as K, we know that given $f \in \mathcal{M}(K)$, transcendental, or $f \in \mathcal{M}_{u}\left(d\left(\alpha, r^{-}\right)\right), f^{\prime}+b f^{m}$ has infinitely many zeroes that are not zeroes of f for $m=1$ and every $m \geq 5$. And this is also true for $m=3,4$ when K has residue characteristic 0 [9]. But if the residue characteristic of K is different from 0 , it is not known whether or not certain particular meromorphic functions might violate the Hayman conjecture. In [2], the first author proposes other hypotheses on a transcendental meromorphic function f to assure that $f^{\prime}+f^{3}$ or $f^{\prime}+f^{4}$ has infinitely many zeroes that are not zeroes of f.

On the other hand, the problem of exceptional values for a transcendental meromorphic function that is the derivative of another one is an old problem. In a joint paper with A. Escassut [3], we proved that if a transcendental meromorphic function f in K has finitely many multiple poles, then f^{\prime} has infinitely many
zeroes. Here, on the contrary, we will consider functions having multiple zeroes and poles.

Theorem 1: Let $f \in \mathcal{M}(K)$ be transcendental and be such that each zero is at least of order $k \geq 2$ except finitely many m and each pole is at least of order k, except finitely many w. Suppose that f admits at least s zeroes and t poles of order at least $k+1$ and, when $k>2, f^{(k-2)}$ admits at least u multiple zeroes that are not zeroes of $f(s, t, u \in \mathbf{N})$. Then for each $b \in K^{*}, f^{(k-2)}-b$ has a number of distinct zeroes $q \geq 2-\frac{2}{k}+u+$ $\frac{t+s(k-1)}{k(k+1)}-\frac{(w+m(k-1))(k-1)}{k}$.

Corollary 1.1: Let $f \in \mathcal{M}(K)$ be transcendental and be such that each zero and each pole is at least of order $k \geq 2$. Then $f^{(k-2)}$ has no exceptional value different from 0 .

Corollary 1.2: Let $f \in \mathcal{M}(K)$ be transcendental and be such that each zero is at least of order $k \geq 2$ and each pole is at least of order $k \geq 2$ except finitely many for both. If f also satisfies one of the following three conditions, then $f^{(k-2)}$ has no quasi-exceptional value different from 0 .

1) f admits infinitely many zeroes of order $\geq k+1$
2) f admits infinitely many poles of order $\geq k+1$,
3) $f^{(k-2)}$ admits infinitely many multiple zeroes that are not zeroes of f.

Corollary 1.3: Let $f \in \mathcal{M}(K)$ be transcendental. Then $f^{\prime} f^{2}$ has no exceptional value different from 0 . Further, if f has infinitely many zeroes or poles of order ≥ 2, then $f^{\prime} f^{2}$ has no quasi-exceptional value different from 0 .
Proof: We check that f^{3} satisfies the hypothesis of Theorem 1.
Corollary 1.4: Let $f \in \mathcal{M}(K)$ be transcendental and have infinitely many zeroes or poles of order ≥ 2 or be such that f^{\prime} admits infinitely many zeroes of order ≥ 2. Then for every $b \in K^{*}, f^{\prime}-b f^{4}$ has infinitely many zeroes that are not zeroes of f.

Theorem 2: Let $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$be such that each zero is at least of order $k \geq 2$ and each pole is at least of order k except finitely many, satisfying further at least one of the following three conditions:

1) f admits a sequence of zeroes $\left(a_{n}\right)$ of order $s_{n} \geq k+1$ such that
$\lim _{n \rightarrow \infty}\left|a_{n}\right|=R, \prod_{n=0}^{\infty}\left(\frac{\left|a_{n}\right|}{R}\right)^{s_{n}}=0$,
2) f admits a sequence of poles $\left(b_{n}\right)$ of order $t_{n} \geq k+1$ such that
$\lim _{n \rightarrow \infty}\left|b_{n}\right|=R, \prod_{n=0}^{\infty}\left(\frac{\left|b_{n}\right|}{R}\right)^{t_{n}}=0$,
3) $f^{(k-2)}$ admits a sequence of zeroes $\left(c_{n}\right)$ of order $u_{n} \geq 2$ that are not zeroes of f such that
$\lim _{n \rightarrow \infty}\left|c_{n}\right|=R, \prod_{n=0}^{\infty}\left(\frac{\left|c_{n}\right|}{R}\right)^{u_{n}}=0$,
Then $f^{(k-2)}$ has no quasi-exceptional value different from 0 .

