
The algebraic structure of quaternionic analysis

Massimo Tarallo

Abstract

The regularity of a quaternionic function is reinterpreted through a new
canonical decomposition of the real differential, giving new insights into the
algebraic properties of the regularity itself. The result comes from a some-
what unusual point of view on the automorphisms of the quaternionic field:
a general notion of quaternionic linearity is associated to them, and some un-
noticed metric properties of their inner representation are used to build up
the theory.

1 Introduction

Quaternionic analysis is the theory of the quaternionic valued functions f (q) of
the quaternionic variable q = t+ ix + jy+ kz, which satisfy the Cauchy–Riemann
type equation
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Since their introduction by Fueter ([6]) in 1935 , they are called regular functions,
and the same name is reserved to the solutions of three other type of equations
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which take into the account the noncommutativity of the quaternionic field H

and the conjugate quaternionic variable q = t − ix − jy − kz. All the classes have
mirroring properties and, from the very beginning of the story, it is made clear
that there is no particular reason to prefer one definition to another. To a remark-
able extent, the theory of regular functions mimics that of holomorphic functions,
including the representation by a Cauchy integral formula together with its clas-
sical consequences: [23] is a good, modern reference for the subject. A higher
dimensional version of the theory was provided in [20], by means of a componen-
twise approach to regularity in many quaternionic variables, while many other
interesting extensions have been considered in the literature, with a number of
physical applications: a quite exhaustive picture may be obtained from the ever-
green book [2] and the more recent [14] and [7].
In spite of that, while complex analysis is a common knowledge in the mathe-
matical community, the quaternionic version is quite unpopular nowadays, and
is even looked at suspiciously because of some strange algebraic features: the
composition of regular maps may be not regular, and even the prototype of the
good maps, i.e. the identity, is not a regular function. Many alternative definitions
of regularity have been introduced in the literature, to overcome these problems:
see for instance [4], [11], [12] and the more recent [9]. On the contrary, the scope of
the present paper is within the classical Fueter theory, not with the aim of fixing
the algebraic problems of the regular functions, but instead of understanding the
algebraic reasons for them.
The main device is an algebraic description of the regularity itself. Along the
process one discovers many interesting facts: for instance, that the choice of the
Cauchy–Riemann equation is not at all a matter of taste, but it is driven by the
chirality context. A vector space over H may be a left space or a right space:
the choice between the two possibilities is named here the chirality of the space
itself. The map f above acts between two copies of H, which of course may be
seen as vector spaces over H, each one with its own chirality: this gives rise to
four different chirality contexts and the point is, that they are in one–to–one cor-
respondence with the equations (1.1)–(1.2). A main point of this paper is to show
that the chirality context is indeed the key to solve all the puzzles that the non
commutativity of H involves. To this aim, while most of the literature begins
with a concrete choice of the chirality context, this will not be done here: along
all the paper, the name quaternionic space will denote a vector space over H,
without an priori choice for the chirality.
The chirality context drives the way the real differential of a map may be writ-
ten as the sum of two parts which, roughly speaking, behave as the real and the
imaginary part of a quaternion: the composition of maps is shown to have ex-
actly the same algebraic structure as the product of quarternions. In this picture,
the main result states that regularity is the same as having a purely imaginary
differential, so that the bad properties of regularity simply mirror the unavoid-
able and widely accepted properties of the imaginary quaternions: the unit is not
imaginary, nor is the product of imaginary quaternions, in general. Moreover, it
will become clear that also the standard notion of holomorphy may have similar
algebraic drawbacks, when settled in a quaternionic context: for linear approxi-
mations, see for instance the comments after Proposition 5.10.
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After this preview, let me enter some more details abut the ideas and the results
of the paper. In the complex case, the Cauchy–Riemann equations express the
vanishing of one of the coefficients in the formula

d f =
∂ f

∂z
dz +

∂ f

∂z̄
dz̄ (1.3)

and the basic question here is: is there anything similar for the equations (1.1)–
(1.2), in the quaternionic case?
The question is not new, of course, and appears in the first pages of almost every
introduction to quaternionic analysis. The typical way to attach the problem is to

say that the two differential forms dq and dq are not sufficient to span LinR(H)
over the quaternions and that, moreover, it seems difficult to complete them to
a basis: see, for instance, [22] or [7]. Then one looks for other type of decompo-
sitions, where the Cauchy–Riemann equations nevertheless express the vanish-
ing of some particular term. Some interesting answers are provided in [22] and
[15]. The paper [22] is quite related to the present one, and it will be commented
later on in the Introduction. In [15], the real differential of a regular function is
shown to possess some additional linearity properties, with an intermediate ho-
mogeneity between the real and the quaternionic ones: roughly speaking, it is
a complex linearity with respect to three independent, complex–type variables
x − it, y − jt, z − kt. These variables are usually called Fueter variables, and have
a natural extension in the context of Clifford algebras (see also [7]).
There is another obstruction to the word–by–word translation of (1.3) into the
quaternionic framework. This formula is nothing else than the one–dimensional,
differential guise of a general and well known purely algebraic fact: every real lin-
ear map, between complex spaces, can be uniquely decomposed into the sum of
a complex linear map and a complex anti–linear one. The quaternionic analogue
should then be concerned with quaternionic linear or anti–linear maps, which are
not enough to decompose real linear maps but, even worse, are not suitable for
a rich differential calculus: if d f is quaternionic linear at every point, then f is
affine. It is part of the mathematical folklore that this failure is the main reason
for the Cauchy–Riemann approach to regularity. This fact has been proved so
many times in the literature, in the one or in the finite dimensional cases, that I
could not resist to add also my personal version of it: Proposition 6.4 provides a
quite general statement, with a very short and elementary proof.
Summing up, there are a lot of evidences suggesting that quaternionic linearity
is not relevant to quaternionic analysis: on the contrary, my hope is to convince
the reader that, when correctly interpreted, it is the ultimate brick the regularity
is made of. The preliminary step is to understand that quaternionic linear and
anti–linear maps, as dq and dq, cannot stay together. This is better seen when

working in LinR(X; Y), where X and Y are general quaternionic spaces. While H

may act on itself from the left and from the right, on general spaces the action is
typically one–sided: denote it by ∗, whatever the chirality is. Quaternionic linear
and anti–linear maps are particular instances of the following general notion: an
additive map Λ : X → Y is said to be quaternionic linear with respect to a given
ϕ : H → H if

Λ(q ∗ x) = ϕ(q) ∗ Λ(x)
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for every q ∈ H and x ∈ X. The resulting class is denoted by LinH
ϕ (X; Y), and

its properties are studied in Section 3. It is worth to notice that the homogeneity
with respect to R is not a priori required, but instead is an a posteriori feature of
the quaternionic linearity. Indeed, while ϕ can be any map when Λ = 0, as soon
as Λ 6= 0 the Proposition 3.1 says that ϕ must be a field automorphisms which
preserves the order in the product, if X and Y have the same chirality, or which
reverses it, in the opposite case. The conclusion is made by two parts. The first
one is that ϕ is not just a field morphism, but instead a field automorphism and
hence also an automorphism of real algebras. This fact depends on Proposition
2.1 and says that ϕ must fix R, so explaining why

LinH
ϕ (X; Y) ⊂ LinR(X; Y) .

The second and more relevant part, though easier to prove, concerns the role
played by the chirality context in the choice of the morphism type: reversing or
not reversing the order in the quaternionic multiplication. This fact represents the
deepest obstruction to the translation of the decomposition (1.3) into the quater-
nionic context: also when X = Y = H as sets, but the chirality context is given
once for all, there are no chances to put dq and dq into the same formula.
The class of the automorphisms of H will be denoted by Aut(H), and their prop-
erties are crucial for this paper. This class consists indeed of the inner automor-
phisms, defined by

ϑg(q) = gqg−1

for every given quaternion g 6= 0. The algebraic and differential properties of

the map ϑ : H\{0} → Aut(H) ⊂ LinR(H) are well described in almost every
textbook about quaternions. For the purposes of this paper, however, the metric
properties turn out to be relevant: they seem to be overlooked in the literature,
and are studied in the final part of section Section 2. To express them, consider

the standard real Euclidean scalar product on H, and endow LinR(H) with the
unique quaternionic scalar product, having the standard real one (see (2.6)) as its
real part. The crucial fact follows from Proposition 2.7 and is stated in Corollary
2.8: ϑ maps real orthogonal vectors of H into automorphisms which are quater-

nionic orthogonal in LinR(H).
Roughly speaking, the effect of ϑ is to export into Aut(H), and then into LinR(H)
after a quaternionic span, the classical orthogonal decomposition H = R ⊕ R3

into the real and imaginary quaternions respectively: the real quaternions corre-
spond to the old fashioned quaternionic linear or anti–linear maps, depending
on the chirality context, while the second ones are exactly the regular maps. This
is worked out in Section 4, for general quaternionic spaces. To state the result,
consider a standard basis of H, namely a real orthonormal basis e0, e1, e2, e3 with
the following extra–properties: it satisfies e0 = 1, i.e it respects the orthogonal
decomposition of H, and it is well oriented, in the sense that e1e2 = e3. The inner
representation ϑ maps this basis into ω0 = id and three imaginary orthogonal au-
tomorphisms ω1, ω2, ω3. Their quaternionic orthogonality makes it easy to show

that: every Λ ∈ LinR(X : Y) may be uniquely decomposed into the sum

Λ = Λ0 +
{

Λ1 + Λ2 + Λ3

}

(1.4)
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where every Λk is quaternionic linear with respect to ϕk and

ϕk = ωk or ϕk = ωk

according to whether X and Y have the same or different chiralities, respec-
tively. Moreover, and of great relevance here, the coarser decomposition given
by the parenthesis does not depend on the concrete choice of the imaginary units
e1, e2, e3. As anyone who has worked in the field knows, this quality is like a
divide in the quaternionic world, separating the canonical objects from the non
canonical ones: of course, the Cauchy–Riemann equations also belong to the first
category.
The claim is that the decomposition (1.4) is the quaternionic analogue of the com-
plex decomposition underlying (1.3), and that the condition

Λ0 = 0 (1.5)

defines a general, coordinate independent notion of regularity. The algebraic
analogy of regular maps with the imaginary part of quaternions becomes mani-
fest when looking at the canonical decomposition of a composition of maps: this
is done at the end of section 4.
Notice that, depending on the chirality context, ϕ0 is either the identity or the
conjugation in H. Thus condition (1.5) expresses the vanishing of either the
quaternionic linear part of Λ or its quaternionic anti–linear part. The same no-
tion of regularity was already introduced in [8], by guessing the form of the
Cauchy–Riemann equations in general spaces, without worrying about canon-
ical procedures, and without providing any general notion of quaternionic lin-
earity or quaternionic orthogonality. However, it is exactly the orthogonality ar-
gument which completes the parallel between the canonical decomposition and
H = R ⊕ R3, extending it from the algebraic level to the metric one, at lest in
the one–dimensional case. In this case indeed (1.4) becomes a true quaternionic

orthogonal decomposition: since moreover each class LinH
ϕ (H) is spanned by ϕ,

over the quaternions, regularity reads exactly as the quaternionic orthogonality
to ϕ0.
Looking at the one–dimensional case, one also achieves the full justification of
definition (1.5). By specializing the canonical decomposition to differential forms,
the quaternionic version of (1.3) is found to be

d f =
∂ f

∂ϕ0
⋄ dϕ0 +

3

∑
h=1

∂ f

∂ϕh
⋄ dϕh . (1.6)

where the coefficients are the differential operators

∂ f

∂ϕh
(x) =

1

4

3

∑
k=0

ϕh(ek) ∗
{

d f (x) · ek

}

.

Here ∗ and ⋄ denote the two opposite ways H may act on itself: ∗ is decided by

the initial chirality context and, as explained in Section 3, the use of ⋄ on LinR(H)
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guarantees that the notion of quaternionic linearity is closed under quaternionic
span. The regularity of f , as defined by (1.5), becomes the differential condition

∂ f

∂ϕ0
= 0 .

