A note on monotone *D*-spaces^{*}

Yin-Zhu Gao[†] Wei-Xue Shi

Abstract

A topological space (X, τ) is a *D*-space if for every function $\varphi: X \to \tau$ with $x \in \varphi(x)$ for each $x \in X$, $\{\varphi(x) : x \in F\}$ covers *X* for some closed discrete subset *F* of *X*. The Michael line *M*, one of the most important elementary examples in general topology, is the Euclidean space \mathbb{R} isolating the irrationals. In this note we show that (1) the minimal dense linearly ordered extension of *M* is hereditarily paracompact, but not monotonically *D*; (2) the minimal closed linearly ordered extension of *M* is monotonically *D*; (3) if the space *X* is a *D*-space (resp., a monotone *D*-space), then so is its Alexandroff duplicate space $\mathscr{A}(X)$ and thus $\mathscr{A}(M)$ is monotonically *D*.

1 Introduction

The *D*-property was introduced by E. K. van Douwen in [5] and was studied widely (for instance, [1], [3], [4], [6] or [7]). A neighborhood assignment for a space *X* is a function φ from *X* to the topology of *X* such that $x \in \varphi(x)$ for all $x \in X$. A space *X* is a *D*-space if for every neighborhood assignment φ for *X*, there is a closed discrete subset *F* of *X* such that $X = \varphi(F) = \bigcup {\varphi(x) : x \in F}$. It is well-known that a space with a point-countable base is a *D*-space ([1]) and semi-stratifiable spaces are *D*-spaces ([3], [4]). Hence σ -spaces, stratifiable spaces, Moore spaces and metrizable spaces are all *D*-spaces.

In [14], the monotone *D*-property is introduced and studied. A space *X* is a monotone *D*-space if for each neighborhood assignment φ for *X*, we can pick

Received by the editors November 2008 - In revised form in March 2010.

Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 215–222

^{*}The project is supported by NSFC (No.10971092).

[†]Corresponding author

Communicated by E. Colebunders.

²⁰⁰⁰ Mathematics Subject Classification: 54D20, 54F05, 54C25, 54E18.

Key words and phrases : the Michael line, the Euclidean space, linear order, (monotone) D-spaces, Moore spaces.

a closed discrete subset $F(\varphi)$ of X with $X = \bigcup \{\varphi(x) : x \in F(\varphi)\}$ such that if ψ is also a neighborhood assignment for X and $\varphi(x) \subset \psi(x)$ for each $x \in X$, then $F(\psi) \subset F(\varphi)$. Monotone D-spaces are D-spaces, but the converse is not true. The closed unit interval [0, 1] is a D-space, but it is not a monotone D-space ([14]). It is well-known that in generalized ordered spaces the D-property is equivalent to paracompactness ([6]). The Michael line M (the real line with the irrationals isolated and the rationals having their usual neighborhoods), one of the most important elementary examples in general topology, is a paracompact generalized ordered space, and so it is a D-space. In [14], it is shown that the Michael line M is also a monotone D-space.

A linearly ordered topological space is a triple (X, λ, \leq) , where \leq is a linear order on the set X and λ is the open interval topology defined by \leq (that is, λ has a subbase $\{(a, \rightarrow) : a \in X\} \cup \{(\leftarrow, a) : a \in X\}$, where $(a, \rightarrow) = \{x \in X : a < x\}$ and $(\leftarrow, a) = \{x \in X : x < a\}$). For $a, b \in X$, $(a, b) = \{x \in X : a < x < b\}$ is called an open interval. The Euclidean space \mathbb{R} is a linearly ordered topological space. A generalized ordered space is precisely a subspace of a linearly ordered topological space. It happens that for $\mathscr{P} = paracompactness$ (resp., metrizability, Lindelöfness and quasi-developability) a generalized ordered space has \mathscr{P} if and only if its (minimal) closed linearly ordered extension has \mathscr{P} . The main results of the note are as follows.