Corollary 2.1: Let $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$) have infinitely many zeroes or poles $\left(a_{n}\right)$ of order $q_{n} \geq 2$ such that $\prod_{n=0}^{\infty}\left(\frac{\left|a_{n}\right|}{R}\right)^{q_{n}}=0$. Then $f^{\prime} f^{2}$ has no quasi-exceptional value different from 0 and for every $b \in K^{*}, f^{\prime}-b f^{4}$ has infinitely many zeroes that are not zeroes of f.

Corollary 2.2: Let $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$) be such that f^{\prime} has infinitely many zeroes $\left(a_{n}\right)$ of order $q_{n} \geq 2$ such that $\prod_{n=0}^{\infty}\left(\frac{\left|a_{n}\right|}{R}\right)^{q_{n}}=0$. Then $f^{\prime} f^{2}$ has no quasi-exceptional value and for every $b \in K^{*}, f^{\prime}-b f^{4}$ has infinitely many zeroes that are not zeroes of f.

Theorem 3: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$) and be such that each zero is at least of order $m \geq 3$, except finitely many and each pole is at least of order n except finitely many and let $k \in \mathbf{N}^{*}$ satisfy $m n>m+n+n k$. Then $f^{(k)}$ has no quasi-exceptional value different from 0 .

Application: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$) be such that each zero is at least of order $m \geq 5$ and each pole is at least of order 2 except finitely many. Then both f, f^{\prime} have no quasi-exceptional value different from 0 . Moreover, if each pole of f is at least of order 3 , then $f^{\prime \prime}$ has no quasi-exceptional value different from 0 either.

Theorem 4: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$) admitting a special value $c \neq 0$. There exists $S>0$ (resp. $S \in] 0, R[$) such that for each $b \in$ $K^{*} \backslash d(0, S)$ (resp. $b \in d\left(0, R^{-}\right) \backslash d(a, S)$), the number of zeroes of f is equal to its number of poles in $d\left(b,|b|^{-}\right)$.

Corollary 4.1: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$), having an infinite sequence $\left(a_{m}\right)_{m \in \mathbf{N}}$ such that for all $m \in \mathbf{N}, d\left(a_{m},\left|a_{m}\right|^{-}\right)$does not contain any pole of f. Then f has no special value different from 0 .

Corollary 4.2: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$), having an infinite sequence $\left(b_{m}\right)_{m \in \mathbf{N}}$ of poles such that for all $m \in \mathbf{N}, d\left(b_{m},\left|b_{m}\right|^{-}\right)$does not contain any zero of f. Then f has no special value different from 0 .

Corollary 4.3: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$), having an infinite sequence of zeroes $\left(a_{m}\right)_{m \in \mathbf{N}}$ such that for all $m \in \mathbf{N}, d\left(a_{m},\left|a_{m}\right|^{-}\right)$does not contain any pole of f. Then for all $n, k \in \mathbf{N}^{*}, k<n,\left(f^{n}\right)^{(k)}$ assumes each value $c \in K^{*}$ infinitely often.

Corollary 4.4: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$), having an infinite sequence of zeroes $\left(a_{m}\right)_{m \in \mathbf{N}}$ such that for all $m \in \mathbf{N}, d\left(a_{m},\left|a_{m}\right|^{-}\right)$does not contain any pole of f. Then for all $n \in \mathbf{N}^{*}, f^{\prime} f^{n}$ assumes each value $c \in K^{*}$ infinitely often.

Remark: Since the Hayman conjecture concerning $f^{\prime} f^{n}$ is solved for $n \geq 3$ [9], Corollary 4.4 actually only applies to the cases $n=1$ and $n=2$.

2 The Proofs

Lemmas 1 is well known [4], [5], [8]:
Lemma 1: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$. Then $\left|f^{(k)}\right|(r) \leq \frac{|f|(r)}{r^{k}} \forall r<R, \forall k \in \mathbf{N}$.
We shall use the following classical lemma 2 (Corollary 1.7.6 [5])
Lemma 2: Let \widehat{K} be an algebraically closed complete extension of K and let $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$. Each zero of f in the disk $\left\{x \in \widehat{K}||x-a|<R\}\right.$ is a zero of f in $d\left(a, R^{-}\right)$, with the same order of multiplicity.

