Regularity of a function related to the 2-adic logarithm

Jan-Christoph Schlage-Puchta

For a function $f: \mathbb{N} \rightarrow X$ mapping the positive integers to some set X, define the q-kernel $K_{q}(f)$ as the set of functions $\left\{f_{k, \ell}: k \in \mathbb{N}, 0 \leq \ell<q^{k}\right\}$, where $f_{k, \ell}(n)=f\left(q^{k} n+\ell\right)$. The q-kernel is related to the concept of q-automaticity by the following criterion due to Eilenberg [2] (see also [1, Theorem 6.6.2]).

Theorem 1. A function f is q-automatic if and only if $K_{q}(f)$ is finite.
The notion of q-regularity generalizes the concept of q-automaticity in the case that X is the set of integers. A function f is called q-regular if $K_{q}(f)$ is contained in a finitely generated \mathbb{Z}-module.

Motivated by work of Lengyel [3] on the 2-adic logarithm, Allouche and Shallit [1, Problem 16.7.4] asked whether the function

$$
\begin{equation*}
f(n)=\min _{k \geq n}\left(k-v_{2}(k)\right), \tag{1}
\end{equation*}
$$

where $v_{2}(k)$ is the 2-adic valuation, is 2-regular or not. Here we give a negative answer to this question. More precisely, we show the following.

Theorem 2. The functions $f_{k, 0}: n \mapsto f\left(2^{k} n\right)$ are Q-linearly independent.
For the proof we need the following simple statements concerning f.
Proposition 1. 1. We have $f(n)=n-\mathcal{O}(\log n)$.
2. For $n=\left(2^{\ell+2}-3\right) 2^{m}$ we have $f(n)=\min \left(n-m, n-m-\ell-2+3 \cdot 2^{m}\right)$.

[^0]Proof. (1) We trivially have the bound $f(n) \leq n$. On the other hand we have $v_{2}(k) \leq \frac{\log k}{\log 2}$, and hence $f(n) \geq \min _{k \geq n} k-\frac{\log k}{\log 2}$. Since the derivative of the function $t-\frac{\log t}{\log 2}$ is $1-\frac{1}{t \log 2}$, which is positive for $t \geq 2$, for $n \geq 2$ the minimum is attained for $k=n$ and we conclude $f(n) \geq n-\frac{\log n}{\log 2}$, and the first claim is proven.
(2) We want to show that as k runs over all integers $\geq \mathrm{n}$ the minimum in (1) is attained at $k=n$ or at $k=2^{\ell+m+2}=n+3 \cdot 2^{m}$. From this our claim follows by computing the value of $k-v_{2}(k)$ at these two positions. Assume first that $k \geq n$ is not divisible by 2^{m+1}. Then we have $k-v_{2}(k) \geq n-v_{2}(k) \geq n-m$, which is what we want to have. Next assume that $v_{2}(k)>m$ and $k<2^{\ell+m+2}$. Then $k=\left(2^{\ell+2}-\right.$ 2) 2^{m}, that is, $v_{2}(k)=m+1$, and we have $k-v_{2}(k)=\left(n+2^{m}\right)-(m+1) \geq n-m$, which is also consistent with our claim. For $k=2^{\ell+m+2}$ we have $k-v_{2}(k)=$ $n-m-\ell-2+3 \cdot 2^{m}$, and thus it remains to consider the range $k>2^{\ell+m+2}$. For $2^{\ell+m+2}<k<2^{\ell+m+3}$ we have $k-v_{2}(k) \geq 2^{\ell+m+2}+1-(\ell+m+1)>$ $2^{\ell+m+2}-(\ell+m+2)$, and hence this range cannot contribute to the minimum. Finally, if $k \geq 2^{\ell+m+3}$, then $k-v_{2}(k) \geq k-\frac{\log k}{\log 2} \geq 2^{\ell+m+3}-(\ell+m+3)>$ $2^{\ell+m+2}-(\ell+m+2)$, and this range is also of no importance. Hence, the second claim follows as well.