To write it explicitly one must know the concrete expression of ∗ and ϕ0 which, in
turn, depend on the chiralities of the involved spaces. By choosing them, one ob-
tains exactly the four equations (1.1)–(1.2): one for each chirality context. In other
words, the notion of regularity is totally driven by the chirality context: though
this fact should be quite easily guessed from the aspect of the Cauchy–Riemann
equations, I was unable to trace it in the literature. The differential decomposi-
tion (1.6) should be compared with that of [22]. Without mentioning any general
notion of quaternionic linearity, the same object d f is decomposed there along the
same differential forms, but the coefficients turn out to be different: indeed, they
are wrong in general, as explained in Remark 4.5.
Once (1.5) has been accepted as definition of regularity, the canonical decompo-
sition provides a purely algebraic characterization of the regularity itself: a real
linear map is regular if and only if is the sum of quaternionic linear maps, with re-
spect to imaginary automorphisms. Three of them are sufficient for all the regular
maps, but they are not always necessary: the minimal number of quaternionic lin-
ear maps, with respect to mutually orthogonal imaginary automorphisms, which
are really needed to decompose a regular map Λ, deserves the name of quater-
nionic size of Λ, and is denoted by s{Λ}. This number turns out to have a very
concrete algebraic meaning: while size one maps are (by definition) the regular
quaternionic linear maps, and having size three does not operate any selection in
the class of the regular maps, one has s{Λ} ≤ 2 if and only if the regular map Λ

is complex linear, with respect to some suitable choice of the complex structures
in X and Y. Notice that there is not a canonical way to think of a quaternionic
space as a complex one: there are as many complex structures, as the imaginary
units are. In [19], another classification is obtained, by counting the number of
different complex structures for which a given Λ is complex linear: in fact, the
two classifications are equivalent. These and other facts are proved in Section 5,
yielding a full comprehension of the relationships between complex linearity and
regularity.
Finally, Section 6 is devoted to the nonlinear consequences of the size restrictions.
The main result is Theorem 6.1 and concerns the one–dimensional case. Roughly
speaking, it says that truly nonlinear regular maps cannot be too simple from the
algebraic point of view: indeed, the quaternionic size of its real differential must
be strictly bigger than one in a everywhere dense subset. The key point here is
the identification between quaternionic linearity and conformality, introduced by
Lemma 6.2. On the one hand, this fact allows to use the classical Liouville’s the-
orem on conformal maps: for the convenience of the reader, its proof is sketched
in the Appendix B. On the other hand, this identification provides an alternative
and more direct answer to a question raised in [13]: formula (6.6) shows how the
conformality may be written in terms of difference quotients.
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Notation. In this paper H is the quaternion field and Aut(H) is the class of the
automorphisms of H. The decomposition H = R ⊕ R3 is the canonical, real or-
thogonal decomposition of H, into real and imaginary quaternions. The identity
on H is denoted by id while cj stays for the classical conjugation. The symbols
p · q and p × q denote respectively: the Euclidean real scalar product of general
quaternions, and the vector product of imaginary quaternions.
Moreover X, Y, Z stand for quaternionic spaces, namely vector (or Banach) spaces
over H, and ∗ is the associated scalar multiplication. Depending on the space, the
scalar multiplication ∗ may define a left action of H or a right one: this quality is
named the chirality of the corresponding space. The symbol ⋄ denotes a second
quaternionic scalar multiplication (if any) which satisfies the compatiblity condi-
tion given by (3.4).

Also, LinR(X; Y) is the class of the real linear maps from X to Y, interpreted as

real spaces, while the shorter notation LinR(X) is used in case Y = X. Replacing
R by C or H corresponds to changing the homogeneity rules.
All the (nonlinear) functions f : X → Y considered in the paper are just required
to possess the real differential d f (x), at least for all x in some open subset of X.
The directional derivative of f at x along v is denoted by d f (x) · v. The one–time
real differentiability of f is enough everywhere but some arguments in the final
section: also there, however, the increased degree of smoothness is never an a
priori assumtpion, but instead an a posteriori consequence of some suitable alge-
braic restrictions on d f .
Finally, a warning is necessary about the regularity of a function: during all the
paper, the word regularity does not allude to the degree of smoothness of the
function, but instead to its quaternionic regularity.

2 Orthogonal automorphisms of H

The quaternion field H is the unitary R–algebra generated by the symbols , i, j, k
with the relations

i2 = j2 = k2 = −1
ij = −ji = k jk = −kj = i ki = −ik = j .

In this way one obtains a 4–dimensional division algebra over the reals, whose
multiplication is associative but not commutative. The generic element writes as

q = q0 + q1i + q2 j + q3k

where the coefficients are real, and most of the algebraic manipulations involve
its conjugate

q = q0 − q1i − q2 j − q3k .

The calculus rules may be found in any textbook and will not even be recalled
here. It is only worth to mention that two natural projections may be defined

Re q = (q + q )/2 = q0 Im q = (q − q )/2 = q1i + q2 j + q3k ,
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into the real and the imaginary part of q. They are orthogonal with respect to the
standard scalar product of R4

q · p = Re(qp )

and then, after the identifications Re H ∼= R and Im H ∼= R3, they induce the
orthogonal decomposition

H = R ⊕ R3 . (2.1)

The first identification is a real algebra isomorphism. Also notice that R is exactly
the center of H itself. The second identification is just an isomorphism of real
vector spaces, which however allows to rewrite the multiplication of quaternions
in terms of the standard vector operations in R3: being clear how to multiply a
real number with a vector, everything is determined by the rule

u v = −u · v + u × v (2.2)

for every u, v ∈ R3. Notice that, in particular, if p = t + u with t ∈ R and u ∈ R3,
then one has

p2 = t2 − u · u + 2tu .

This number is real if and only if either t = 0 or u = 0, a fact which yields a
purely algebraic characterization of the decomposition (2.1)

p ∈ R ⇐⇒ p2 ≥ 0 p ∈ R3 ⇐⇒ p2 ≤ 0 .

In other words, the decomposition (2.1), with the associated notions of real and
imaginary quaternion, is uniquely determined by the algebraic property of H.
What is not canonical here, is just the choice of the imaginary units: i, j and k
do not play any privileged role, every equally oriented orthonormal basis of R3

doing exactly the same job. By adding 1 ∈ R to them, one obtains a special class
of real bases for H: trough this paper, they will be referred as the standard bases
of H. Sometimes, a standard basis is chosen to have a suitable coordinates de-
scription, but basic notions in the theory of quaternions must be independent of
it. For instance, it is not difficult to check that this is the case of condition (1.1).
Notions which respect this invariance will be said to be canonical.
The main canonical object of this paper will be introduced in Section 4: its con-
struction requires a good understanding of the automorphisms of H, which are
the true topic of this section. A field morphism is a map ω : H → H which
satisfies

ω(p + q) = ω(p) + ω(q) ω(p q) = ω(p)ω(q) ω(1) = 1

for all p, q ∈ H. Because of the first two requests, the kernel of ω must be a
two–sided ideal of H: the last requirement then expresses the nontriviality of ω
or, equivalently, its injectivity. In particular, ω must preserve the multiplicative
inverses, besides the additive ones, which in turn yields

ω(t) = t ∀t ∈ Q .
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Whether this is true for every real t or not, depends on the continuity of ω: if this
is the case, then ω is said to be a real algebra morphism.
It is worth to notice that, when field morphisms of R are considered, continu-
ity comes for free (so that they reduce to the identity alone), while many field
morphisms of C exist which are discontinuous: an elementary and complete dis-
cussion about these well known bits of mathematical folklore may be found in
[24]. For this paper it is a relevant fact that the quaternionic case behaves exactly
as the real one: a proof is provided, just because I was unable to trace it in the
literature.

Proposition 2.1. Every field morphism of H is the identity on R, and then a continuous
real algebra automorphism.

Proof. Denote by ω any given field morphism of H. The first conclusion says that
ω is a real linear map: since it is already known to be injective, the remaining
conclusions follow from standard arguments in the theory of linear maps.
To prove the first conclusion, one has to show that ω(R) ⊂ R. This would be
clear if ω were surjective, since R is the center of H. In fact, it is also true if the
range of ω is big enough. To see why, begin by noticing that

ω(t)ω(q) = ω(t q) = ω(q t) = ω(q)ω(t)

for every t ∈ R and q ∈ H. Now, (2.2) says that the two quaternions commute
if and only if the cross product of their imaginary parts vanishes. Hence, ω(t)
must be real in the previous formula as soon as Im ω(H) contains at least two
real independent vectors. This follows again from (2.2), by applying ω. Indeed,
by taking first p = q ∈ R3 one has

ω(q)2 = ω(q2) = ω(−1) = −1

showing that the unitary sphere of R3 is mapped into itself. Then, by taking
unitary and orthogonal p, q ∈ R3, one has

ω(p)ω(q) + ω(q)ω(p) = ω(p q + q p) = ω(0) = 0

showing that ω maps them into orthogonal vectors.

The automorphisms of H will be denoted by Aut(H): the previous proposition
says that there is no need to specify whether they preserve the field or the real
algebra structure. Among the automorphisms, the inner ones are defined by

ϑg(q) = g q g−1 q ∈ H

where g is some nonzero quaternion. The map g 7→ ϑg is a multiplicative mor-
phism (with respect to the composition of maps) having kernel R\{0}. The ex-
plicit definition makes evident some extra–features of the inner automorphisms,
which are described in the next lemma: a proof is provided just for the reader
convenience.
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Lemma 2.2. For every nonzero g, the automorphism ϑg leaves R3 invariant and is a
positive rotation around Im g of an angle α determined by

cos(α) =
|Re g|2 − |Im g|2

|Re g|2 + |Im g|2
sin(α) =

2 Re g |Im g|

|Re g|2 + |Im g|2
.

Proof. Since x2 ≤ 0 yields ϑg(x)
2 = gx2g−1 = x2 ≤ 0, the first conclusion follows.

Moreover, ϑg(Im g) = Im g while, when v ∈ R3 is orthogonal to Im g, one has

ϑg(v) =
g2

|g|2
v =

|Re g|2 − |Im g|2

|Re g|2 + |Im g|2
v +

2 Re g

|Re g|2 + |Im g|2
Im g × v .

Of course, this way one may describe all the positive rotations of R3. This leads
to the following important and well known fact.

Proposition 2.3. All the automorphisms of H are inner automorphisms.

Proof. It remains to show that every ω ∈ Aut(H) is indeed a positive rotation of
R3. This may be done by arguing from (2.2), exactly as in the final part of the
proof of Proposition 2.1: the difference is that now one knows that all the reals
are left unchanged, not only 0 and 1. The positivity of the rotation follows from
the conservation of the cross product.

The inner representation of an automorphism is very convenient for the aims of
this paper. Quite clearly, it makes computations more concrete. For instance, the
problem to find which automorphisms are involutive reduces to determine which
g satisfy

g2qg−2 = q ∀q ∈ H .

This is equivalent to ask that g2 ∈ R, namely that: either g ∈ R or g ∈ R3. In the
first case, the automorphism is the identity. In the second one is a rotation around
g in R3 of an angle π: it will be referred as an imaginary automorphism.
Another consequence of the inner representation is to provide a convenient no-
tation for the anti–automorphisms of H: they reverse the order in a product,
instead of maintaining it. The conjugation is the most obvious example of anti–
automorphisms, and all of them are clearly obtained by composing it with the
automorphisms. Though in principle this composition may be done in two dif-
ferent ways, an explicit computation yields

ϑg(q) = g−1 q g = g qg−1 = ϑg(q) (2.3)

for every g and q, showing the non ambiguity of the notation

ω where ω ∈ Aut(H)

to denote the generic anti–automorphism of H. It is not difficult to check that ω
is involutive if and only if ω is: by analogy, also ω will be called imaginary when
ω is.
A further advantage of the inner representation is to obtain an explicit description
of the automorphisms ω which satisfy

ω(p) = q
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for given p, q ∈ H: this will turn out to be useful in Section 5. In order for the
equation to be solvable, p and q must have the same modulus and, as ω is the
identity on R, they also must have the same real part: then it’s enough to consider
imaginary units. Thinking of ω = ϑg, the answer is provided by the following
lemma.

Lemma 2.4. Let p and q be imaginary units, and consider the equation gp = qg. When
p + q = 0, the solutions are

g ∈ R3 such that g · p = 0 (2.4)

whereas, when p + q 6= 0, they are

g = λ(p + q) + µ

{

1 +
2

|p + q|2
p × q

}

where λ, µ ∈ R. (2.5)

Proof. After writing g = µ + u, with µ ∈ R and u ∈ R3, the equation gp = qg
splits into the two conditions

(p − q) · u = 0 (p + q)× u = µ(p − q) .

Notice that (p + q) · (p − q) = 0, so that the second equation is always solvable.
When p + q = 0, the second equation yields µ = 0 and the thesis is just the
transcription of the first equation. On the other hand, when p + q 6= 0 the first
equation follows from the second one. The kernel of the second equations is given
by the real multiples of p + q, while the general solution orthogonal to the kernel
may be easily computed via the quaternionic product. Indeed one finds

u = µ(p + q)−1(p − q) =
µ

|p + q|2
(p − q)× (p + q) =

2µ

|p + q|2
p × q

which concludes the proof.

Beside the computational convenience, the inner representation allows also to

transfer the notion of standard basis from H to the space LinR(H) of the real
linear mappings from H into itself . Why this is relevant for regularity, it will be
explained in section 4: the aim hereafter is simply to justify the new notion, by
making use of the underlying orthogonal structure.