Let us recall the classical notation of the Nevanlinna Theory:
Notation: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$be such that 0 is neither a zero nor a pole of f. Let $\left(a_{n}\right)_{n \in \mathrm{~N}}$ be the sequence of zeroes of f with $0<\left|a_{n}\right| \leq\left|a_{n+1}\right|$ and let k_{n} denote the order of the zero a_{n}. Then we define the counting function of zeroes of f, counting multiplicity as $Z(r, f)=\sum_{\left|a_{n}\right| \leq r} k_{n}\left(\log r-\log \left|a_{n}\right|\right)$.

Respectively, let the counting function of zeroes, ignoring multiplicities, be defined as $\bar{Z}(r, f)=\sum_{\left|a_{n}\right| \leq r}\left(\log r-\log \left|a_{n}\right|\right)$.

Similarly, let $\left(b_{n}\right)_{n \in \mathbf{N}}$ be the sequence of poles of f with $0<\left|b_{n}\right| \leq\left|b_{n+1}\right|$ and let q_{n} be the order of the pole b_{n}. We denote by $N(r, f)$ the counting function of the poles of f, counting multiplicity $N(r, f)=\sum_{\left|b_{n}\right| \leq r} q_{n}\left(\log r-\log \left|b_{n}\right|\right)$.

And we denote by $\bar{N}(r, f)$ the counting function of poles ignoring multiplicities be defined as $\bar{N}(r, f)=\sum_{\left|b_{n}\right| \leq r}\left(\log r-\log \left|b_{n}\right|\right)$.

Finally, we define the characteristic function $T(r, f)$ as $T(r, f)=\max (Z(r, f)+$ $\log |f(0)|, N(r, f))$.

Lemma 3 comes from classical properties of meromorphic functions [5].
Lemma 3: Let $f \in \mathcal{M}(K)$, (resp. $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$). Then, fixing $\left.r_{0} \in\right] 0,+\infty[$, (resp. $\left.r_{0} \in\right] 0, R[$), we have $\log (|f|(r))=Z(r, f)-N(r, f)+O(1), \quad \forall r \in] r_{0},+\infty[$ (resp. $\forall r \in] r_{0}, R[$).

As a corollary of Lemma 1, we have Lemma 4:
Lemma 4: Let $f \in \mathcal{M}(K)$, (resp. $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$) be such that $f^{(k)}$ has a quasiexceptional value $b \in K^{*}$. Then $\mathrm{Z}(r, f) \geq N(r, f)+k \log r+O(1)$.

We will also need Lemma 5 that is classical.
Lemma 5: Let $f \in \mathcal{M}\left(d\left(0, r^{-}\right)\right)$. If f has no zero and no pole in a disk $d\left(b,|b|^{-}\right)$, then $|f(b)|=|f|(|b|)$.

The following Lemma 6 [5] is useful to derive Corollary 4.1 from Theorem 4.
Lemma 6: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$). Then f admits at most one special value b. If b is a quasi-exceptional value of f, it is a special value. If f admits a special value $b \in K$, then f^{\prime} admits 0 as a special value.

Proof of Theorem 1: Suppose that f has at least s zeroes and t poles of order \geq $k+1$ and that, if $k>2, f^{(k-2)}$ has u zeroes of order ≥ 2 that are not zeroes of f.

Suppose that $f^{(k-2)}$ has a quasi-exceptional value $b \neq 0$. Then $f^{(k-2)}$ is of the form $b+\frac{P(x)}{g(x)}$ with $g \in \mathcal{A}(K) \backslash K[x]$ and therefore, there exists R such that $\left|f^{(k-2)}\right|(r)=|b| \forall r>R$. Particularly, by Lemma 3, $f^{(k-2)}$ admits as many zeroes as many poles in any disk $d(0, r)$ whenever $r \geq R$.

Consequently, by Lemma 4 we have
(1) $Z(r, f) \geq N(r, f)+(k-2) \log r+O(1)$ when $r<R$.

Now, applying the p-adic Nevanlinna Second Main Theorem we have:
(2) $T\left(r, f^{(k-2)}\right) \leq \bar{Z}\left(r, f^{(k-2)}\right)+\bar{Z}\left(r, f^{(k-2)}-b\right)+\bar{N}\left(r, f^{(k-2)}\right)-\log r+O(1)$.