We now turn to the proof of the theorem. Assume the family of functions $\left(f_{k, 0}\right)_{k \geq 0}$ was linearly dependent. Then there exist rational numbers $\lambda_{0}, \ldots, \lambda_{p}$, not all 0 , such that

$$
\begin{equation*}
\sum_{j=0}^{p} \lambda_{j} f\left(2^{j} n\right)=0 \tag{2}
\end{equation*}
$$

holds for all integers n. Evaluating this equation asymptotically for $n \rightarrow \infty$ we see that the left hand side is $n \cdot\left(\sum_{j=0}^{p} 2^{j} \lambda_{j}\right)+\mathcal{O}(\log n)$. This expression can only vanish identically if

$$
\begin{equation*}
\sum_{j=0}^{p} 2^{j} \lambda_{j}=0 \tag{3}
\end{equation*}
$$

Let j_{0} be the least integer satisfying $\lambda_{j_{0}}=0$. Then define $\ell=3 \cdot 2^{j_{0}}-1$, and put $n=2^{\ell}-3$ into (2). We have

$$
n-j_{0}>n-j_{0}-\ell-2+3 \cdot 2^{j_{0}}=n-j_{0}-1 .
$$

On the other hand we have

$$
n-j<n-j-\ell-2+3 \cdot 2^{j}=n-j-1-\left(j-j_{0}\right)+3 \cdot\left(2^{j}-2^{j_{0}}\right)
$$

for all $j>j_{0}$, hence, by the second part of the proposition relation (2) becomes

$$
\begin{equation*}
\lambda_{j_{0}}\left(2^{j_{0}} n-j_{0}-\ell-2+3 \cdot 2^{j_{0}}\right)+\sum_{j=j_{0}}^{p} \lambda_{j}\left(2^{j} n-j\right)=0 . \tag{4}
\end{equation*}
$$

Finally we put $n^{\prime}=2^{\ell+1}-3$ into (2). The same computation as the one used for n yields the equation

$$
\begin{equation*}
\lambda_{j_{0}}\left(2^{j_{0}} n^{\prime}-j_{0}-\ell-3+3 \cdot 2^{j_{0}}\right)+\sum_{j=j_{0}}^{p} \lambda_{j}\left(2^{j} n^{\prime}-j\right)=0 \tag{5}
\end{equation*}
$$

Note that the difference between (4) and (5) is that n is replaced by n^{\prime}, and -2 is replaced by -3 . If we take the difference of (4) and (5), we therefore obtain

$$
\lambda_{j_{0}}\left(2^{j_{0}}\left(n^{\prime}-n\right)+1\right)+\sum_{j=j_{0}}^{p} \lambda_{j} 2^{j}\left(n^{\prime}-n\right)=0 .
$$

If we now multiply (3) by $\left(n-n^{\prime}\right)$, and subtract the result from the last equation, all that remains is $\lambda_{j_{0}}=0$. But j_{0} was chosen subject to the condition $\lambda_{j_{0}} \neq 0$. Hence, the initial assumption that not all λ_{j} are 0 is wrong, and we conclude that there is no linear relation among the functions $f_{k, 0}$.

The reader might wonder why we restricted our attention to the functions $f_{k, 0}$. Essentially the same method of proof can be used to show that the dimension of the linear span $\left\langle f_{k, 0}, f_{k_{1}}, \ldots, f_{k, 2^{k-1}}\right\rangle$ tends to infinity with k. However, things become notationally more involved, since these functions are no longer linearly independent. In fact, we have $f_{k, a}=f_{k, a+1}$ for every odd a and many more identities like this, that is, these functions are not even different, and to give a lower bound for the dimension we have to choose a suitable subset.

References

[1] J.-P. Allouche, J. Shallit, Automatic Sequences, Cambridge University Press, Cambridge, 2003.
[2] Eilenberg, Automata, Languages, and Machines, Academic Press, New York, 1974.
[3] T. Lengyel, Characterizing the 2-adic order of the logarithm. Fibonacci Quart. 32 (1994), 397-401.

Krijgslaan 281
Gebouw S22
9000 Gent
Belgium
email:jcsp@cage.ugent.be

[^0]: Received by the editors January 2010 - In revised form in June 2010.
 Communicated by A. Weiermann.
 2000 Mathematics Subject Classification : 68Q45, 68Q70.
 Key words and phrases : automatic sequence, regular sequence, 2-adic logarithm.