1. The minimal dense linearly ordered extension of the Michael line is hereditarily paracompact (hence a hereditary D-space), but not a monotone D-space.

2. The minimal closed linearly ordered extension of the Michael line is a monotone *D*-space.

3. If X is a D-space (resp., a monotone D-space), so is its Alexandroff duplicate space $\mathscr{A}(X)$. Thus $\mathscr{A}(M)$ is monotonically D for the Michael line M.

Throughout the note, spaces are topological spaces. We reserve the symbols \mathbb{R} , \mathbb{Q} , \mathbb{P} , \mathbb{Z} and \mathbb{Z}^+ the set of all real numbers, all rational numbers, all irrational numbers, all integers and all positive integers respectively. Let φ and ψ be two neighborhood assignments for a space *X*, then by φ refining ψ (denoted by $\varphi \prec \psi$) we mean $\varphi(x) \subset \psi(x)$ for each $x \in X$. Undefined terminology and symbols will be found in [10].

2 Main results

For the Michael line *M*, put

$$\ell(M) = (\mathbb{R} \times \{0\}) \cup (\mathbb{P} \times \{-1,1\}).$$

Obviously the lexicographic order \leq on $\ell(M)$ is a linear order on $\ell(M)$. Equip $\ell(M)$ with the open interval topology generated by the linear order \leq on $\ell(M)$. Then the Michael line M is homeomorphic to the dense subspace $\mathbb{R} \times \{0\}$ of the linearly ordered topological space $\ell(M)$. The space $\ell(M)$ is called a dense linearly ordered extension of M. $\ell(M)$ is also the minimal dense linearly ordered extension of M. $\ell(M)$ is also the minimal dense linearly ordered extension of M (see Theorem 2.1 of [13]). Note that the set $\mathbb{R} \times \{0\} \subset \ell(M)$ with the linearly ordered topology generated by the hereditary order from the order on $\ell(M)$ is homeomorphic to the Euclidean space \mathbb{R} .

It is well-known that the minimal dense linearly ordered extension $\ell(X)$ of a paracompact space X may not be paracompact, however for the minimal dense linearly ordered extension $\ell(M)$ of the Michael line *M*, we have the following Theorem.

Theorem 1. The space $\ell(M)$ is hereditarily paracompact, and hence a hereditary *D*-space.

Proof. Let Y be a subspace of $\ell(M)$. Now we will show that Y is paracompact. Suppose not. Then *Y* has a closed subspace *F* homeomorphic to a stationary subset *T* of some uncountable regular cardinal. Let $f : F \to T$ be a homeomorphic mapping. Since $\mathbb{P} \times \{0\}$ is a discrete open subset of $\ell(M)$, $F \setminus (\mathbb{P} \times \{0\})$ is a closed subspace of Y and $f(F \setminus (\mathbb{P} \times \{0\}))$ is still a stationary subset. So we suppose $F \cap (\mathbb{P} \times \{0\}) = \emptyset$. Let $M_1 = \ell(M) \setminus (\mathbb{P} \times \{-1,0\})$ and $M_2 =$ $\ell(M) \setminus (\mathbb{P} \times \{0,1\})$. Put $Y_1 = Y \cap M_1$ and $Y_2 = Y \cap M_2$. Let (\mathbb{R}, τ_1) be generated by the base $\mathscr{B}_1 = \lambda \cup \{[a,b) : a \in \mathbb{P}, b \in \mathbb{R}, a < b\}$ and (\mathbb{R}, τ_2) be generated by the base $\mathscr{B}_2 = \lambda \cup \{(a, b] : b \in \mathbb{P}, a \in \mathbb{R}, a < b\}$, where λ is the usual topology on \mathbb{R} . Then for $i \in \{1,2\}$, M_i as a subspace of $\ell(M)$ is homeomorphic to (\mathbb{R}, τ_i) and thus its subspace Y_i can be considered as the subspace of (\mathbb{R}, τ_i) . Since (\mathbb{R}, λ) is second countable it is hereditarily separable. Let C'_i be the countable dense subset of Y_i considered as a separable subspace of (\mathbb{R}, λ) and $C_i = C'_i \cup \{y \in Y_i : y \text{ has a predecessor or a successor}\}$. Then for $i \in \{1, 2\}$, the countable C_i is dense in Y_i and thus Y_i as the subspace of (\mathbb{R}, τ_i) is separable. Noticing that $F = F \cap Y = (F \cap Y_1) \cup (F \cap Y_2)$, we see that $f(F \cap Y_1)$ or $f(F \cap Y_2)$ is stationary. That is, a closed subset of Y_1 or Y_2 is homeomorphic to a stationary subset. Hence Y_1 or Y_2 is not paracompact. This contradicts the separability of Y_1 and Y_2 (separable generalized ordered spaces are paracompact). In [6] it is shown that in generalized ordered spaces the *D*-property is equivalent to paracompactness, and thus $\ell(M)$ is a hereditary *D*-space.