But since b is a quasi-exceptional value of $f^{(k-2)}$, the number q of distinct zeroes of $f^{(k-2)}-b$ is $\leq \operatorname{deg}(P)$ and we have $\bar{Z}\left(r, f^{(k-2)}-b\right) \leq q \log r+O(1)$. Consequently, (2) yields:

$$
Z\left(r, f^{(k-2)}\right) \leq \bar{Z}\left(r, f^{(k-2)}\right)+\bar{N}(r, f)+(q-1) \log r+O(1) \text { i.e. }
$$

$$
\begin{equation*}
\left(Z\left(r, f^{(k-2)}\right)-\bar{Z}\left(r, f^{(k-2)}\right)\right) \leq \bar{N}(r, f)+(q-1) \log r+O(1) \tag{3}
\end{equation*}
$$

Notice that due to the hypothesis, we have

$$
\begin{equation*}
\bar{Z}(r, f) \leq \frac{Z(r, f)}{k}+\left(\frac{(k-1) m}{k}-\frac{s}{k(k+1)}\right) \log r \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{N}(r, f) \leq \frac{N(r, f)}{k}+\left(\frac{(k-1) w}{k}-\frac{t}{k(k+1)}\right) \log r . \tag{5}
\end{equation*}
$$

Now, by hypothesis, each zero of f is a zero of order at least k, hence is a zero of $f^{(k-2)}$ of order ≥ 2, except m of them, hence we have

$$
Z\left(r, f^{(k-2)}\right)-\bar{Z}\left(r, f^{(k-2)}\right) \geq Z(r, f)-(k-1) \bar{Z}(r, f)+u \log r+O(1)
$$

and then (3) yields

$$
Z(r, f)-(k-1) \bar{Z}(r, f) \leq \bar{N}(r, f)+(q-u-1) \log r+O(1)
$$

hence by (4) and (5)

$$
Z(r, f) \leq\left(\frac{k-1}{k}\right) Z(r, f)+(k-1)\left[\frac{(k-1) m}{k}-\frac{s}{k(k+1)}\right] \log r
$$

$$
+\frac{N(r, f)}{k}+\left[\frac{(k-1) w}{k}-\frac{t}{k(k+1)}\right] \log r+(q-u-1) \log r+O(1)
$$

Now by (1), the last inequality yields

$$
\begin{gathered}
Z(r, f) \leq \frac{(k-1)}{k} Z(r, f)+(k-1)\left[\frac{(k-1) m}{k}-\frac{s}{k(k+1)}\right] \log r \\
+\frac{Z(r, f)}{k}-\frac{k-2}{k} \log r+\left[\frac{(k-1) w}{k}-\frac{t}{k(k+1)}+(q-u-1)\right] \log r+O(1)
\end{gathered}
$$

hence

$$
0 \leq\left[\frac{(k-1)((k-1) m+w)}{k}-\frac{s(k-1)}{k(k+1)}-\frac{t}{k(k+1)}-\frac{k-2}{k}+(q-u-1)\right] \log r+O(1)
$$

Consequently,

$$
q \geq 2-\frac{2}{k}+u+\frac{t+s(k-1)}{k(k+1)}-\frac{(w+m(k-1))(k-1)}{k}
$$

which ends the proof.
The following Lemma 7 will be useful in the proof of Theorem 2 and is an immediate consequence of Corollary 1.7.17 [5].

Lemma 7: Let $f \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$and let $\left(a_{n}\right)_{n \in \mathrm{~N}}$ be the sequence of zeroes of f, with respective multiplicity q_{n}. Then f belongs to $\mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)$if and only if $\prod_{n=0}^{\infty}\left(\frac{\left|a_{n}\right|}{R}\right)^{q_{n}}=0$.

Proof of Theorem 2: The proof is similar to this of Theorem 1, with some changes. Thanks to Lemma 2, without loss of generality, we can assume that K is spherically complete. Then we can write $f=\frac{h}{l}$ with $h, l \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$, having no common zeroes. We shall first show that $f^{(k-2)}$ belongs to $\mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$.