The standard real scalar product on LinR(H) is given by

〈Λ | Γ〉 =
1

4

3

∑
k=0

Λ(ek) · Γ(ek) =
1

4
trace

(

Λ
T

Γ

)

(2.6)

where e0, e1, e2, e3 is any positively oriented, orthonormal basis of H as a real
space. The last form, where the boldface is used to denote the associated ma-
trices, is probably best known. It is not difficult to check that the inner automor-
phisms associated to a standard basis e0, e1, e2, e3 are indeed orthonormal with
respect to the scalar product (2.6). From one hand this certainly suggests that

they are good candidates to be a standard basis of LinR(H). On the other hand, it
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is clear that these automorphisms cannot span LinR(H) over real coefficients, by
a dimensional argument. Quaternionic coefficients are needed for that, which in
turn asks for a stronger notion of orthogonality, namely with respect to a quater-
nionic scalar product. These scalar products are defined as in the complex case,
but for some automatic restrictions imposed by the non commutativity of H: see
the Appendix B for more details. The one–dimensional prototype is

p q or p q

according to the chirality context: the first one has the correct homogeneity when
H is interpreted as a left space over itself, while the second one works for right
spaces. Of course, by conjugating one of them, another scalar product is obtained
for the same chirality. In any case, all these scalar products extend the standard
real scalar product in H: next lemma does the same for the space of real linear
maps.

Lemma 2.5. There exists a unique (up to conjugation) quaternionic scalar product in
LinR(H), having (2.6) as its real part, namely

(

Λ | Γ
)

l
=

1

4

3

∑
k=0

Λ(ek) Γ(ek) or
(

Λ | Γ
)

r
=

1

4

3

∑
k=0

Λ(ek) Γ(ek) (2.7)

according to whether LinR(H) is considered as a left or a right quaternionic space, re-
spectively.

Here e0, e1, e2, e3 denotes again an arbitrary real orthonormal basis of H: as for
(2.6), also (2.7) is independent of the concrete choice of the basis. Moreover, notice
that conjugation acts on the scalar product as a change in the chirality of the space,
in the sense that

(

Λ | Γ
)

l
=

(

Λ | Γ
)

r
(2.8)

for every Λ, Γ ∈ LinR(H).

Proof. The uniqueness is the only nontrivial claim: it will be proved for the left
case only, since the right one is analogous. Assume to deal with standard bases.
The trivial identity

q =
3

∑
h=0

eh Re (ehq) (2.9)

allows to express the quaternionic scalar product in terms of the real part only

(

Λ | Γ
)

l
=

3

∑
h=0

eh Re
{(

ehΛ | Γ
)

l

}

=
3

∑
h=0

eh 〈ehΛ | Γ〉 .

Here
(

qΛ | Γ
)

l
has been computed as q

(

Λ | Γ
)

l
, instead of

(

Λ | Γ
)

l
q: the last

choice leads to the conjugate result. For right structures, the normalization con-
dition leading to (2.7) is

(

Λ | Γq
)

r
=

(

Λ | Γ
)

r
q.
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To conclude the proof, it is now sufficient to use the concrete expression (2.6) of
the real scalar product. Indeed, one gets

(

Λ | Γ
)

l
=

3

∑
h=0

eh
1

4

3

∑
k=0

Re {ehΛ(ek) Γ(ek)} =
1

4

3

∑
k=0

3

∑
h=0

eh Re {ehΛ(ek) Γ(ek)}

=
1

4

3

∑
k=0

Λ(ek) Γ(ek)

where the last equality depends again on (2.9).

Remark 2.6. The above lemma has of course a complex analogous. When maps

in LinR(C) are considered, the analogous of the real scalar product (2.6) is a two
term average with e0 = 1 and e1 = i. Up to conjugation, this is the real part of the
complex scalar product

(

Λ | Γ
)

=
1

2

{

Λ(1)Γ(1) + Λ(i)Γ(i)
}

.

This will be considered in section 4, for comparative reasons only.

Next lemma describes how the quaternionic scalar product in LinR(H) behaves,
with respect to the inner representation of the automorphisms of H. This result
is a key fact for the purposes of this paper.

Proposition 2.7. The formula

(

ϑg | ϑh

)

l
=

{

Re (g−1h)
}

g h−1 =
(

ϑg | ϑh

)

r

holds for every pair of nonzero quaternions g and h.

Since it may be easily checked that

Re(g−1h) =
g · h

|g|2
,

one may deduce the following important consequence.

Corollary 2.8. The automorphisms ϑg and ϑh are orthogonal in the quaternionic sense if
and only if the quaternions g and h are in the real sense.

Moreover, exactly the same is true for the anti–automorphisms ϑg and ϑh. Indeed,
because of (2.8) one has

(

ω | η
)

l
=

(

ω | η
)

r
=

(

ω | η
)

l
=

(

ω | η
)

r
(2.10)

for every pair of automorphisms ω and η. The common value of all the above
scalar products will be denoted by

(

ω | η
)

, without any reference to chiralities.
Finally, notice that, because of the choice of the normalization factors in (2.7), one
has

(

ω | ω
)

= 1

for every automorphism ω.



590 M. Tarallo

Proof. The commutation property (2.3) yields

(

ϑg | ϑh

)

l
=

1

4

3

∑
k=0

ϑg(ek) ϑh(ek) =
1

4

3

∑
k=0

ϑg(ek) ϑh(ek) =
(

ϑg | ϑh

)

r

where a standard basis has been used, so that e0 = e0 = 1 and ek = −ek for the
remaining k’s. Continuing the computation, one finds

(

ϑg | ϑh

)

l
=

1

4
g

{

3

∑
k=0

ek (g
−1h) ek

}

h−1 =
1

4
g

{

3

∑
k=0

ϑek
(g−1h)

}

h−1 ,

so that to conclude the proof it is enough to show that

1

4

3

∑
k=0

ϑek
(q) = Req

for every q ∈ H. To this aim, write q = t + v, with t ∈ R and v ∈ R3, and
compute as follows

3

∑
k=0

ϑek
(t + v) = ϑe0(t + v) +

3

∑
k=1

ϑek
(t) +

3

∑
k=1

ϑek
(v) = t + v + 3t − v

where the last term is obtained by decomposing v along e1, e2, e3 and using that

ϑek
(eh) =

{

ek if h = k
−eh if h 6= k

for every h, k 6= 0.

Summing up, the inner representation

ϑ : H \ 0 → Aut(H) ⊂ LinR(H)

maps real orthogonal quaternions into quaternionic orthogonal automorphisms.
For instance, the imaginary automorphisms may be now described as the ω ∈
Aut(H) which satisfy

(

ω | id
)

= 0 .

By a dimensional argument, real orthogonal bases of H are mapped into quater-

nionic orthogonal bases of LinR(H): they will represent a quite convenient way
to approach quaternionic linear theory, which lacks some of the very convenient
features of the commutative case (see, for instance, [26]).
Starting from a standard basis of H, one obtains: the identity id and three or-
thogonal automorphisms ω1, ω2, ω3. As ϑ is a group morphism, the composition
rules of these automorphisms are obtained from the product rules of the associ-
ated standard bases of H. They are

ω1 ◦ ω1 = ω2 ◦ ω2 = ω3 ◦ ω3 = id
ω1 ◦ ω2 = ω3 ω2 ◦ ω3 = ω1 ω1 ◦ ω3 = ω2

(2.11)
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where the orientation problems disappear because of the kernel of ϑ. By analogy
with H, these quaternionic bases of automorphisms deserve the name of stan-

dard bases of LinR(H). Sometimes, constructing an object may require to fix one
of these bases: once again, canonical objects are those which do not change when
the standard basis is varied. The most relevant example, for the purposes of this
paper, will be considered in Section 4.

3 Quaternionic linearity

Let X, Y be linear spaces over H, and denote by the same symbol ∗ the corre-
sponding scalar multiplications. An additive map Λ : X → Y is usually said to
be quaternionic linear when

Λ(q ∗ x) = q ∗ Λ(x) (3.1)

for every x ∈ X and q ∈ H. Two facts, however, suggest to relax the standard
homogeneity condition (3.1). The first one is that, when X and Y have opposite
chiralities, the resulting notion of linearity is totally useless: next proposition says
that the only quaternionic linear map would be the trivial one. The second fact is
more relevant will be clear after the next section: when X and Y have the same
chirality, quaternionic linear maps are as abundant as in the commutative frame-
work, but they cannot even contribute to regular maps.
The required relaxed version of quaternionic linearity is obtained by replacing
the homogeneity condition (3.1) with

Λ(q ∗ x) = ϕ(q) ∗ Λ(x) (3.2)

where ϕ : H → H is now any given map. The resulting notion of quaternionic
linearity will be called ϕ–linearity, or linearity with respect to ϕ, and the associ-

ated class of maps will be denoted by LinH
ϕ (X; Y): the map ϕ itself will be referred

as the reference map of this class.
Next proposition highlights a key property of this relaxed notion: though there
are no a priori restrictions, the definition makes sense only for a very restricted
class of ϕ’s.

Proposition 3.1. Assume that LinH
ϕ (X; Y) 6= {0}. Then either ϕ is an automorphism

of H or ϕ is, depending on whether X and Y have or have not the same chirality.

It may happen that the spaces X and Y admit a double quaternionic structure, a
left one and a right one, as it happens for H itself. Before talking about quater-
nionic linearity, one has to specify a concrete choice for the involved chiralities:
this choice will be referred as to the chirality context of the problem. In this terms,
the lemma says that the chirality context decides the morphism type of ϕ: in the

rest of the paper, when considering the space LinH
ϕ (X; Y) this compatibility con-

dition will be implicitly assumed to hold.

Proof. Let Λ be ϕ–linear and x ∈ X such that Λ(x) 6= 0. The additivity of Λ yields

ϕ(p + q) ∗ Λ(x) = (ϕ(p) + ϕ(q)) ∗ Λ(x)
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for every p, q ∈ H and then the additivity of ϕ. That ϕ(1) = 1 may be proved in
a similar way. Concerning the product, assume for definiteness that X and Y are
a right and a left space, respectively: all the other cases are similar. There results

ϕ(p q) ∗ Λ(x) = Λ
(

((p q) ∗ x)
)

= Λ
(

q ∗ (p ∗ x)
)

= ϕ(q) ∗
(

ϕ(p) ∗ Λ(x)
)

=
(

ϕ(q) ϕ(p)
)

∗ Λ(x)

for every p, q ∈ H. Summing up, ϕ must be a field morphism of H, but for
reversing the order in the product, namely: ϕ is a field morphism. Proposition
2.1 then allows to conclude.

Since every automorphism of H fixes R, from the proposition one immediately
deduces that

LinH
ϕ (X; Y) ⊂ LinR(X; Y)

whatever ϕ is. In the next section it will be proved that the larger space may be
obtained as a sum of the smaller ones, for different ϕ’s: this fact is relevant to the
notion of regularity, which will be also investigated in the next section. The aim,
hereafter, is just to point out some of the algebraic features of the quaternionic
linearity. The first remark concerns the uniqueness of the reference morphism.

Lemma 3.2. Assume that Λ ∈ LinR(X; Y) is quaternionic linear with respect to ϕ and
with respect to ψ. Then either Λ = 0 or ϕ = ψ.

Proof. Indeed
(

ϕ(q)− ψ(q)
)

∗ Λ(x) = Λ(q ∗ x)− Λ(q ∗ x) = 0 for every q ∈ H

and x ∈ X.

Another trivial property is that the reference morphism behaves naturally with

respect to composition, namely: if Λ ∈ LinH
ϕ (X; Y) and Γ ∈ LinH

ψ (Y; Z) then

Γ ◦ Λ ∈ LinH
ψ◦ϕ(X; Z) . (3.3)

In particular, if Λ ∈ LinH
ϕ (X; Y) is invertible, then Λ−1 is also quaternionic linear

with respect to ϕ−1. To this aim, notice that the morphisms type of ϕ−1 is the
same of ϕ, namely: the compatibility with the chirality context is preserved un-

der the inversion. When X = Y, the class LinH
ϕ (X) is closed under inversion if

and only if ϕ is involutive.

Consider now LinH
ϕ (X; Y) as a vector subspace of LinR(X; Y). It is not difficult

to check that the latter space is a quaternionic space with respect to the point-
wise operations inherited from Y: this way, it has the same chirality of Y. The

question is to decide whether LinH
ϕ (X; Y) is or is not a quaternionic subspace of

LinR(X; Y). Of course, no problems arise with sums or combinations with real co-
efficients, but things become worse when quaternionic coefficients are involved.

Assume indeed that p ∈ H and Λ ∈ LinH
ϕ (X; Y). Then p ∗Λ is again quaternionic

linear with respect to ϕ if and only if

p ∗
(

ϕ(q) ∗ Λ(x)
)

= ϕ(q) ∗
(

p ∗ Λ(x)
)

for every q ∈ H and x ∈ X. When Λ is nontrivial, this implies

p ϕ(q) = ϕ(q)p
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for every q ∈ H and, since ϕ is bijective, this is possible only for real p’s. In other

words, it seems there are no chances for LinH
ϕ (X; Y) to be a quaternionic subspace

of LinR(X; Y).
In fact, there is a way to overcome the problem when a second quaternionic scalar
multiplication, call it ⋄, is defined on Y and fulfills the compatibility condition

p ⋄
(

q ∗ y
)

= q ∗
(

p ⋄ y
)

(3.4)

for every p, q ∈ H and every y ∈ Y. The idea is to use again ∗ to define the notion
of quaternionic linearity, but to think of ⋄ as defining the quaternionic structure

of LinR(X; Y). The result is that now p ⋄ Λ ∈ LinH
ϕ (X; Y) for every p ∈ H, and is

obtained by simply specializing (3.4).