For the Michael line *M*, put

$$M^* = (\mathbb{R} \times \{0\}) \cup (\mathbb{P} \times \mathbb{Z}).$$

Let \leq be the lexicographic order on M^* . Equip M^* with the open interval topology generated by the linear order \leq on M^* . Then the Michael line M is homeomorphic to the closed subspace $\mathbb{R} \times \{0\}$ of the linearly ordered topological space M^* . The space M^* is called a closed linearly ordered extension of M ([12]). By Theorem 9 of [16], the space M^* is the minimal closed linearly ordered extension of M.

Theorem 2. *The space* M^* *is a monotone* D*-space.*

Proof. For a neighborhood assignment φ' for M^* , define a neighborhood assignment φ^* for M^* such that $\varphi^* \prec \varphi'$ as follows. Let $x^* = \langle x, k \rangle \in M^*$, if $x \in \mathbb{P}$, define $\varphi^*(x^*) = \{x^*\}$; if $x \in \mathbb{Q}$, then k = 0. Let I_x be the maximal open convex subset of M^* such that $\langle x, 0 \rangle \in I_x \subset \varphi'(x^*) = \varphi'(\langle x, 0 \rangle)$. If $I_x = M^*$, define $\varphi^*(x^*) = M^*$. Now suppose that I_x is one of the following, where $q_x < x < r_x$, $s_x < x < t_x$ and $\{q_x, r_x\} \subset \mathbb{R}$ while $\{s_x, t_x\} \subset \mathbb{P}$:

(1) $(\leftarrow, \langle r_x, m \rangle)$; (2) $\{\langle y, i \rangle \in M^* : y \leq t_x\}$; (3) $\{\langle y, i \rangle \in M^* : y < t_x\}$; (4) $(\langle q_x, j \rangle, \rightarrow)$; (5) $\{\langle y, i \rangle \in M^* : y \ge s_x\}$; (6) $\{\langle y, i \rangle \in M^* : y > s_x\}$; (7) $(\langle q_x, k \rangle, \langle r_x, l \rangle)$; (8) $\{\langle y, i \rangle \in M^* : s_x \leq y \leq t_x\}$; $(9) \{ \langle y, i \rangle \in M^* : s_x < y < t_x \};$ (10) { $\langle y, i \rangle \in M^* : s_x < y \le t_x$ } \cup { $\langle s_x, i \rangle : i \ge k$ }; (11) { $\langle y, i \rangle \in M^* : s_x \leq y < t_x$ } \cup { $\langle t_x, i \rangle : i \leq l$ }; $(12) \{ \langle y, i \rangle \in M^* : s_x < y < t_x \} \cup \{ \langle t_x, i \rangle : i \leq l \};$ (13) $\{\langle y, i \rangle \in M^* : s_x < y < t_x\} \cup \{\langle s_x, i \rangle : i \ge k\}.$ Then define $\varphi^*(x^*) = \{ \langle y, i \rangle \in M^* : y < r_x \}$ if (1) holds; $\varphi^*(x^*) = \{ \langle y, i \rangle \in M^* : y < t_x \}$ if one of (2) and (3) holds; $\varphi^*(x^*) = \{ \langle y, i \rangle \in M^* : q_x < y \}$ if (4) holds; $\varphi^*(x^*) = \{ \langle y, i \rangle \in M^* : s_x < y \}$ if one of (5) and (6) holds; $\varphi^*(x^*) = \{ \langle y, i \rangle \in M^* : q_x < y < r_x \}$ if (7) holds; $\varphi^*(x^*) = \{ \langle y, i \rangle \in M^* : s_x < y < t_x \}$ if one of (8) to (13) holds. For $x \in \mathbb{R}$, put $\varphi(\langle x, 0 \rangle) = \varphi^*(\langle x, 0 \rangle) \cap (\mathbb{R} \times \{0\})$. Then φ is a neighborhood