Suppose that Hypothesis 2) of Theorem 2 is satisfied. Then by Lemma 7, l belongs to $\mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)$and hence the denominator of $f^{(k-2)}$, in a reduced form, also belongs to $\mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)$because l divides it in $\mathcal{A}\left(d\left(0, R^{-}\right)\right)$. Hence $f^{(k-2)}$ belongs to $\mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$.

If Hypothesis 3) of Theorem 2 is satisfied, by Lemma 7, it is obvious that the numerator of $f^{(k-2)}$, in a reduced form, is unbounded, hence $f^{(k-2)}$ belongs to $\mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$.

Now, suppose that Hypothesis 1) of Theorem 2 is satisfied. Since $s_{n} \geq k+1$, we can check that $s_{n}-k+2 \geq \frac{s_{n}}{k}$ and therefore by Hypothesis 1), we have

$$
\prod_{n=0}^{\infty}\left(\frac{\left|a_{n}\right|}{R}\right)^{s_{n}-(k-2)} \leq \prod_{n=0}^{\infty}\left(\frac{\left|a_{n}\right|}{R}\right)^{\frac{s_{n}}{k}}=0
$$

Consequently, by Lemma $7 f^{(k-2)}$ belongs to $\mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$.
Suppose $f^{(k-2)}$ has a quasi-exceptional value $b \neq 0$, hence $f^{(k-2)}$ is of the form $b+\frac{P(x)}{g(x)}$ and therefore, there exists $\left.S \in\right] 0, R\left[\right.$ such that $\left|f^{(k-2)}\right|(r)=|b| \forall r \in$ $] S, R\left[\right.$. Particularly, $f^{(k-2)}$ admits as many zeroes as many poles in any disk $d(0, r)$ whenever $r \in] S, R[$.

Consequently, $Z\left(f^{(k-2)}, r\right)=N\left(f^{(k-2)}, r\right)+O(1)$ when $\left.r \in\right] S, R[$. On the other hand, by Lemma 1, we have $|f|(r) \geq\left|f^{(k-2)}\right|(r) r^{k-2}$, hence finally, by Lemma 3, we have

$$
\begin{equation*}
Z(r, f)) \geq N(r, f)+O(1) . \tag{1}
\end{equation*}
$$

$T\left(f^{(k-2)}, r\right) \geq N\left(f^{(k-2)}, r\right)=N(r, f)+(k-2) \bar{N}(r, f)+O(1)$. Now, applying the p-adic Nevanlinna Main Theorem we have:

$$
\begin{equation*}
T\left(f^{(k-2)}, r\right) \leq \overline{\mathrm{Z}}\left(r, f^{(k-2)}\right)+\overline{\mathrm{Z}}\left(r, f^{(k-2)}-b\right)+\bar{N}\left(r, f^{(k-2)}\right)+O(1) \tag{2}
\end{equation*}
$$

Now, since b is a quasi-exceptional value and since $\bar{N}(r, f)=\bar{N}\left(r, f^{(k-2)}\right),(2)$ yields:

$$
Z\left(r, f^{(k-2)}\right) \leq \bar{Z}\left(r, f^{(k-2)}\right)+\bar{N}(r, f)+O(1) \text { hence }
$$

$$
\begin{equation*}
Z\left(r, f^{(k-2)}\right)-\bar{Z}\left(r, f^{(k-2)}\right) \leq \bar{N}(r, f)+O(1) \tag{3}
\end{equation*}
$$

Now, by hypothesis, each zero of f is a zero of order at least k, except finitely many. So, each zero of f of order $\geq k$ is a zero of $f^{(k-2)}$ of order ≥ 2, hence $Z\left(r, f^{(k-2)}\right)-\bar{Z}\left(r, f^{(k-2)}\right) \geq Z(r, f)-(k-1) \bar{Z}(r, f)+O(1)$, therefore (3) yields

$$
\begin{equation*}
Z(r, f) \leq(k-1) \bar{Z}(r, f)+\bar{N}(r, f)+O(1) \tag{4}
\end{equation*}
$$

hence

$$
\begin{equation*}
Z(r, f) \leq(k-1) \bar{Z}(r, f)+\frac{N(r, f)}{k}+O(1) \tag{5}
\end{equation*}
$$