Remark 3.3. Since the chirality of a quaternionic space Y may be changed in a
standard way, by defining q ⋄ y = q ∗ y, the reader might have the doubt that all
the above program may be worked out in the general case. However, it is not
difficult to see that condition (3.4) never holds for this choice of ⋄.

The model case for the compatibility condition is Y = H, with ∗ and ⋄ the two
natural quaternionic scalar multiplications, namely

q ∗ y = q y p ⋄ y = yp

or viceversa. Then condition (3.4) writes down as

p (yq) = (py)q

for every p, q and y in H: this is no longer a commutation property, but instead
expresses the associativity of the quaternionic multiplication. This yields the fol-
lowing conclusion.

Lemma 3.4. The space LinH
ϕ (X; H) is a quaternionic subspace of LinR(X; H), pro-

vided the two classes refer to different chiralities of H.

When also X = H, some trivial, but relevant, consequences my be deduced from
Lemma 3.4. The first one concerns the consistency of the classes of the quater-
nionic linear maps: as in the commutative case, it results

LinH
ϕ (H) = H ⋄ ϕ (3.5)

due to the standard argument

Λ(x) = Λ(x ∗ 1) = ϕ(x) ∗ Λ(1) = Λ(1) ⋄ ϕ(x) = [Λ(1) ⋄ ϕ](x) .

The second one concerns the propagation of the orthogonality, from the reference
morphisms to the associated classes of quaternionic linear maps.

Lemma 3.5. Let the morphisms ϕ and ψ refer to the same chirality context. Then

(

ϕ | ψ
)

= 0 implies
(

Λ | Γ
)

= 0

for every Λ ∈ LinH
ϕ (H) and Γ ∈ LinH

ψ (H).
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The lack of references to chiralities in the quaternionic scalar products is inten-
tional. Concerning the reference morphisms, formula (2.10) guarantees that the
notation is unambiguous. This is no longer true for

(

Λ | Γ
)

, in which case the am-
biguity is solved by the chirality context: the scalar product must have the same
chirality of the operation ⋄ in the codomain, namely the opposite chirality of the
operation ∗ which has been used to define the notion of quaternionic linearity.
The same convention will be used in the rest of the paper.

Proof. This is a trivial consequence of the quaternionic homogeneity of the scalar
product, as soon as the aforementioned rule on the chiralities is respected. To
make it explicit at least once, choose for instance to work with two left spaces.
Then quaternionic linearity makes sense with respect to the automorphisms of

H. Moreover, since the codomain is a left space, LinR(H) has to be considered as
a right quaternionic space. Hence

LinH
ω (H) = ω H

for every ω ∈ Aut(H). If now η is another automorphism, then a direct compu-
tation shows that

(

ω p | η q
)

r
= p

(

ω | η
)

q

for every p, q ∈ H.

At a purely formal level, it is convenient to extend the notion of orthogonality
from the one–dimensional case to the general one: given the quaternionic spaces

X and Y, and two compatible morphisms ϕ and ψ, the maps Λ ∈ LinH
ϕ (X; Y) and

Γ ∈ LinH
ψ (X; Y) will be called orthogonal when ϕ and ψ are. In the same spirit, a

quaternionic linear map will be said imaginary when its reference morphism is.

4 Canonical decomposition of real linear maps and regularity

It is well known that every real linear map Λ : X → Y between complex spaces
may be uniquely decomposed into the sum

Λ = LΛ + AΛ (4.1)

of a complex linear and a complex anti–linear part, respectively. Straightforward
computations lead to

LΛ(x) =
Λ(x)− iΛ(ix)

2
AΛ(x) =

Λ(x) + iΛ(ix)

2
.

If Λ is the real differential of a function f : X → Y, the vanishing of one or the
other component in a open subset U ⊂ X decides the holomorphy type of f in U:
by expressing it in a complex basis of X, one finds the classical Cauchy–Riemann
equations of the complex analysis.
When X and Y are quaternionic spaces, the regularity of f has been introduced
by adapting the Cauchy–Riemann equations to the increased number of imagi-
nary units: see [6] or [23] for the one–dimensional case, and [8] for the general
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case. The question addressed in this section is whether these equations originate
from a canonical decomposition of d f , as for the complex case: the answer is in
the positive, and completes the results in [22] and [8].
The failure of the word–by–word translation of (4.1) to the quaternionic case is
well known in literature, the most popular explanation being a dimensional fact:
when X = Y = H, the identity and the conjugation alone cannot span the four di-

mensional quaternionic space LinR(H). However, Proposition 3.1 says that there
is a more relevant obstruction, which prevents to complete them to a quaternionic

basis of LinR(X; Y): the linearity with respect to the identity requires that X and Y
have the same chirality, while the linearity with respect to the conjugation needs
different chiralities. In fact, the true core of all the story is that these two notions
are no longer complementary as in the complex case, but play exactly the same
role in a different context of chiralities: roughly speaking, the main result of this
section states that regular maps are those which are as far as possible from them.

The idea is to decompose LinR(X; Y) along some suitable classes of quaternionic
linear maps. To guess how to choose the classes, come back to the complex case
and look at the notions of complex linearity, which are involved in (4.1). Using the
terminology of Section 3 also for the complex case, it is clear that the component
LΛ is complex linear with respect to the identity id : C → C, while AΛ is complex
linear with respect to the conjugation cj : C → C. The identity and conjugation
are the only real algebra automorphisms of C and, what is really important here,
they are orthogonal in a complex sense. Indeed

(

id | cj
)

=
1 + i2

2
= 0

where the scalar product is the standard complex one on LinR(C), recalled in Re-
mark 5.2. The one–dimensional quaternionic case X = Y = H behaves similarly:
as explained in Section 2, every set of four orthogonal automorphisms spans all

LinR(H) over the quaternions. The next proposition extends this fact to the gen-
eral case, moreover providing an explicit computational rule.

Proposition 4.1. Assume that the automorphisms ω0, ω1, ω2, ω3 are quaternionic or-
thogonal. Then every Λ ∈ LinR(X; Y) can be uniquely decomposed as

Λ = Λ0 + Λ1 + Λ2 + Λ3

where Λh ∈ LinH
ϕh
(X; Y) for every h, and

ϕh = ωh or ϕh = ωh

depending on whether X and Y have or have not the same chirality. Moreover, for every
h one has

Λh(x) =
1

4

3

∑
k=0

ϕh(ek) ∗ Λ(ek ∗ x) (4.2)

with e0, e1, e2, e3 any real orthornomal basis of H.

A special case of this result was already obtained in [8], without any reference to
orthogonality and for automorphisms ϕh’s which are coupled with the eh’s in the
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following sense: ωh is the inner automorphism associated to eh, with the addi-
tional assumption that e0 = 1.
These choices certainly produce simpler coefficients in (4.2), but hide the invari-
ance properties of the decomposition. Decoupling automorphisms of H and
bases of H makes clear that, for instance, the second ones do not affect formula
(4.2): Λh does not change when the e0, e1, e2, e3 vary. A much more relevant in-
variance property is pointed out in Corollary 4.2.

Proof. Assume first that a decomposition exists, and prove that (4.2) follows. To
this aim, evaluate the decomposition at the point ek ∗ x obtaining

Λ(ek ∗ x) =
3

∑
n=0

ϕn(ek) ∗ Λn(x) .

Thus, computing the right hand side of (4.2) one has

∑
3
k=0 ϕh(ek) ∗ Λ(ek ∗ x) =

3

∑
n=0

1

4

3

∑
k=0

ϕh(ek) ∗ {ϕn(ek) ∗ Λn(x)}

= ∑
3
n=0

{
(

ϕh | ϕn

)

∗ Λn(x)
(

ϕn | ϕh

)

∗ Λn(x)

depending on the chirality of Y. The orthogonality of the reference morphisms
then yields formula (4.2). It remains to prove that this formula really defines a
quaternionic linear map, with respect to ϕh. To this aim, begin by noticing that

Λh(ej ∗ x) =
1

4

3

∑
k=0

ϕh(ek) ∗ Λ
(

ek ∗ (ej ∗ x)
)

=
1

4

3

∑
k=0

ϕh(ej) ∗
{

ϕh(ej) ∗
{

ϕh(ek) ∗ Λ
(

ek ∗ (ej ∗ x)
)}

}

= ϕh(ej) ∗
1

4

3

∑
k=0

{

ϕh(ekej) ∗ Λ((ekej) ∗ x)

ϕh(ejek) ∗ Λ((ejek) ∗ x)

where the alternative depends on the chirality of X. Since, when k varies, both
the ekej’s and the ejek’s describe a real orthonormal basis of H, one finds

Λh(ej ∗ x) = ϕh(ej) ∗
1

4

3

∑
k=0

ϕh(ek) ∗ Λ(ek ∗ x) = ϕh(ej) ∗ Λh(x) .

This is true for every j, and the claim follows from the manifest additivity and
real homogeneity of Λh.

When X = Y = H and the quaternionic structure of LinR(H) is decided by the
chirality context, with the rules of the previous section, the above decomposition
becomes orthogonal in the quaternionic sense, namely it satisfies

(

Λh | Λk

)

= 0
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for every h 6= k: see Lemma 3.5. Here, of course, the chirality of the scalar product

is that of LinR(H). In the general case, the orthogonality survives at a formal level
only, since so are the associated automorphisms. The decomposition, however, is
more orthogonal than it seems: formula (4.2) shows that each component Λh only
depends on the choice of ωh, in the sense that it is not affected by any change of
the ωk’s with k 6= j. This trivial fact proves the following important invariance
property.

Corollary 4.2. If ω0 = id in Proposition 4.1, then the two components

LΛ = Λ0 and RΛ = Λ1 + Λ2 + Λ3

do not change when the imaginary orthogonal automorphisms ω1, ω2, ω3 vary.

The two components above give rise to complementary projections in LinR(X; Y),
inasmuch

LLΛ
= LΛ LRΛ

= RLΛ
= 0 RRΛ

= RΛ

for every Λ. The resulting decomposition

Λ = LΛ +RΛ (4.3)

deserves the name of canonical decomposition of Λ: as it will be clear in a while,
it plays for the quaternionic analysis exactly the same role of (4.1) for the complex
analysis. The two components LΛ and RΛ will be referred to as the linear and the
regular part of Λ, respectively. The first one is indeed quaternionic linear with
respect to the identity or the conjugation, depending on the chirality context. The
second one is made by imaginary quaternionic linear maps, though it is not itself
quaternionic linear in general: its name clearly reflects the following idea.

Definition 4.3. A map Λ is regular when LΛ = 0.

In a similar way, a map satisfying RΛ = 0 is called a linear map, without any
further qualifier like real or quaternionic: this notion corresponds to the standard
quaternionic linearity. The classes of the linear and the regular maps are denoted
by the symbols L(X; Y) and R(X; Y) respectively, so that the canonical decom-
position yields

LinR(X; Y) = L(X; Y)⊕R(X; Y) . (4.4)

Both the components are real subspaces of LinR(X; Y), and become quaternionic
subspaces as soon as Y has a double quaternionic structure, and the chirality rules
of the previous section are respected. This is of course the case when Y = H.
When also X = H,

(

LΛ | RΛ

)

= 0

for every Λ, namely the decomposition (4.4) becomes quaternionic orthogonal.
Since L(H) is the quaternionic span of either the identity or the conjugation, de-
pending on the chirality context, the regularity takes the quite suggestive, purely
metric form given in the next corollary: this result fully accounts for the opening
claim of the section, saying that regularity is as far as possible from the standard
quaternionic linearity.
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Corollary 4.4. A map Λ ∈ LinR(H) is regular if and only if
(

Λ | ϕ0

)

= 0 (4.5)

where either ϕ0 = id or ϕ0 = cj, depending on the chirality context.

Consider now a possible nonlinear function f : U ⊂ X → Y between quater-
nionic Banach spaces, where U is an open subset of X: the regularity of f in U
amounts to require that f is real differentiable in U and that

d f (x) ∈ R(X; Y) ∀x ∈ U .

The class of these maps will be denoted by Reg(U, Y). Of course, in order for
this definition to be admissible, one must show that the equations (1.1)–(1.2) are
recovered in the one–dimensional setting. Doing that, one immediately realizes
a fundamental fact: the choice among the possible Cauchy–Riemann equations is
not just a matter of taste, but is forced by the chiralities of X and Y.
The reason may be easily seen from (4.5), but a more convincing explanation may
be obtained by writing the differential version of the canonical decomposition.
To begin with, assume that X = H and notice that Λh(v) = ϕh(v) ∗ Λh(1) by
quaternionic linearity. Assume now that Λ = d f (x) and write ∂v f (x) for the
directional derivative of f at x along v, namely

∂v f (x) = d f (x) · v .

Casting all that into (4.2) then yields

[d f (x)]h · v = ϕh(v) ∗
{1

4

3

∑
k=0

ϕh(ek) ∗ ∂ek
f (x)

}

and introducing the differential operators

∂ f

∂ϕh
(x) =

1

4

3

∑
k=0

ϕh(ek) ∗ ∂ek
f (x) (4.6)

the canonical decomposition takes the form

d f (x) · v = ϕ0(v) ∗
∂ f

∂ϕ0
(x) +

3

∑
h=1

ϕh(v) ∗
∂ f

∂ϕh
(x) .