For $x \in \mathbb{R}$, put $\varphi(\langle x, 0 \rangle) = \varphi^*(\langle x, 0 \rangle) \cap (\mathbb{R} \times \{0\})$. Then φ is a neighborhood assignment for the subspace $\mathbb{R} \times \{0\}$ of M^* . Since M is monotonically D and is homeomorphic to the subspace $\mathbb{R} \times \{0\}$ of M^* , there is a closed discrete subset F_{φ} of M such that $\mathbb{R} \times \{0\} = \varphi(F_{\varphi} \times \{0\})$ and if ψ is a neighborhood assignment for $\mathbb{R} \times \{0\}$ with $\varphi \prec \psi$ then $F_{\varphi} \supset F_{\psi}$.

Put $F_{\varphi^*}^* = \{\langle x, k \rangle \in M^* : x \in F_{\varphi}\}$. For $x^* = \langle x, k \rangle \in M^* \setminus F_{\varphi^*}^*$, if $x \in \mathbb{P}$, then $\{x^*\} \cap F_{\varphi^*}^* = \emptyset$; if $x \in \mathbb{Q}$, then there are $a_x, b_x \in \mathbb{Q}$ such that $x \in (a_x, b_x)$ and $(a_x, b_x) \cap F_{\varphi} = \emptyset$ since F_{φ} is closed in M. So $x^* \in W = (\langle a_x, 0 \rangle, \langle b_x, 0 \rangle)$ and $W \cap F_{\varphi^*}^* = \emptyset$. Thus $F_{\varphi^*}^*$ is closed in M^* . Let $x^* = \langle x, k \rangle \in F_{\varphi^*}^*$. If $x \in \mathbb{Q}$, then k = 0 and there are $c_x, d_x \in \mathbb{Q}$ such that $x \in (c_x, d_x)$ and $(c_x, d_x) \cap F_{\varphi} = \{x\}$. Put $V_{x^*} = (\langle c_x, 0 \rangle, \langle d_x, 0 \rangle)$; if $x \in \mathbb{P}$, put $V_{x^*} = \{x^*\}$. Then $V_{x^*} \cap F_{\varphi^*}^* = \{x^*\}$. So $F_{\varphi^*}^*$ is discrete in M^* .

