Coefficient estimates for close-to-convex functions with argument β

Limei Wang*

Abstract

This paper deals with coefficient estimates for close-to-convex functions with argument $\beta(-\pi / 2<\beta<\pi / 2)$. By using Herglotz representation formula, sharp bounds of coefficients are obtained. In particular, we solve the problem posed by A. W. Goodman and E. B. Saff in [2]. Finally some complicate computations yield the explicit estimate of the third coefficient.

1 Introduction

Let \mathcal{A} be the family of functions f analytic in the unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, and \mathcal{A}_{1} be the subset of \mathcal{A} consisting of functions f which are normalized by $f(0)=f^{\prime}(0)-1=0$. A function $f \in \mathcal{A}_{1}$ is said to be starlike (denoted by $f \in \mathcal{S}^{*}$) if f maps \mathbb{D} univalently onto a domain starlike with respect to the origin.

Let

$$
\mathcal{P}_{\beta}=\left\{p \in \mathcal{A}: p(0)=1, \operatorname{Re} e^{i \beta} p>0\right\} .
$$

Here and hereafter we always suppose $-\pi / 2<\beta<\pi / 2$. It is easy to see that

$$
\begin{equation*}
p \in \mathcal{P}_{\beta} \Leftrightarrow \frac{e^{i \beta} p-i \sin \beta}{\cos \beta} \in \mathcal{P}_{0} \tag{1}
\end{equation*}
$$

[^0]Herglotz representation formula (see [4]) together with (1) yield the following equivalence

$$
\begin{equation*}
p \in \mathcal{P}_{\beta} \Leftrightarrow p(z)=\int_{\partial \mathrm{D}} \frac{1+e^{-2 i \beta} x z}{1-x z} d \mu(x) \tag{2}
\end{equation*}
$$

for a Borel probability measure μ on the boundary $\partial \mathbb{D}$ of \mathbb{D}. This correspondence is 1-1.

Since \mathcal{P}_{0} is the well-known Carathéodory class, we call \mathcal{P}_{β} the tilted Carathéodory class by angle β. Some equivalent definitions and basic estimates are known (for a short survey, see [7]).

Definition 1. A function $f \in \mathcal{A}_{1}$ is said to be close-to-convex (denoted by $f \in \mathcal{C} \mathcal{L}$) if there exist a starlike function g and a real number $\beta \in(-\pi / 2, \pi / 2)$ such that

$$
\frac{z f^{\prime}}{g} \in \mathcal{P}_{\beta}
$$

This definition involving a real number β is slightly different from the original one due to Kaplan [5]. An equivalent definition of $\mathcal{C} \mathcal{L}$ by using Kaplan class and some related sets of univalent functions can be found in [6]. If we specify the real number β in the above definition, the corresponding function is called a close-toconvex function with argument β and we denote the class of all such functions by $\mathcal{C} \mathcal{L}(\beta)$ (see [1, II, Definition 11.4]). Note that the union of class $\mathcal{C} \mathcal{L}(\beta)$ over $\beta \in(-\pi / 2, \pi / 2)$ is precisely $\mathcal{C} \mathcal{L}$ while the intersection is the class of convex functions. These results were given in [2] without proof. Since the former one is obvious, we will only give an outline of the proof of the latter one. Choose a sequence $\left\{\beta_{n}\right\} \subset(-\pi / 2, \pi / 2)$ such that $\beta_{n} \rightarrow \pi / 2$ as $n \rightarrow \infty$. The assertion follows from the facts that the class of starlike functions is compact in the sense of locally uniform convergence and any function sequence $\left\{p_{n}\right\}$ where $p_{n} \in \mathcal{P}_{\beta_{n}}$ converges to the constant function 1 locally uniform as $\beta_{n} \rightarrow \pi / 2$.

In the literature, when studying the close-to-convex functions, some authors focus only on the case $\beta=0$. A. W. Goodman and E. B. Saff [2] were the first to point out explicitly that $\mathcal{C} \mathcal{L}(\beta)$ and $\mathcal{C} \mathcal{L}$ are different when $\beta \neq 0$ and more deeply the class $\mathcal{C} \mathcal{L}(\beta)$ has no inclusion relation with respect to β. Therefore it is useful to consider the individual class $\mathcal{C} \mathcal{L}(\beta)$. The present paper follows their way in this direction and improves their result concerning the class $\mathcal{C} \mathcal{L}(\beta)$;