To write it in a similar way to the complex analogous (1.3), again two steps are
needed. Thinking of the differential operator (4.6) as to the analogous of ∂ f /∂z in
(1.3), one would like to know what to do with dz: the correct translation reveals
to be the differential form

dϕh(x) · v = ϕh(v)

which is constant in U. The second step is to set also Y = H, and to make use
of the second quaternionic action ⋄ on it, that having the opposite chirality with
respect to ∗. This leads to the differential decomposition

d f =
∂ f

∂ϕ0
⋄ dϕ0 +

3

∑
h=1

∂ f

∂ϕh
⋄ dϕh . (4.7)
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The regularity of f in U, as defined in this section, corresponds to the vanishing
of the coefficient of the first term in (4.7), namely to the fact that the differential
condition

3

∑
k=0

ϕ0(ek) ∗ ∂ek
f = 0

is satisfied in all U. By choosing the chirality context, one is now able to decide
if ∗ is a left or a right multiplication, and if ϕ0 is the identity or the conjugation:
it is not difficult to check that the two first equations in (1.1)–(1.2) correspond to
the case of equal chiralities, while the last two correspond to different chiralities.

Remark 4.5. The decomposition (4.7) must be compared with the analogous one
in [22], which refers implicitly to the case of equal, left chiralities and writes as

d f = dq ∂f + dq1 ∂1f + dq2 ∂2f + dq3 ∂3f . (4.8)

In this formula dq = dϕ0 and

∂f =
∂ f

∂ϕ0
=

1

4

3

∑
h=0

eh ∂eh
f

while dqk = −ek dq ek = dϕk and ∂kf = −ek ∂f ek for k ≥ 1. Thus, the differential
forms are the same and in the same position of (4.7), while the differential coef-
ficients are different for k ≥ 1. The point is that (4.8) is correct for a function f
with values in R ⊂ H, but false in the general case. To see why, test it on the map
f (t + u) = u, where t ∈ R and u ∈ R3. It is ∂f = 3/4 and, rewriting (4.8) as

d f = dq ∂f − e1 dq ∂f e1 − e2 dq ∂f e2 − e3 dq ∂f e3

(see also [22]) it is not difficult to check that the right hand side gives 3 dt. Thus,
the equality is not satisfied. It is remarkable that none of the other conclusions
in [22] is affected by this mistake. Finally, it should be noticed that the algebraic
nature of the decomposition is not investigated in that paper.

Coming back to the general framework, the effect of the chirality context on the
notion of regularity is summarized by the following table

4 LΛ(x) =

X left X right
3

∑
k=0

ekΛ(ekx)
3

∑
k=0

ekΛ(xek) Y left

3

∑
k=0

Λ(ekx)ek

3

∑
k=0

Λ(xek)ek Y right

where, for the computations, standard bases have been used, which are moreover
related via the inner representation. This table provides an equivalent definition
of regularity, which is independent of any decomposition or linearity argument:
this was indeed the choice made in [8].
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Remark 4.6. The reader might wonder if, by completing the previous table, all
the Cauchy–Riemann equations can be obtained in a single chirality context. For
instance, when X = H is a right space and Y is a left space, one may also think of
(1.1) as to the vanishing at x = 1 of

AΛ(x) =
1

4

3

∑
k=0

ekΛ(ekx) ,

although this map does not originate from a canonical decomposition of Λ. The
point is, however, that the map AΛ may vanish somewhere without being trivial:
in [8] it was already shown that the kernel of AΛ is not, in general, neither a left
nor a right quaternionic subspace of H. Of course, the quaternionic linearity of
LΛ guarantees that this cannot happen for the entries of the table.

Whatever the definition is, (4.3) expresses the fact that every real linear map has
a formally orthogonal decomposition into a linear and a regular part. The further
decomposition of the regular part determines the algebraic nature of the regular-
ity itself: the next lemma is the first step in this direction.

Lemma 4.7. A nontrivial quaternionic linear map is regular if and only if it is imaginary.

Proof. Assume that Λ ∈ LinH
ϕ (X; Y) and, with the notations of Corollary 4.2,

compute its linear part as

LΛ(x) =
1

4

3

∑
k=0

ϕ0(ek) ∗ Λ(ek ∗ x) =
1

4

3

∑
k=0

ϕ0(ek) ∗
{

ϕ(ek) ∗ Λ(x)
}

.

This yields

LΛ(x) =

{

(

ϕ0 | ϕ
)

∗ Λ(x)
(

ϕ | ϕ0

)

∗ Λ(x)

depending on whether Y has the same chirality of X or not. The thesis follows
from the fact that ϕ0 is either the identity or the conjugation, depending on the
chirality context.

As a consequence, the sum of imaginary quaternionic linear maps is regular. On
the other hand, Corollary 4.2 says that every regular maps is the sum of three
orthogonal imaginary quaternionic linear maps. By forgetting orthogonality, one
has the following purely algebraic characterization.

Corollary 4.8. A real linear map is regular if and only if is the sum of imaginary quater-
nionic linear maps.

A couple of remarks, about what the corollary doesn’t say, are maybe worth. First
of all, it does not say that the decomposition into imaginary quaternionic linear
maps is unique: there are as many of them, as the real orthonormal bases of R3.
Secondly, and more relevant, this is not the only way to obtain a regular map. For
instance, it is not difficult to check that

ϑ1+i(x)
1 − i

2
+ ϑ1−i(x)

1 + i

2
= ϑi(x)
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holds for every x ∈ H: when working between left spaces, this shows that the
regular map ϑi may be written as the sum of two nonimaginary quaternionic lin-
ear maps.

All is ready to draw the parallel between the regular maps and the imaginary
quaternions, mentioned in the Introduction, collecting all the indications dissem-
inated in the paper. In the one–dimensional case, one knows that

LinR(H) = L(H)⊕R(H)

is an orthogonal decomposition, with respect to a natural quaternionic scalar
product, which depends on the chirality context. From a purely dimensional
point of view, this recalls the classical decomposition

H = R ⊕ R3

which is also orthogonal, but in a real sense. The inner representation ϑ maps
the real quaternions into the identity, and R3 into the imaginary automorphisms,
which are special regular maps (in the appropriate chirality context). In fact, like
the imaginary units in R3, the imaginary automorphisms span all the regular
maps, over the quaternions, and the formulas (2.11) confirm the analogy: not sur-

prisingly, the role of the product in H is played by the composition in LinR(H).
An even tighter analogy may be obtained by studying the behavior of the reg-
ularity under composition: it is well known that regularity is not preserved, in
general, and the aim here is to understand the algebraic reason of that. Since this
is better seen in general space, consider two maps

Λ ∈ LinR(X; Y) Γ ∈ LinR(Y; Z) (4.9)

with no restrictions on the chirality contexts, apart from the obvious fact that Y,
even when it may be seen as a quaternionic spaces in many different ways, has the
same quaternionic structure in the two cases. Write the canonical decompositions

Λ = LΛ +RΛ Γ = LΓ +RΓ (4.10)

and try to determine how the linear and the regular parts transform under com-
position. There’s no doubts that

LΓ ◦ LΛ ∈ L(X; Z) LΓ ◦ RΛ +RΓ ◦ LΛ ∈ R(X; Z) (4.11)

so that they contribute to the linear and the regular parts of Γ ◦ Λ, respectively.
This follows from the composition rule (3.3), by looking at the respective refer-
ence morphisms: indeed, the composition with the identity or with the conjuga-
tion does not change the nature of an imaginary automorphism. The true ques-
tion concerns the algebraic nature of RΓ ◦ RΛ. To study it, begin by introducing
the following two operations

RΓ · RΛ = Γ1 ◦ Λ1 + Γ2 ◦ Λ2 + Γ3 ◦ Λ3

RΓ ×RΛ = Γ2 ◦ Λ3 + Γ3 ◦ Λ2 + Γ1 ◦ Λ3 + Γ3 ◦ Λ1+
Γ1 ◦ Λ2 + Γ2 ◦ Λ1
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where, of course, the decomposition of the regular parts

RΛ = Λ1 + Λ2 + Λ3 RΓ = Γ1 + Γ2 + Γ3 (4.12)

is that provided by Corollary 4.2. Though

RΓ ◦ RΛ = RΓ · RΛ +RΓ ×RΛ (4.13)

by construction, it should be clear that the right hand side is not made by canon-
ical objects, in general: next lemma specifies the missing ingredient for that. To
state it, one needs to compare the quaternionic linearity of maps which belong to
different spaces, as in (4.9), to give a sense to statements like: Λ has the same ref-
erence morphisms of Γ, or their reference morphisms are orthogonal, and so on.
The meaning is obvious when the relative chirality context of the two pairs X, Y
and Y, Z is the same, namely: either the chiralities are the same for both the pairs,
or they are different for both of them. When the relative chirality contexts are
different, having the same reference morphism means that: if Λ is quaternionic
linear with respect to ϕ, then Γ is with respect to ϕ. It is not difficult to guess that
everything works fine in the computations, because the conjugation commutes
with all the automorphisms: see (2.3) in Section 2.

Lemma 4.9. Assume that the two decompositions in (4.12) refer to the same standard
basis. Then RΓ · RΛ and RΓ ×RΛ are canonical objects and satisfy

RΓ · RΛ = LRΓ◦RΛ
RΓ ×RΛ = RRΓ◦RΛ

.

In particular, when Λ and Γ are already regular maps, their composition Γ ◦ Λ is
regular if and only if

Γ1 ◦ Λ1 + Γ2 ◦ Λ2 + Γ3 ◦ Λ3 = 0 .

This is a kind of algebraic orthogonality condition which, for instance, is satisfied
when Λ and Γ are mutually orthogonal in the usual formal sense: for each index
k, either Λk = 0 or Γk = 0.

Proof. The first statement follows from the second. The assumption says that
both the decompositions in (4.12) are shadowed by the same standard basis of
automorphisms: denote it by id, ω1, ω2, ω3. The composition rules of these auto-
morphisms are stated in (2.11) and yield

RΓ · RΛ ∈ L(X; Y) RΓ ×RΛ ∈ R(X; Y) .

Thus (4.13) must be the canonical decomposition of RΓ ◦ RΛ.

The lemma yields the composition rule

Γ ◦ Λ =
{

LΓ ◦ LΛ +RΓ · RΛ

}

+
{

LΓ ◦ RΛ +RΓ ◦ LΛ +RΓ ×RΛ

} (4.14)

where the two parentheses define the linear and the regular parts of Γ ◦ Λ, re-
spectively: the formal analogy with the product of quaternions is manifest, and
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completes the parallel between regular maps and imaginary quaternions.
To think of the regular maps as imaginary quaternions, is especially convenient
when trying to guess further properties of the former. For instance, the invariance
of R3 under the (inner) automorphisms suggests that regularity is preserved by
some special composition with quaternionic linear maps. Consider indeed, in
addition to the Λ and Γ used until now, a third map

Π ∈ LinR(W; X)

acting before Λ. The following result holds.

Lemma 4.10. Assume that Π and Γ are quaternionic linear maps, and that the corre-
sponding reference morphisms are one the inverse of the other. If Λ is regular then also
Γ ◦ Λ ◦ Π is.

The lemma extends a well known, one-dimensional result by Sudbery [23], where
quaternionic linearity is replaced by conformality: indeed, in Section 6 it will be
shown that the two notions coincide in H.

Proof. The assumption says that the reference morphisms of Π and Γ are shad-
owed by an automorphism ω and its inverse ω−1, respectively. Write ω = ϑq for
some quaternion q 6= 0. The claim follows from the algebraic characterization of
regularity, as soon as one notices that

ϑq ◦ ϑg ◦
(

ϑq

)−1
= ϑqgq−1

and that qgq−1 is imaginary when g is.

5 Quaternionic size of regular maps and complex linearity

According to the previous section, every regular real linear map is the sum of
three imaginary and orthogonal quaternionic linear maps. However, how many
of them are really needed may depend on the choice of the reference morphisms:
this quantity deserves a name.

Definition 5.1. The quaternionic size s{Λ} of a map Λ ∈ R(X; Y) is the minimal
number of nonzero and mutually orthogonal imaginary quaternionic linear maps, whose
sum is Λ.