Suppose now that f has infinitely many zeroes $\left(a_{n}\right)$ of order $\geq k+1$ satisfying Hypothesis 1). Then we can check that

$$
\begin{equation*}
\lim _{r \rightarrow R} Z(r, f)-k \bar{Z}(r, f)=+\infty \tag{6}
\end{equation*}
$$

Now, by (1) and (5) we have

$$
\left.Z(r, f) \leq(k-1) \bar{Z}(r, f)+\frac{Z(r, f)}{k}+O(1), r \in\right] S, R[
$$

hence

$$
\left.Z(r, f)-k \bar{Z}(r, f) \leq \frac{Z(r, f)}{k}-\bar{Z}(r, f)+O(1), r \in\right] S, R[.
$$

Therefore

$$
\left.\frac{(k-1)}{k}(Z(r, f)-k \bar{Z}(r, f)) \leq O(1), r \in\right] S, R[
$$

a contradiction to (6).
Suppose now that f has infinitely many poles of order $\geq k+1$ satisfying Hypothesis 2). Then the function $\theta(r)=\frac{N(r, f)-k \bar{N}(r, f)}{k}$ satisfies

$$
\begin{equation*}
\lim _{r \rightarrow R} \theta(r)=+\infty . \tag{7}
\end{equation*}
$$

Now, by (5) we have

$$
Z(r, f) \leq \frac{(k-1)}{k} Z(r, f)+\frac{N(r, f)}{k}-\theta(r)+O(1)
$$

and hence by (1) we obtain

$$
Z(r, f) \leq \frac{(k-1)}{k} Z(r, f)+\frac{Z(r, f)}{k}-\theta(r)+O(1)
$$

but by (7) the contradiction follows.
Finally, suppose that $f^{(k-2)}$ has infinitely many zeroes that are not zeroes of f, satisfying hypothesis 3). We set again
$\psi(r)=\sum_{n=0}^{\infty}\left(u_{n}-1\right)\left(\log r-\log \left(\left|c_{n}\right|\right)\right)$. Since $\prod_{n=0}^{\infty}\left(\frac{\left|c_{n}\right|}{R}\right)^{u_{k}-1}=0$ the function ψ satisfies

$$
\begin{equation*}
\lim _{r \rightarrow R} \psi(r)=+\infty \tag{8}
\end{equation*}
$$

and by construction, we can check that

$$
\mathrm{Z}\left(r, f^{(k-2)}\right)-\bar{Z}\left(r, f^{(k-2)}\right) \geq \mathrm{Z}(r, f)-(k-1) \bar{Z}(r, f)+\psi(r)+O(1)
$$

Then by (3) we obtain $Z(r, f)-(k-1) \bar{Z}(r, f)+\psi(r) \leq \bar{N}(r, f)+O(1)$, hence $\frac{Z(r, f)}{k}+\psi(r) \leq \bar{N}(r, f)+O(1)$ and hence by (1), we have $\frac{Z(r, f)}{k}+\psi(r) \leq$ $\frac{Z(r, f)}{k}+O(1)$, a contradiction by (8). This finishes the proof of Theorem 2.

Proof of Corollary 2.2: By hypothesis, $f^{\prime} f^{2}$ does not admit 0 as a quasi-exceptional value. We set $g=\frac{1}{f}$.
The function f^{\prime} admits a subsequence $\left(b_{m}\right)_{m \in \mathbf{N}}$ of $\left(a_{n}\right)_{n \in \mathbf{N}}$ satisfying $\prod_{m=0}^{\infty}\left(\frac{\left|b_{m}\right|}{R}\right)^{\tau_{m}}=0$, with $\tau_{m} \geq 2$ and such that either all b_{m} are zeroes f or none of the b_{m} are zeroes of f.

Suppose the first case holds. That means that each b_{m} is a zero of f of order $\tau_{m}+1 \geq 3$. Then f^{3} satisfies 1) in Theorem 2 with $k=3$. Hence $f^{\prime} f^{2}$ has no quasi-exceptional value different from 0 . Furthermore each b_{m} is a pole of $g=\frac{1}{f}$ of order ≥ 3. Then by Corollary 2.1, for all $b \in K^{*}, g^{\prime} g^{2}+b$ admits infinitely many zeroes. Let β be a zero of $g^{\prime} g^{2}+b$ i.e. a zero of $-\frac{f^{\prime}}{f^{4}}+b$. Then $f(\beta) \neq 0, \infty$, hence β is a zero of $f^{\prime}-b f^{4}$, that is not a zero of f, which completes the proof.