Theorem A (Goodman-Saff [2]) Suppose $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{C} \mathcal{L}(\beta)$ for a $\beta \in(-\pi / 2, \pi / 2)$. Then

$$
\left|a_{n}\right| \leq 1+(n-1) \cos \beta .
$$

for $n=2,3, \cdots$. If either $n=2$ or $\beta=0$, the inequality is sharp.
In the above mentioned paper, they also stated that the problem of finding the maximum for $\left|a_{n}\right|$ in the class $\mathcal{C} \mathcal{L}(\beta)$ was difficult for $n \geq 3$. With regard to their problem, in the present paper we shall establish the following theorems:

Theorem 1. Suppose $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{C} \mathcal{L}(\beta)$ for $a \beta \in(-\pi / 2, \pi / 2)$, then the sharp inequality

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{2 \cos \beta}{n} \max _{|u|=1}\left|\frac{n}{1+e^{-2 i \beta}}+\sum_{k=1}^{n-1} k u^{n-k}\right| \tag{3}
\end{equation*}
$$

holds for $n=2,3, \cdots$. Extremal functions are given by

$$
f^{\prime}(z)=\frac{1}{(1-y z)^{2}} \frac{1+e^{-2 i \beta} y u_{n} z}{1-y u_{n} z}
$$

for $y \in \partial \mathbb{D}$, where $u_{n} \in \partial \mathbb{D}$ is a point at which the above maximum is attained.
We mention here that it seems that there are no extremal functions other than the form given above in Theorem 1. Theorem A follows from Theorem 1 immediately by the elementary inequality

$$
\left|\frac{n}{1+e^{-2 i \beta}}+\sum_{k=1}^{n-1} k u^{n-k}\right| \leq \frac{n}{2 \cos \beta}+\frac{n(n-1)}{2}
$$

for any $u \in \partial \mathbb{D}$.
The expression in (3) is implicit. When $n=3$, we can give a more concrete estimate and also show the extremal functions are unique;

Theorem 2. Suppose $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{C} \mathcal{L}(\beta)$, then the sharp inequality

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2 \cos \beta}{3} \sqrt{5+\frac{9}{4 \cos ^{2} \beta}+\frac{13}{1-t_{0}}} \tag{4}
\end{equation*}
$$

holds, where t_{0} is the unique root of the equation

$$
\begin{equation*}
t^{3}-\left(\frac{4}{3} \cos ^{2} \beta+6\right) t^{2}+\left(\frac{40}{9} \cos ^{2} \beta+9\right) t+4 \cos ^{2} \beta-4=0 \tag{5}
\end{equation*}
$$

in $0 \leq t<1$. Equality holds in (4) if and only if

$$
f^{\prime}(z)=\frac{1}{(1-y z)^{2}} \frac{1+e^{-2 i \beta} y u_{3} z}{1-y u_{3} z}
$$

for some $y \in \partial \mathbb{D}$, where

$$
u_{3}=\left\{\begin{array}{l}
1-\frac{t_{0}}{2}-i \sqrt{t_{0}-\frac{t_{0}^{2}}{4}} \frac{\beta}{|\beta|^{\prime}}, \quad \text { when } \beta \neq 0 \\
1, \quad \text { when } \beta=0 .
\end{array}\right.
$$

Remark 1. Comparing Theorem A and Theorem 2, it is not difficult to see that

$$
1+2 \cos \beta=\frac{2 \cos \beta}{3} \sqrt{5+\frac{9}{4 \cos ^{2} \beta}+\frac{13}{1-t_{0}}}
$$

if and only if

$$
t_{0}=\frac{9-9 \cos \beta}{9+4 \cos \beta} .
$$

Since this t_{0} is a root of (5) in $[0,1)$ only when $\beta=0$, Theorem A is sharp only when $\beta=0$ for $n=3$.

Finally we give an example to show how Theorem 2 works.
Example. Let $\beta=\pi / 4$. Applying Mathematica, we may get the root of equation (5) which belongs to $[0,1)$ is $0.201 \cdots$, therefore in this case

$$
\left|a_{3}\right| \lesssim 2.394
$$

which is less than $1+\sqrt{2} \approx 2.414$ by Theorem A.