By construction

0 ≤ s{Λ} ≤ 3

for every regular Λ. This number is zero only when Λ = 0, and it is one for all the
nontrivial imaginary quaternionic linear maps. The main point is to understand
size two maps: the aim hereafter is to show that they are a quite special type of
complex linear maps.
To set up the problem, one has first to look at a quaternionic space as a complex
space. In principle, this is absolutely trivial: as it was already done for R, it is
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sufficient to look at C as to a subset of H, and then to restrict the scalar multipli-
cation. However, there is a relevant difference between the two cases: while R

is univocally determined as the center of H, the insertion of C in H depends on
arbitrary choices. For instance, every unitary g ∈ R3 defines a field morphism by
the rule

z = t + s i ∈ C 7→ t + s g ∈ H (5.1)

where t, s ∈ R. In fact, there are many other ways to insert C into H, all of them
being discontinuous: the continuity is equivalent to fixing R and produces real
algebra morphisms. This way, one selects exactly the morphisms defined by (5.1):
they are the only ones of interest here.
Consider now two quaternionic spaces X and Y, and let g and h be the imaginary
units which define their complex structures, respectively. According to the usual
definition, a map Λ : X → Y is said complex linear of type (g, h) when it is
additive and

Λ((t + sg) ∗ x) = (t + sh) ∗ Λ(x)

for all x ∈ X and all t, s ∈ R. Of course, this is the same to say that Λ is real linear
and satisfies

Λ(g ∗ x) = h ∗ Λ(x)

for every x ∈ X. The class of such Λ’s is denoted by LinC
gh(X; Y). Notice that also

the standard complex anti–linearity is included in this scheme: it corresponds to
the complex linearity of the type (g,−h). This yields the classical decomposition

LinR(X; Y) = LinC
gh(X; Y)⊕ LinC

g(−h)(X; Y) . (5.2)

The complex linear maps in the quaternionic framework enjoy all the usual prop-
erties of complex analysis, when settled in the correct context. For instance, the
fact that the composition of complex linear maps is again complex linear must be

now read in the following way: Λ ∈ LinC
gh(X; Y) and Γ ∈ LinC

hl(Y; Z) imply

Γ ◦ Λ ∈ LinC
gl(X; Z) . (5.3)

All the spaces considered above are real subspaces of LinR(X; Y): in fact, under
the usual assumptions of Section 3, all of them are also quaternionic subspaces.

Remark 5.2. It should be noticed that no complex structures has been considered

on the space LinC
gh(X; Y). The most natural of them certainly is the pointwise

operation associated to ∗ in Y. However, this choice is not compatible with the

quaternionic structure of LinR(X; Y), as introduced in Section 3 by means of a
second scalar multiplication ⋄ on Y (if any, of course): this latter structure is the
only one of interest here.

To make clear how complex linearity is related to quaternionic linearity, begin by
wondering if the type of complex linearity of a given map is uniquely defined. In
general, the answer is in the negative. For instance, it is not difficult to check that

LinH
ϕ (X; Y) ⊂ LinC

g ϕ(g)(X; Y) (5.4)
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for every imaginary unit g. The problem is whether this is the only indeterminacy
or not: the answer is provided hereafter, by looking at the nature of a map

Λ ∈ LinC
gh(X; Y) ∩ LinC

g′h′(X; Y) (5.5)

which is complex linear with respect to different complex structures. In [21], these
type of maps are called quaternionic maps : it will be clear in a while that they
are exactly the quaternionic linear maps, introduced in Section 3. Next lemma
specifies the compatibility conditions, for such a Λ to really exist.

Lemma 5.3. If Λ 6= 0 satisfies (5.5) then

g · g′ = h · h′ (5.6)

For instance, since everything is unitary, g′ = g yields h′ = h while g′ = −g
yields h′ = −h.

Proof. From (2.2) one has −2 u · v = uv + vu, for every pair of imaginary quater-
nions u and v. Then by using sequentially the two types of complex linearities of
Λ, together with its real linearity, one has

−2(g · g′) ∗ Λ(x) = Λ
(

− 2(g · g′) ∗ x
)

= Λ
(

(gg′ + g′g) ∗ x
)

= (hh′ + h′h) ∗ Λ(x) = −2(h · h′) ∗ Λ(x)

whatever the chiralities of X and Y are. The claim follows by taking x such that
Λ(x) 6= 0.

It is clear that, in some cases, a second complex linearity type does not add any
new information. For instance, this is the case when g′ = −g and h′ = −h, since

LinC
(−g)(−h)(X; Y) = LinC

gh(X; Y)

due to real linearity of the involved maps. Next lemma says what happens in all
the other cases.

Proposition 5.4. Assume that Λ satisfies (5.5) with g× g′ 6= 0. Then Λ is quaternionic
linear.

Notice that g × g′ = 0 if and only if g′ = ±g. Thus, as a consequence of (5.6),
the only situations where the hypothesis and then the conclusion of the lemma
do not hold are: the trivial one, namely g′ = g and h′ = h, and the one with the
reversed signs, namely g′ = −g and h′ = −h. As already said, the two choices
produce the same class of complex linear functions. Hence, after identifying the
corresponding pairs of complex structures, the lemma says that: a map, which is
not quaternionic linear, can be complex linear with respect to a single choice of
the pair of complex structures. In this sense, the result is the complex analogous
of Lemma 3.2, about the uniqueness of the reference morphism for a quaternionic
linear map.
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Proof. As in the proof of the previous lemma, since 2 u × v = uv − vu for every
imaginary u and v, one has

Λ
(

(g × g′) ∗ x
)

= (h × h′) ∗ Λ(x) or Λ
(

(g × g′) ∗ x
)

= −(h × h′) ∗ Λ(x)

for every x, according to whether X and Y have or have not the same chirality.
Now, by construction, the set {1, g, g′, g × g′} is a (possibly non orthogonal) real

basis of H. Consider the unique ϕ ∈ LinR(H) defined by

ϕ(1) = 1 ϕ(g) = h ϕ(g′) = h′ ϕ(g × g′) = ± h × h′ ,

where the choice of the last sign depends once more on the chirality context. The
real linearity of Λ then allows to conclude that

Λ(q ∗ x) = ϕ(q) ∗ Λ(x)

for every quaternion q and every x.

Remark 5.5. Apparently, condition (5.6) does not play any role in the previous
proposition. However, if (5.5) is satisfied and (5.6) is not, then Λ must be triv-
ial, due to Lemma 5.3: in this case, the proposition is true but trivial. When
Λ is not trivial, condition (5.6) must hold, and it is not difficult to check that it
implies that ϕ acts on R3 as a rotation, with positive or negative determinant,
depending on the chirality context. Hence, ϕ is either an automorphism or an
anti–automorphism of H: this is the same conclusion of Proposition 3.1.

After this premise, the characterization of complex linearity by the quaternionic
size may really start.

Proposition 5.6. The sum of two quaternionic linear maps (between the same spaces) is
a complex linear map.

Proof. Let Λ and Γ be quaternionic linear with respect to ϕ and ψ respectively.
Due to (5.4), to prove the claim is enough to find an imaginary unit g such that
ϕ(g) = ψ(g). Assume by definiteness that X and Y have the same chirality, and
write ϕ = ϑp and ψ = ϑq for some suitable nonzero p, q ∈ H. Then the previous

condition becomes p gp−1 = qgq−1 which may be better seen as

(q−1 p)g(q−1 p)−1 = g .

Now Lemma 2.2 applies to show that

g =
Im (q−1 p)

|Im (q−1 p)|

does perfectly the job.

The next step is to invert the implication in Proposition 5.6. To this aim, one has to
reverse the perspective in (5.4), by first fixing the type (g, h) of complex linearity
which is interested in, and then looking for the reference morphisms ϕ’s such that

LinH
ϕ (X; Y) ⊂ LinC

gh(X; Y) .
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The inclusion (5.4) says that the ϕ’s which satisfy

ϕ(g) = h (5.7)

certainly work fine. The point is that they are the only ϕ’s which work, and
Lemma 2.4 allows to compute them explicitly.
Assume for the moment that X and Y have the same chirality. By thinking of
ϕ = ϑq for some quaternion q, Lemma 2.4 says that condition (5.7) is satisfied if
and only if

q = λ(g + h) + µ

{

1 +
2

|g + h|2
g × h

}

with λ, µ ∈ R (5.8)

when g + h 6= 0, or
q ∈ R3 such that q · g = 0 (5.9)

when on the contrary g + h = 0. In the opposite chirality context one has to con-
sider ϕ = ϑq and the structural equation (5.7) becomes ϑq(g) = −h: hence, the
same result holds true, but for replacing everywhere h with −h.
A general consequence must be retained from this discussion: whatever the chi-
rality context and the complex structures are, the admissible q’s build a two di-
mensional real subspace of H. This fact is the core of the next propositon.

Proposition 5.7. Every complex linear map may be decomposed into the sum of two
orthogonal quaternionic linear maps.

Proof. Only the case where X and Y have the same chirality will be considered,
the proof being similar in the opposite case. Denote by Λ a complex linear map of
type (g, h), and distinguish two cases depending on the value of g + h. Consider
first the case g + h = 0. Then (5.9) applies, and choosing u and v which complete
g to an orthonormal basis of R3, one has that Λ = P + Q, where the compo-
nents P and Q are ϑu and ϑv quaternionic linear, respectively. Indeed, the identity
Λ(u ∗ x) = P(u ∗ x) + Q(u ∗ x) = u ∗ P(x)− u ∗ Q(x) shows that

P(x) =
Λ(x)− u ∗ Λ(u ∗ x)

2
Q(x) =

Λ(x) + u ∗ Λ(u ∗ x)

2

are the only possible candidates. It will be now proved that P is quaternionic
linear: the same arguments apply to Q. Since P is real linear, it is sufficient to
show that, for every x

P(u ∗ x) = u ∗ P(x) P(v ∗ x) = −v ∗ P(x) P(g ∗ x) = −g ∗ P(x) .

The first claim is true by construction, while the last one follows from the first
two, inasmuch g equals uv up to the sign. The same argument also applies to the
second claim, by taking into the account the complex linearity of Λ. Using indeed
that h = −g, for every x

Λ(u ∗ (v ∗ x)) = −u ∗ {v ∗ Λ(x)}

due to the fact that X and Y have the same chirality, and similarly

Λ(v ∗ x) = −Λ(v ∗ (u ∗ (u ∗ x))) = v ∗ {u ∗ Λ(u ∗ x)} .
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Thus
2 P(v ∗ x) = Λ(v ∗ x)− u ∗ Λ((u ∗ (v ∗ x))

= v ∗ {u ∗ Λ(u ∗ x)} − v ∗ Λ(x) = −2 v ∗ P(x)

for every x.
Similar, though lengthy, computations may be worked out also in the case g+ h 6=
0. Hereafter an alternative and shorter proof is given. Again, two sub–cases
should be distinguished, namely g − h = 0 and g − h 6= 0: only the second, and
more involved one, will be considered. Define

q0 = g + h q1 = 1 +
2

|g + h|2
g × h q2 = g − h q3 = 1 −

2

|g − h|2
g × h

and notice that they form a real orthogonal basis for H. According to Proposition
4.1, one may write Λ = Λ0 + Λ1 + Λ2 + Λ3 where each Λh is quaternionic linear
with respect to ωh = ϑqh

. Because of (5.8) one knows that

Λ0 + Λ1 ∈ LinC
gh(X; Y) Λ2 + Λ3 ∈ LinC

g(−h)(X; Y) .

Since Λ ∈ LinC
gh(X; Y) by construction, the classical decomposition (5.2) yields

Λ2 = Λ3 = 0.

A conclusion must be retained form the proof of Proposition 5.7, which is relevant
to regularity.

Corollary 5.8. Assume that Λ belongs to the class

LinC
g (−g)(X; Y) or LinC

gg(X; Y)

according to whether X and Y have the same or different chiralities. Then Λ is regular
and moreover s{Λ} ≤ 2.

Proof. From the above quoted proof Λ = P + Q where P and Q are imaginary
quaternionic linear and quaternionic orthogonal, since u and v are real orthogonal
imaginary units.

The natural question is now if there are complex linear maps, other than the above
quoted ones, which are regular. Next proposition answers in the positive, but
says they are indeed quaternionic linear.

Proposition 5.9. Assume that Λ ∈ R(X; Y) ∩ LinC
gh(X; Y) and

g + h 6= 0 or g − h 6= 0

according to whether X and Y have or not the same chirality. Then s{Λ} ≤ 1.

Proof. For definiteness, assume that X and Y have the same chirality, and refer to
the proof of Proposition 5.7. One knows that Λ = Λ0 +Λ1, where Λ0 is imaginary
quaternionic linear because of q0 ∈ R3, while Λ1 is not unless Λ1 = 0, due to
Re q1 6= 0 and Lemma 4.7. On the one hand, Λ0 is regular due to the same lemma
and hence Λ1 = Λ − Λ0 is regular too. If one now assumes that Λ1 6= 0, then
q1 ∈ R3 always due to Lemma 4.7: this fact contradicts Re q1 6= 0. Thus Λ1 = 0,
which concludes the proof.
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All is now ready to complete the characterization of the regular maps of size two.

Proposition 5.10. Λ ∈ R(X; Y) and s{Λ} ≤ 2 if and only if there exists an imaginary
unit g, such that Λ belongs to

LinC
g(−g)(X; Y) or LinC

gg(X; Y) (5.10)

according to the whether X and Y have or have not the same chirality.

Call complex regularity the complex linearity defined by (5.10) in the appropri-
ate chirality context. It is worth to notice that it has exactly the same drawbacks
of the regularity itself: for instance, the identity is never complex regular, nor
is the composition of complex regular maps, in general. This fact, however, is
not in contradiction with the usual rules of the complex calculus. For instance,
the composition of complex linear maps is governed by (5.3) and is again com-
plex linear: in particular, by composing complex regular maps one obtains again
complex regular maps, but with respect to the wrong chirality context. Also the
expectations about the identity are caused by a misunderstanding: to say that
X = Y holds at the level of sets, or even at the level of quaternionic spaces, does
not imply that the same is true at the complex level. The point is that the complex
regularity never concerns maps from a complex space into itself, so that there is
no reason for the identity to play any special role.