Suppose now the second case holds. Then f^{3} satisfies 3) in Theorem 2 with $k=3$, hence $f^{\prime} f^{2}$ has no quasi-exceptional value different from 0 . Now, $\left(b_{m}\right)_{m \in \mathbf{N}}$ is a sequence of zeroes of g^{\prime} of order ≥ 2 that are not zeroes of g. We can apply Theorem 2, hypothesis 3) to g^{3}. This proves that $g^{\prime} g^{2}$ has no quasi-exceptional value different from zero. Consequently, given $b \neq 0, g^{\prime} g^{2}+b$ has infinitely many zeroes. Consequently $f^{\prime}-b f^{4}=-f^{4}\left(g^{\prime} g^{2}+b\right)$ admits infinitely many zeros that are not zeroes of f.

Proof of Theorem 3: Suppose first $f \in \mathcal{M}(K)$ to be transcendental and suppose $b \neq 0$ is a quasi-exceptional value of $f^{(k)}$. Applying the p-adic Nevanlinna Main Theorem, we have $T\left(r, f^{(k)}\right) \leq \bar{Z}\left(r, f^{(k)}\right)+\bar{Z}\left(r, f^{(k)}-b\right)+\bar{N}\left(r, f^{(k)}\right)-\log r+$ $O(1)$.

Now, $Z\left(r, f^{(k)}\right) \leq T\left(r, f^{(k)}\right), \bar{N}\left(r, f^{(k)}\right)=\bar{N}(r, f)$ and, since b is a quasiexceptional value of $f^{(k)}, \overline{\mathrm{Z}}\left(r, f^{(k)}-b\right) \leq O(\log r)$. Consequently,

$$
\begin{equation*}
Z\left(r, f^{(k)}\right)-\bar{Z}\left(r, f^{(k)}\right) \leq \bar{N}(r, f)+O(\log r) . \tag{1}
\end{equation*}
$$

And now, since each zero of f has order at least $m \geq k$ we have $Z\left(r, f^{(k)}\right) \geq$ $\mathrm{Z}(r, f)-k \bar{Z}(r, f)+O(\log r)$ hence by (1) we obtain

$$
\begin{equation*}
Z(r, f)-(k+1) \bar{Z}(r, f) \leq \bar{N}(r, f)+O(\log r) . \tag{2}
\end{equation*}
$$

Now, since each zero of f is of order at least m and since pole is of order at least n exceptly finitely many, we have
$Z(r, f)-(k+1) \bar{Z}(r, f) \geq\left(\frac{m-k-1}{m}\right) Z(r, f)+O(\log r)$ and $\bar{N}(r, f) \leq \frac{N(r, f)}{n}+$ $O(\log r)$ hence (2) yields

$$
\begin{equation*}
Z(r, f)\left(\frac{m-k-1}{m}\right) \leq \frac{N(r, f)}{n}+O(\log r) . \tag{3}
\end{equation*}
$$

Now by Lemma 4, we have $Z(r, f) \geq N(r, f)+O(\log r)$, and hence (3) yields

$$
Z(r, f)\left(\frac{m-k-1}{m}\right) \leq \frac{Z(r, f)}{n}+O(\log r)
$$

hence finally $m-k-1 \leq m n$, a contradiction to the hypothesis.
Suppose now that f belongs to $\mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$. The proof is the same by replacing each time $O(\log r)$ by $O(1)$.

By properties of analytic elements, we know the following lemmas 9, 10 given in [4] and [5]:
Lemma 9: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$, let $a \in d\left(0, R^{-}\right)$and let $r=|a|$. Then

$$
\lim _{\substack{|x| \rightarrow r, r \\|x| \neq r}}|f(x)|=\lim _{\substack{|x-a| \rightarrow r,|x-a| \neq r}}|f(x)|=|f|(r) .
$$

Lemma 10: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$have q zeroes and t poles in $d(a, s)$ and have no zero and no pole in $\Gamma(0, s, r)$ (with $s<r<R)$. Then $|f(x)|=|f|(r)\left(\frac{|x-a|}{r}\right)^{q-t}$.