2 Proof of Theorems

In order to prove our theorems, we shall need the following lemma
Lemma 1. (see [3] p. 52) If $f \in \mathcal{S}^{*}$, then there exists a Borel probability measure v on $\partial \mathrm{D}$ such that

$$
f(z)=\int_{\partial \mathbb{D}} \frac{z}{(1-y z)^{2}} d v(y)
$$

Proof of Theorem 1 :
Equivalence (2) and Lemma 1 imply that if $f \in \mathcal{C} \mathcal{L}(\beta)$, then there exist two Borel probability measures μ and v on $\partial \mathbb{D}$ such that f^{\prime} can be represented as

$$
f^{\prime}(z)=\int_{\partial \mathrm{D}} \int_{\partial \mathrm{D}} \frac{1}{(1-y z)^{2}} \frac{1+e^{-2 i \beta} x z}{1-x z} d \mu(x) d v(y) .
$$

Thus in order to estimate the coefficients of f, it is sufficient to estimate those of functions

$$
\frac{1}{(1-y z)^{2}} \frac{1+e^{-2 i \beta} x z}{1-x z}
$$

when $|x|=|y|=1$.
Since

$$
\frac{1}{(1-y z)^{2}} \frac{1+e^{-2 i \beta} x z}{1-x z}=\sum_{n=0}^{\infty}\left\{(n+1) y^{n}+\sum_{k=0}^{n-1}(k+1)\left(1+e^{-2 i \beta}\right) y^{k} x^{n-k}\right\} z^{n}
$$

implies

$$
\begin{aligned}
\left|n a_{n}\right| & \leq \max _{|x|=|y|=1}\left|n y^{n-1}+\sum_{k=0}^{n-2}(k+1)\left(1+e^{-2 i \beta}\right) y^{k} x^{n-1-k}\right| \\
& =\max _{|x|=|y|=1}\left|n+\sum_{k=1}^{n-1} k\left(1+e^{-2 i \beta}\right)(x / y)^{n-k}\right|
\end{aligned}
$$

after letting $u=x / y$, we can easily obtain (3). The extremal functions can be obtained easily by the proof of this theorem.

Proof of Theorem 2: By Theorem 1, we have the sharp inequality

$$
\left|a_{3}\right| \leq \frac{2 \cos \beta}{3} \max _{-\pi<\alpha \leq \pi} \sqrt{h(\alpha)}
$$

where

$$
\begin{equation*}
h(\alpha)=\left|1+2 e^{i \alpha}+\frac{3}{1+e^{-2 i \beta}} e^{2 i \alpha}\right|^{2} . \tag{6}
\end{equation*}
$$

Straightforward calculations give

$$
\begin{align*}
h(\alpha) & =5+\frac{9}{4 \cos ^{2} \beta}+4 \cos \alpha+\frac{3 \cos (\beta+2 \alpha)+6 \cos (\beta+\alpha)}{\cos \beta} \\
& =5+\frac{9}{4 \cos ^{2} \beta}+(10 \cos \alpha+3 \cos 2 \alpha)-3 \tan \beta(\sin 2 \alpha+2 \sin \alpha) \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
h^{\prime}(\alpha) & =-4 \sin \alpha-\frac{12 \sin \frac{2 \beta+3 \alpha}{2} \cos \frac{\alpha}{2}}{\cos \beta} \tag{8}\\
& =-(10 \sin \alpha+6 \sin 2 \alpha)-6 \tan \beta(\cos 2 \alpha+\cos \alpha) \\
h^{\prime \prime}(\alpha) & =-(10 \cos \alpha+12 \cos 2 \alpha)+6 \tan \beta(2 \sin 2 \alpha+\sin \alpha) . \tag{9}
\end{align*}
$$

Since $h^{\prime}(\pi)=0$ and $h^{\prime \prime}(\pi)<0, h(\alpha)$ attains a local maximum $h(\pi)=(9-$ $\left.8 \cos ^{2} \beta\right) /\left(4 \cos ^{2} \beta\right)$ at π. It follows from $h(\pi)<h(0)$ that π is not a global maximum point of $h(\alpha)$. Since $h(\alpha)$ is periodic and continuous, its maximum point exists over $(-\pi, \pi)$, thus we may suppose that $h(\alpha)$ attains its maximum at some point α_{0} in $(-\pi, \pi)$, then

$$
\begin{equation*}
h^{\prime}\left(\alpha_{0}\right)=0 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{\prime \prime}\left(\alpha_{0}\right) \leq 0 . \tag{11}
\end{equation*}
$$

Combining (8) and (10), we may represent $\tan \beta$ in term of α_{0};

$$
\begin{equation*}
\tan \beta=-\frac{5 \sin \alpha_{0}+3 \sin 2 \alpha_{0}}{3\left(\cos \alpha_{0}+\cos 2 \alpha_{0}\right)} . \tag{12}
\end{equation*}
$$