Proof. The ‘if part’ is Corollary 5.8. Concerning the ‘only if part’, notice that Λ is
complex linear due to Proposition 5.6. Moreover, because of Proposition 5.9, the
thesis is certainly true if s{Λ} = 2.
Assume now that s{Λ} ≤ 1, namely that Λ is quaternionic linear with respect to
an imaginary ϕ. Due to (5.4), to conclude the proof it is enough to show that there
exists an imaginary unit g such that

ϕ(g) = −g or ϕ(g) = g

depending on the parity context. Assume that X and Y have the same chirality.
Then ϕ = ϑq for some q ∈ R3 and, to have ϑq(g) = −g, it is sufficient to take g
imaginary and real orthogonal to q.

The previous proposition closes the problem of classifying a regular map Λ by
means of its quaternionic size. A different classification was proposed in [19],
for the one–dimensional case, looking at the number c{Λ} of the real indepen-
dent imaginary units g, for which (5.10) holds. The two classifications are indeed
equivalent, since it is not difficult to check that

c{Λ} = 3 − s{Λ} .

The only advantage of s{Λ} is that it is based on a decomposition of LinR(X; Y)
and then, in principle, it is more directly computable.
The last part of the section, is devoted to the existing inclusions between the
classes of the regular maps and that of the complex linear ones. On the one hand,
a slight modification in the proof of Proposition 5.9 shows immediately that

LinC
gh(X; Y) ⊂ R(X; Y)
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if and only if h = −g or h = g, depending on the chirality context. On the other
hand, by a dimensional argument is is clear that regularity cannot be reduced to
a single type of complex linearity. However, this is not so evident when the type
of the complex linearity is allowed to vary, and one may wonder if

R(X; Y) ⊂
⋃

gh

LinC
gh(X; Y) .

The same question was raised in [19] for the case X = Y = H, and answered in
the negative by means of an interesting and powerful approach (see also [3] for a
similar question). Hereafter, the same answer will be obtained by a very elemen-
tary dimensional argument.
The problem is to show that there exist regular maps of size three, which cannot
be complex linear of any type. By definiteness, assume to work with left quater-
nionic spaces. A map Λ ∈ R(H) has s{Λ} ≤ 2 if and only if

(

ϑg | Λ
)

r
= 0 (5.11)

for some imaginary unit g. Fix now an orthonormal basis e1, e2, e3 of R3, and write
Λ in components as

Λ(q) =
3

∑
k=1

ϑek
(q) αk

where α1, α2, α3 vary in H. By computing the quaternionic scalar product, via the
rule expressed in Proposition 2.7, one obtains

(

ϑg | Λ
)

r
= −

3

∑
k=1

(g · ek) gek αk =
3

∑
k=1

(g · ek)
[

(g · ek)− g × ek

]

αk .

Consider for instance the case where α1 = α2 = α3, and denote by α their common
value. Notice that

3

∑
k=1

(g · ek) g × ek =
3

∑
h,k=1

(g · eh)(g · ek) eh × ek = 0

and hence
(

ϑg | Λ
)

r
=

{ 3

∑
k=1

(g · ek)
2
}

α = α .

Summing up, condition (5.11) is satisfied for no imaginary units g, as soon as
α 6= 0: thus, the corresponding regular Λ has size exactly three.

6 Some nonlinear consequences

In this final section, a norm is added to the vector structures in order to make
derivatives. Precisely, X and Y denote two quaternionic Banach spaces, U an
open subset of X, and f : U → Y is (one–time) differentiable in the real sense (i.e.
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when X and Y are considered as real spaces). The regularity of f in U amounts to
require that

d f (x) ∈ R(X; Y) ∀x ∈ U .

When X and Y are finite dimensional, it is well known that regularity implies real
analyticity, and then smoothness, due to a Cauchy–type representation formula:
see for instance [23] and [20]. The same is probably true also in the infinite di-
mensional case, by means of a reduction procedure similar to that of the complex
case. However, this procedure is quite long and involved, and the result itself is
not of interest here.
In the previous section it has been proved that, when f is regular, then

s{d f (x)} ≤ 3

for every x ∈ U, due to the canonical decomposition of the differential itself. The
aim here is to understand what happens when further restrictions are imposed on
the quaternionic size of d f . Apart from the trivial case of size zero, corresponding
to the constant functions, the simplest nontrivial case is that of size one maps. The
main result of this section states that, however, one obtains again trivial maps.

Theorem 6.1. Assume that X = Y = H and f is regular (and hence real analytic) in
the open subset U ⊂ H. If

s{d f (x)} ≤ 1 (6.1)

for all x ∈ U, then the second derivative of f vanishes identically on U.

As a consequence, when U is connected, the function f becomes, up to transla-
tions, the restriction to U of a single imaginary quaternionic linear map. More-
over, due to the real analyticity of f , the same conclusion holds under the weaker
size restriction

int{x ∈ U : s{d f (x)} ≤ 1} 6= ∅

where int(A) denotes the interior of a set A.
On the other hand, the conclusion of the theorem is false if the regularity assump-
tion is removed. A remarkable counter–example is provided by the classical geo-
metrical inversion

ζ(x) =
x

|x|2
= (x)−1 (6.2)

on the set U := H \ {0}. Indeed, it is not difficult to see that

dζ(x) · v = −ζ(x) v ζ(x) = −ϑζ(x)(v) ζ(x)2 (6.3)

for every x 6= 0 and v. Hence, considering ζ as a map from a right space into a left
one, its differential is quaternionic linear at each x ∈ U: the point is that ϑζ(x) is
imaginary if and only if x is, so that the function ζ cannot be regular in any open
subsets of U.
In fact, Liouville’s Theorem on conformal mappings (see the Appendix B) guar-
antees that the inversions are essentially the only possible counter–examples. A
real linear map Λ : H → H is conformal when, for some real scalar µ ≥ 0

|Λ(v)| = µ |v| ∀v ∈ H (6.4)
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and the conformality of the nonlinear map f in U means that the same property is
satisfied by each d f (x) with x ∈ U, where µ possibly depends on x. The Liouville
Theorem says that these maps are indeed the Möbius transformations. In [10]
the result is shown to hold under very weak smoothness assumptions on f . In
fact, smoothness is for free here, and simpler proofs are available in this case: for
the reader convenience, the Nevanlinna proof [17] is sketched in the Appendix B,
with the minor variants which the present context needs.
The function ζ defined by (6.2) is an example of conformal map, since dζ(x) ful-
fills condition (6.4) with µ = |ζ(x)|2 : next lemma inserts this particular case into
the appropriate general context.

Lemma 6.2. Assume that Λ ∈ LinR(H) is nontrivial. Then Λ is quaternionic linear if
and only if condition (6.4) is satisfied and

det Λ ≥ 0 or det Λ ≤ 0

according to whether the chiralities of the two involved copies of H are equal or different.

Proof. It is based on the following two facts: all the automorphisms of H are posi-
tive rotations, while right and left multiplications by a quaternion q are conformal
maps of determinant |q|4. Because of the representation (3.5), a quaternionic lin-
ear map H → H is then a conformal map. The sign of its determinant is decided
by the type of the reference morphism: positive for automorphisms, which arises
when the chiralities are the same, and negative in the opposite case.
Assume now that Λ is a nontrivial conformal map. Because of (6.4), µ > 0 and Λ

cannot vanish outside zero, so that one can introduce the map

ϕ(x) = Λ(x) ∗ Λ(1)−1 .

As usual, the concrete action of ∗ depends on the chirality of that copy of H,
which acts as codomain of Λ. If ⋄ is the opposite operation in the same space, then
Λ = Λ(1) ⋄ ϕ and the representation (3.5) shows that Λ is quaternionic linear,
as soon as ϕ is either an automorphism or an anti–automorphism. The choice
between the two options depends on the chirality context and, since det ϕ =
det Λ/|Λ(1)|4, it is decided by the determinant of Λ. By the very construction, ϕ
is a conformal map which is the identity on R: thus it maps R3 into itself, and is
a rotation there. The conclusion follows from the arguments in Section 2.

Proof of Theorem 6.1. It is not restrictive to assume that U is connected. Because
of Lemma 6.2, the function f is conformal in U. Then Liouville’s Theorem (see
Theorem B.1) applies to show that either the conclusion holds for f itself, or it
does for the function z 7→ f (x0 + ζ(z − x0)) on the domain x0 + ζ(U − x0), where
ζ is the inversion defined by (6.2) and x0 6∈ U is suitably chosen. The proof is
complete if one shows that, in the second case, the function f is constant on U. To
this aim, write the real differential of f in U as

d f (x) = Λ ◦ dζ(x − x0) (6.5)

where Λ is some suitable real linear conformal map, and then also quaternionic
linear due to Lemma 6.2. The constancy of f is equivalent to the triviality of Λ: in
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fact, it follows from the triviality of d f (x) for some x ∈ U (see also Lemma B.4).
Assume by contradiction that Λ 6= 0, and compute the reference morphism of
d f (x) from the previous formula. To this aim, it is convenient to fix a chirality
context: from now on, f will be assumed to act between right spaces, or briefly
f : right → right. The same arguments apply to all the other situations.
In this chirality context, the determinant of d f must be positive. Moreover, since
the determinant of dζ is negative, Lemma 6.2 says that one has necessarily to
think of ζ : right → left and Λ : left → right. Denote by ϑq the reference mor-
phism of Λ, for some q 6= 0. From (6.3), it follows that the reference morphism of
d f (x) is

ϑq ◦ ϑζ(x−x0)
= ϑq ζ(x−x0)

for every x ∈ U. Because of Lemma 4.7, to reach a contradiction with the regular-
ity of f in U, it is sufficient to show that the condition

q ζ(x − x0) ∈ R3

cannot be identically satisfied in U. But q ζ(x − x0) is imaginary if and only if
q · x − x0 = 0, which can be only satisfied in a meager subset of U.

Besides its use in the previous proof, Lemma 6.2 also provides a very convenient
answer to the question raised in [13], namely: how to describe the conformal-
ity of a function f : U ⊂ H → H as a differentibility condition, expressed in
term of differential quotients. The small price one has to pay, is to choose the
chirality context according to the sign of the determinant of f . Notice that, if U is
connected, then this sign cannot change in U (see Lemma B.4). Choose, for defi-
niteness, the case of positive determinants and left chiralities for both the copies
of H. Then, as a straightforward consequence of Lemma 6.2, the map f is confor-
mal in U if and only if the following condition is satisfied: for every x ∈ U, there
exists an ωx ∈ Aut(H) such that

lim
v→0

[ωx(v)]
−1 [ f (x + v)− f (x)] (6.6)

does exist in H. In [13], the construction of the quotient is more involved, inas-
much the authors seem to ignore they are dealing with automorphisms of H.

Remark 6.3. The characterization provided in [13] only depends on the chirality
of the copy of H acting as codomain: moreover, for every choice of this chirality,
all the conformal maps may be represented, independently of the sign of the de-
terminant of their differentials. The ultimate reason of that, is the use in [13] of
structural sets, instead of standard bases: they are always made of orthonormal
bases of R3 (depending on the point), but their orientations are now arbitrary. Of
course, the result in [13] is not in contradiction with the one stated above: indeed,
once the chirality of codomain is given, that of the domain may be tuned on the
function to be represented.

In the differential quotient (6.6), the automorphism may depend on the point:
for instance, this is exactly what happens for the inversions (6.3), though in a
different chirality context. Next lemma says that, in order to avoid trivialities, ω
is forced to vary with x.
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Proposition 6.4. Assume that the function f is one–time real differentiable in U and
that, for some ϕ, it satisfies

d f (x) ∈ LinH
ϕ (X; Y) ∀x ∈ U . (6.7)

Then f is smooth and its second derivative vanishes identically on U.

The statement is a minor extension of a well known fact, at least when X = Y =
H and ϕ is the identity function. Its history is well described in [5] and [25].
In the last paper, the general finite–dimensional case is also treated, while the
most cited one–dimensional proof is that of [23]. With respect to these results,
the main difference of Theorem 6.4 stays in the proof, which makes a direct and
trivial use of the non commutativity of H: because of that, it is suitable for further
extensions, like to maps in Clifford algebras (see [18]).

Proof. Fix an arbitrary imaginary unit g and set h = ϕ(g). Then endow X and Y
with the complex structures associate to g and h respectively, and notice that

d f (x) ∈ LinC
gh(X; Y) ∀x ∈ U .