Proof of Theorem 4: Suppose f has a special value $c \neq 0$. Without loss of generality, we may assume $c=1$ and $a=0$. By hypothesis, there exists $S>0$ (resp. $S \in] 0, R[$) such that $|f-1|(r)<1 \forall r \geq S$ (resp. $|f-1|(r)<1 \forall r \in] S, R[$). Let $b \in K^{*}$ be such that $|b|>S$ (resp. $b \in d\left(0, R^{-}\right)$be such that $S<|b|<R$) and set $r=|b|$. By Lemma 9 we have

$$
\lim _{\substack{|x| \rightarrow r, r \\|x| \neq r}}|f(x)-1|=\lim _{\substack{|x-b| \rightarrow r,|x-b| \neq r}}|f(x)-1|=|f-1|(r)
$$

hence $\lim _{\substack{|x-b| \rightarrow r, r \\|x-b| \neq r}}|f(x)-1|<1$. Thus, there exists $\left.s \in\right] 0, r[$ such that $|f(x)-1|<$ $1 \forall x \in \Gamma(b, s, r)$ and particularly
(1) $|f(x)|=1, \forall x \in \Gamma(b, s, r)$.

Without loss of generality, we can take $s<r$ but big enough to assure that $d(b, s)$ contains all the zeroes and the poles of f inside $d\left(b, r^{-}\right)$. Let q be the number of zeroes of f in $d(b, s)$ and let t be the number of poles of f in $d(b, s)$ taking multiplicity into account. Then by Lemma 10 , we have $|f(x)|=|f|(r)\left(\frac{|x-b|}{r}\right)^{q-t}$. Consequently, by (1) we have $q=t$.

Acknowledgement The authors express their gratitude to Professor Alain Escassut for many helpful suggestions through out the preparation of the paper.

References

[1] Bergweiler, W. and Pang, X.C. On the derivative of meromorphic functions with multiple zeros, J. Math. Anal. Appl. 278 , p. 285-292 (2003).
[2] Boussaf, K. Picard values of p-adic meromorphic functions. p-Adic Numbers, Ultrametric Analysis and Applications, Vol. 2, N. 4, p. 285-292 (2010).
[3] Boussaf, K., Ojeda, J. and Escassut, A. Zeroes of p-adic meromorphic functions. Paper submitted for publication.
[4] Escassut, A. Analytic Elements in p-adic Analysis. World Scientific Publishing Co. Pte. Ltd. (Singapore, 1995).
[5] Escassut, A. p-adic Value Distribution. Some Topics on Value Distribution and Differentiability in Complex and P-adic Analysis, p. 42-138. Mathematics Monograph, Series 11. Science Press.(Beijing 2008)
[6] Escassut, A. and Ojeda, J. Exceptional values of p-adic analytic functions and derivatives. Complex Variables and Elliptic Equations. Vol 56, N. 1-4, p.263269 (2011).
[7] Hayman W. K. , Picard values of meromorphic functions and their derivatives, Ann. of Math. 70, p. 9-42 (1959).
[8] Hu, P.C. and Yang, C.C. Meromorphic Functions over non-Archimedean Fields. Kluwer Academic Publishers, (2000).
[9] Ojeda J. On Hayman's conjecture over a p-adic field. Taiwanese Journal of Mathematics 12 (9) (2008).
[10] Wang Yueifei and Fang Mingliang. Picard Values and Normal families of Meromorphic Functions with multiple zeros, Acta Mathematica Sinica, new series, January 1998, Vol 14, N. 1, p. 17-26.
[11] Yang, C.C. On the value distribution of a transcendental meromorphic functions and its derivatives , Indian J. Pure and Appl.Math. p. 1027-1031 (2004).

Laboratoire de Mathématiques
UMR 6620 UFR ST
Université Blaise Pascal
Les Cezeaux
63177 AUBIERE CEDEX
FRANCE
mail : Kamal.Boussaf@math.univ-bpclermont.fr
Departamento de Matemática
Facultad de Ciencias Físicas y Matemáticas
Universidad de Concepción
Barrio Universitario s/n, Casilla 160-C
Concepción, Chile.
mail : jacqojeda@udec.cl

[^0]: *Partially supported by CONICYT $N^{\circ} 79090014$ (Inserción de Capital Humano a la Academia)
 Received by the editors August 2010.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : Primary 12J25 Secondary 46S10.
 Key words and phrases : p-adic meromorphic functions, value distribution, exceptional values.