Substituting it into (9) shows

$$
\begin{align*}
h^{\prime \prime}\left(\alpha_{0}\right) & =-\left(10 \cos \alpha_{0}+12 \cos 2 \alpha_{0}\right)-2\left(2 \sin 2 \alpha_{0}+\sin \alpha_{0}\right) \frac{5 \sin \alpha_{0}+3 \sin 2 \alpha_{0}}{\cos \alpha_{0}+\cos 2 \alpha_{0}} \\
& =-\frac{2\left(11+11 \cos \alpha_{0}+4 \sin ^{2} \alpha_{0} \cos \alpha_{0}\right)}{\cos \alpha_{0}+\cos 2 \alpha_{0}} . \tag{13}
\end{align*}
$$

Since

$$
11+11 \cos \alpha+4 \sin ^{2} \alpha \cos \alpha>0
$$

whenever $-\pi<\alpha<\pi$, hence from (11) and (13), we deduce that

$$
\cos \alpha_{0}+\cos 2 \alpha_{0}>0
$$

which is fulfilled only when $\cos \alpha_{0}>1 / 2$ i.e. $\alpha_{0} \in(-\pi / 3, \pi / 3)$.
Let $g\left(\alpha_{0}\right)$ denote the quantity given in the right hand side of (12). Since $g^{\prime}(\alpha)<0$ over $(-\pi / 3, \pi / 3)$, there exists one and only one α_{0} which satisfies (10) and (11) and $h(\alpha)$ assumes its maximum

$$
5+\frac{9}{4 \cos ^{2} \beta}+\frac{13}{1-4 \sin ^{2} \frac{\alpha_{0}}{2}}
$$

at α_{0}.
(8) and (10) also imply

$$
\begin{equation*}
\cos \frac{\alpha_{0}}{2}\left(2 \sin \frac{\alpha_{0}}{2}+3 \frac{\sin \frac{3 \alpha_{0}+2 \beta}{2}}{\cos \beta}\right)=0 \tag{14}
\end{equation*}
$$

Since $\alpha_{0} \neq \pi$, after letting $x_{0}=\sin \left(\alpha_{0} / 2\right)$, (14) implies that x_{0} is the unique root of the following equation

$$
11 x-12 x^{3}+3 \tan \beta \sqrt{1-x^{2}}\left(1-4 x^{2}\right)=0
$$

in $(-1 / 2,1 / 2)$. Writing $t_{0}=4 x_{0}^{2}$ and $t=4 x^{2}$, we get t_{0} is a root of equation (5) in $[0,1)$.

Let $v(t)$ be the polynomial in the left hand of (5), it is easy to verify that $v(0) \leq$ $0, v(1)>0$ and $v^{\prime}(t)>0$ in $0 \leq t<1$ which together assure the uniqueness of root $t_{0} \in[0,1$) of equation (5).

Therefore Theorem 2 is complete.
Acknowledgements: The author is grateful to Professor Toshiyuki Sugawa for his constant encouragement and useful discussions during the preparation of this paper. I also would like to acknowledge the referee for corrections.

References

[1] A. W. Goodman, Univalent Functions, 2 vols., Mariner Publishing Co. Inc., 1983.
[2] A. W. Goodman and E. B. Saff, On the definition of a close-to-convex function, Internat. J. Math. Math. Sci. Vol.1(1978) 125-132.
[3] D. J. Hallenbeck and T. H. MacGregor, Linear Problems and Convexity Techniques in Geometric Function theory, Pitman(1984).
[4] G. Herglotz, Über Potenzreihen mit positivem, reellen Teil in Einheitskreis, Ber. Verh. Sachs. Akad. Wiss. Leipzig(1911) 501-511.
[5] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1(1952) 169185.
[6] S. Ruscheweyh, Convolution in Geometric Function Theory, Sém. Math. Sup. 83, University of Montréal, Montréal, Québec, Canada 1982.
[7] Limei Wang, The tilted Carathéodory class and its applications, In preparation.

Division of Mathematics
Graduate School of Information Sciences
Tohoku University, Sendai
980-8579 JAPAN
e-mail: rime@ims.is.tohoku.ac.jp

[^0]: *This work is a part of the author's Ph.D. thesis, under the supervision of Professor Toshiyuki Sugawa.

 Received by the editors January 2010.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : Primary 30C45.
 Key words and phrases : close-to-convex functions with argument β, coefficient estimate.