In other words f is complex differentiable, or holomorphic, in U. This is equiva-
lent to complex analyticity and implies real analyticity and then smoothness. All
that is widely known in the one–dimensional complex case, but it is a standard
fact also in the general case: for instance, see [16]. Hereafter just two real deriva-
tives are needed.
Since LinH

ϕ (X; Y) is a closed subspace of LinR(X; Y), with respect to the standard
operatorial norm, one has

d
(

d f (x)
)

· v ∈ LinH
ϕ (X; Y)

for every x ∈ U and every v ∈ X. In other words, for every x ∈ U, the second
derivative

d2 f (x) · (u, v) := d
(

d f (x) · u
)

· v

is quaternionic linear, with respect to ϕ, in the second variable: in fact, the sym-
metry of the second derivative says that the same is also true for the first variable.
By using the two partial homogeneities, in a given order and in the reversed one,
one gets the equality

ϕ(p q) ∗ d2 f (x) · (u, v) = d2 f (x) · (p ∗ u, q ∗ v) = ϕ(qp) ∗ d2 f (x) · (u, v)

for every choice of x ∈ U, u, v ∈ X and p, q ∈ H. Since ϕ is bijective and the
product in H is non commutative, d2 f (x) · (u, v) = 0 for every choice of the
variables.

A comment is maybe worth, about the complex holomorphy casted into the quater-
nionic framework, used in the proof. The reader might believe that, due to the
non commutativity of H, only few functions f may really satisfy

d f (x) ∈ LinC
gh(X; Y) ∀x ∈ U (6.8)
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unless g and h are suitably chosen, and probably tuned on the chirality context.
On the contrary, for every choice of the (unrelated) imaginary units g and h and
every choice of the chirality context, condition (6.8) selects a quite large class of
functions: roughly speaking, as large as one may expect in the standard, commu-
tative framework.
To be convinced of that, consider once more the case where X = Y = H is a left
space. Then identify with C2 the copy of H which plays the role of X, by means
of

Φ(z, w) = Re(z) + Im(z) g +
{

Re(w) + Im(w) g
}

u

where u is an arbitrary imaginary unit, which is moreover orthogonal to g. The
first component z 7→ Re (z) + Im (z) g is the real algebra insertion C → H,
which defines the complex structure of H: by construction, it is a complex linear
map. Because of the correct position of u (see Section 3), the same happens to
the second component of Φ. Summing up, Φ is a complex linear isomorphism
C2 ∼= H. Do the same with h for the other copy of H, that playing the role of Y:
denote by Ψ the complex linear isomorphism obtained in this way. It is clear that

L ∈ LinC(C2; C2) 7→ Ψ ◦ L ◦ Φ−1 ∈ LinC
gh(H)

is a linear isomorphism, at least of real spaces (for complex linearity, see Remark
5.2). The identification also works at a nonlinear level, since Φ and Ψ do not
change with the point. The abundance of holomorphic maps f : U ⊂ H → H

then depends on the following characterization: they are exactly the maps which
factorize into

f = Ψ ◦ F ◦ Φ−1

where F : Φ−1(U) ⊂ C2 → C2 is holomorphic in the standard sense.

Coming back to regular functions, the previous arguments show that the size
restriction

s{d f (x)} ≤ 2 ∀x ∈ U (6.9)

has not the same drawbacks of (6.1). Indeed, due to Proposition 5.10, condition
(6.9) is equivalent to

d f (x) ∈ LinC
gxhx

(X; Y) ∀x ∈ U

for some suitable choice of the imaginary unit gx and

hx = −gx hx = gx

depending on whether X and Y have or not the same chirality. When gx = g
is independent of x, this becomes a standard complex holomorphy assumption:
just above it has been shown that there are many of these functions. The situation
changes when gx varies with x. In the literature, these functions are usually called
almost holomorphic, with respect to the almost complex structures defined by gx

on the tangent space TxU = X, and hx on Tf (x)Y = Y. The choice of gx strongly
affects the class of the almost holomorphic functions, in a way which seems not
so easy to describe: this discussion is not within the scope of the present paper.
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A Quaternionic scalar products

Let X be a quaternionic vector space and ∗ its scalar multiplication. There are
no a priori restrictions on the chirality of X. A quaternionic scalar product on X
is essentially a word–by–word translation of a complex sesquilinear form, into a
quaternionic framework. To make clear the consequences of the non commuta-
tivity of H, the axioms will be divided into two groups. The first one contains all
the axioms which do not depend on the scalar multiplication, namely the request
that

(

x + y | z
)

=
(

x | z
)

+
(

y | z
)

(

y | x
)

=
(

x | y
)

(

x | x
)

> 0 if x 6= 0

for all x, y, z ∈ X. The second group is made by a single prescription, which
concerns homogeneity. In the complex framework one has to decide whether
the homogeneity is referred to the left member of the scalar product, or to the
right one: the second choice may be also seen as a conjugate homogeneity with
respect to the left member. Due the non commutativity of H, the two choices of
the complex case seem to split into the following four different choices

(

q ∗ x | y
)

=

{

q
(

x | y
)

(

x | y
)

q
(A.1)

and
(

q ∗ x | y
)

=

{
(

x | y
)

q

q
(

x | y
) (A.2)

for all x, y ∈ X and all q ∈ H. Notice that, by conjugating a quaternionic scalar
product which satisfies one of the two axioms in (A.1), one gets a quaternionic
scalar product satisfying the other axiom in (A.1). Of course, the same happens
for (A.2).
The point is that, due the non commutativity of H, not all the choices are equally
possible. Not surprisingly, the restriction is driven by the chirality of X: it is not
difficult to see that the axioms in (A.1) are suitable for left quaternionic spaces
only, while those in (A.2) are for right quaternionic spaces.
To be concrete, imagine that X is a left quaternionic space and that the first axiom
in (A.2) is satisfied. Then one should have

(

x | y
)

(p q) =
(

(p q) ∗ x | y
)

=
(

p ∗ (q ∗ x) | y
)

=
(

q ∗ x | y
)

p =
(

x | y
)

(q p)

for every x, y ∈ X and p, q ∈ H. This would imply that
(

x | y
)

= 0 for every
x, y ∈ X, which of course is possible only in the trivial and uninteresting case
X = {0}. Similar conclusions hold in all the forbidden cases.
Before concluding, a couple of remarks are maybe worth. The first concerns fur-
ther generalizations of the homogeneity property of the quaternionic scalar prod-
uct, involving automorphisms of H in the spirit of (3.2): though this is certainly
possible, it is not of interest here.
The second one concerns the special case X = H. It is not difficult to see that, if
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H is seen as a left space over itself, the only possible quaternionic scalar products
are given by the conjugate pair

(

p | q
)

= p q
(

p | q
)

= q p .

Of course, this is true up to a multiplicative and positive real factor, representing
the value of

(

1 | 1
)

. Analogously, the conjugate pair

(

p | q
)

= qp
(

p | q
)

= p q

is obtained when H is a right quaternionic space.

B The Liouville theorem on conformal maps

Let U ⊂ Rn a connected open set and f : U → Rn a smooth map which, at any
x ∈ U, satisfies the following differential assumption: there is number µ(x) ≥ 0
such that

|d f (x) · v| = µ(x) |v| ∀v ∈ Rn . (B.1)

Such a map f is called conformal in U, as far as the linear map d f (x) for every x ∈
U: the coefficient µ(x) is said to be the similarity ratio of d f (x). When n = 1 or
n = 2, these maps are quite abundant: this is no longer true in higher dimensions
because of the following result.

Theorem B.1. Assume that n ≥ 3. Then either the second derivative of f vanishes
identically on U, or there is an x0 ∈ Rn \ U such that this is true for the map z 7→
f (x0 + ζ(z − x0)) on the set x0 + ζ(U − x0).

The second case cannot occur when U = Rn. Here ζ denotes the inversion in Rn

with center in the origin, defined by

ζ(z) =
z

|z|2
.

for every z 6= 0, as in (6.2). It is not difficult to check that ζ is an involutive
diffeomorphism of Rn \ {0}, and that the same is true for the map z 7→ x0 + ζ(z−
x0) with respect to Rn \ {x0}. The statement is the same of the classical Liouville
Theorem, but for the lack of invertibility assumptions on f and its first derivative:
avoiding them is relevant for Theorem 6.1. In this appendix, a standard proof in
the literature will be sketched, by pointing out the minor modifications which are
needed to overcame the invertibility problems (see also [10]): the reference proof
is the expanded version of the original Nevanlinna proof, which is contained in
the classical Berger textbook [1] (pages 222–226).
Start by considering the map µ : U → Y of the similarity ratios, defined in (B.1).
Fixing any v with |v| = 1, makes clear that µ is continuous in U, and also smooth
in the open set

V = {x ∈ U : µ(x) > 0} .
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To rule out the trivial case of a constant f , assume that V 6= ∅. Notice that, at all
the points of V, the injective linear map d f (x) is in fact an isomorphism.
Next lemma says how the inverse of the similarity ratio

ρ(x) =
1

µ(x)

behaves on the set V: this is the true core of the Liouville Theorem.

Lemma B.2. Assume that n ≥ 3. Then u · v = 0 implies d2ρ(x) · (u, v) = 0 for every
x ∈ V.

The proof is covered by the paragraphs 9.5.4.9–15 in [1]. Essentially, it is obtained
it by differentiating the expression

(d f (x) · u) · (d f (x) · v) = 0

(the central · is the Euclidean real scalar product in Rn) and by manipulating the
result, until reaching the equality

(dρ(x) · v) d f (x) · u + (dρ(x) · u) d f (x) · v +
ρ(x) d2 f (x) · (u, v) = 0 .

(B.2)

Then one more derivative is taken and, to complete the proof, one has to look at
the result at the light of a basic symmetry principle: in [1], this is named the Braid
lemma.
Standard results now apply to show that, for every x ∈ V, d2ρ(x) must be pro-
portional to the Euclidean scalar product, namely

d2ρ(x) · (u, v) = σ(x) {u · v} ∀u, v ∈ Rn

for some suitable real σ(x). The smoothness of ρ yields that of σ, and another
well interpreted session of derivatives yields

dσ = 0 on V

(see 9.5.4.16 in [1]). Thus σ is constant on each connected component of V: let W
be one of them, which is open inasmuch V is.
In all that, the invertibility assumptions did not play any role: they enter now to
predict the analytical expression of ρ in the set W. Indeed, the equation

d2ρ(x) · (u, v) = σ {u · v}

can be integrated by inspection, yielding the following result.

Lemma B.3. There exist a vector x0 ∈ Rn and two real constants A and B such that

ρ(x) = A|x − x0|
2 + B ∀x ∈ W .

Moreover, either A = 0 or B = 0.
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Some remarks are worth. By the very construction of ρ, it cannot occur that A =
B = 0 and moreover x0 6∈ U when B = 0. In particular, if U = Rn then necessarily
A = 0.
The proof of Lemma B.3 is covered by the paragraphs 9.5.4.17–20 in [1], under
the assumption that f is globally invertible in W. Looking at it, however, one
immediately realizes that only the local invertibility of f in W is used: this is
automatically granted at all points of V by the Inverse Mapping Theorem, with
no need of ad hoc assumptions.
The integration result applies to all the connected components of V, and the last
step is to export it to the all set U. In principle, one should worry about the
possible lack of local invertibility at the points of V \U: next lemma says that this
is an artificial question.

Lemma B.4. It results V = U.

Proof. Let W be a connected component of V, which is nonempty by hypothesis:
the proof is complete if one shows that W = U. Assume by contradiction that
W 6= U. Since W is open, W ∪ ∂UW ∪ int(U \ W) is a partition of U: the connec-
tion of U then yields ∂UW 6= ∅. Choose now x∗ ∈ ∂UW and notice that much
more than x∗ 6∈ W is true: indeed, necessarily x∗ 6∈ V. Otherwise B(x∗, r) ⊂ V
for some r > 0 and hence W ∪ B(x∗, r) ⊂ V would be a connected, strict superset
of W: this would contradict the fact that W is a connected component.
Summing up, one knows that µ(x∗) = 0. On the other hand, Lemma B.3 guaran-
tees that

µ(x) =
1

A|x − x0|2 + B
∀x ∈ W

for some suitable choice of the involved parameters. Thus, from the continuity of
µ in U one deduces that

µ(x∗) = lim
W∋x→x∗

µ(x) =
1

A|x∗ − x0|2 + B
6= 0

which contradicts the previous conclusion.

All is now ready to conclude the proof of the Liouville Theorem, using Lemma
B.3 with W = V = U and distinguishing two different cases.
Assume first that A = 0. In this case, ρ(x) does not depend on x and from equa-
tion (B.2) one deduces that

d2 f (x) · (u, v) = 0

for every x ∈ U and every orthogonal pair u, v ∈ Rn. In fact, the same is a
posteriori true for every pair of vectors u and v, and hence f is the restriction to
U of an affine linear map on Rn.
Assume now that B = 0, and hence also that x0 ∈ Rn \ U. The composed map
g(z) = f (x0 + ζ(z − x0)) is again conformal and, by computing, one finds

|dg(z) · v| = |d f (x0 + ζ(z − x0)) · dζ(z − x0) · v|

=
1

A|ζ(z − x0)|2
1

|z − x0|2
|v| =

1

A
|v|
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for every z in the open connected set x0 + ζ(U − x0) and every v ∈ Rn. Hence,
the same arguments used above allow to conclude that g is affine.
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