Let $y^* = \langle y, k \rangle \in M^* \setminus F_{\varphi^*}^*$. Since $\varphi(F_{\varphi} \times \{0\}) = \mathbb{R} \times \{0\}$, there is $\langle x, 0 \rangle \in F_{\varphi} \times \{0\} \subset F_{\varphi^*}^*$ such that $\langle y, 0 \rangle \in \varphi(\langle x, 0 \rangle) = \varphi^*(\langle x, 0 \rangle) \cap (\mathbb{R} \times \{0\})$. Assume $x \in \mathbb{P}$. By the definition of φ^* , $\varphi^*(\langle x, 0 \rangle) = \{\langle x, 0 \rangle\}$ and hence x = y, contradicting $y^* \notin F_{\varphi^*}^*$. So $x \in \mathbb{Q}$. By the definition of $\varphi^*(\langle x, 0 \rangle)$, $\varphi(\langle x, 0 \rangle)$ is one of the sets $(\leftarrow, r_x) \times \{0\}$, $(q_x, \rightarrow) \times \{0\}$, $(s_x, t_x) \times \{0\}$ and $\mathbb{R} \times \{0\}$, where $x < r_x$, $q_x < x$ and $s_x < x < t_x$. Hence $y^* = \langle y, k \rangle \in \varphi^*(\langle x, 0 \rangle)$. So $M^* = \cup \{\varphi^*(x^*) : x^* \in F_{\varphi^*}^*\}$. Put $F_{\varphi'}^* = F_{\varphi^*}^*$, then $\cup \{\varphi'(y^*) : y^* \in F_{\varphi'}^*\} = M^*$ since $\varphi^* \prec \varphi'$. If ψ' is a neighborhood assignment for M^* with $\varphi \prec \psi$, then obviously $F_{\varphi'}^* \supset F_{\psi'}^*$. Thus M^* is monotonically D.

Theorem 3. *The space* $\ell(M)$ *is not a monotone D-space.*

Proof. Assume that $\ell(M)$ is monotonically *D*. Define a mapping $f : \ell(M) \to \mathbb{R}$, where \mathbb{R} is the Euclidean space, as follows: for each $\langle x, i \rangle \in \ell(M), f(\langle x, i \rangle) =$ *x*. Then *f* is continuous. In fact, for an open interval (a,b) of \mathbb{R} and $\langle x, i \rangle \in$ $f^{-1}((a,b))$, since $x \in (a,b)$, there are $q_x, r_x \in \mathbb{Q}$ such that $x \in (q_x, r_x) \subset (a,b)$. Thus $\langle x, i \rangle \in (\langle q_x, 0 \rangle, \langle r_x, 0 \rangle) \subset f^{-1}((a,b))$. So $f^{-1}((a,b))$ is open in $\ell(M)$. To show that *f* is closed, let *F'* be a closed subset of $\ell(M)$ and $x \notin f(F')$. If $x \in \mathbb{Q}$, then $f^{-1}(x) = \{\langle x, 0 \rangle\}$ and $\langle x, 0 \rangle \notin F'$. So there is an open interval $G = (\langle c_x, 0 \rangle, \langle d_x, 0 \rangle)$ of $\ell(M)$ with $\langle x, 0 \rangle \in G$ and $G \cap F' = \emptyset$, where $c_x, d_x \in \mathbb{Q}$. Thus $x \in (c_x, d_x)$ and $(c_x, d_x) \cap f(F') = \emptyset$. If $x \in \mathbb{P}$, then $f^{-1}(x) = \{\langle x, -1 \rangle, \langle x, 0 \rangle, \langle x, 1 \rangle\}$ and $f^{-1}(x) \cap F' = \emptyset$. Since F' is closed in $\ell(M)$, we can take $a_x, b_x \in \mathbb{Q}$ such that $\langle x, -1 \rangle \in (\langle a_x, 0 \rangle, \langle x, 0 \rangle)$ with $(\langle a_x, 0 \rangle, \langle x, 0 \rangle) \cap F' = \emptyset$ and $\langle x, 1 \rangle \in (\langle x, 0 \rangle, \langle b_x, 0 \rangle)$ with $(\langle x, 0 \rangle, \langle b_x, 0 \rangle) \cap F' = \emptyset$. Thus $x \in (a_x, b_x)$ and $(a_x, b_x) \cap f(F') = \emptyset$. Hence f(F') is closed. Since $\ell(M)$ is monotonically D, its closed continuous image \mathbb{R} is monotonically D (see Theorem 1.7 of [14]). Because that the monotone D-property is closed hereditary, the subspace [0, 1] of \mathbb{R} is monotonically D. A contradiction.

Recall that a space *X* is meta-Lindelöf if every open cover of *X* has a pointcountable open refinement.

Example 4. There is a monotone *D*-space which is not a meta-Lindelöf space.

Proof. Let $N = \mathbb{Z}^+$ and $\mathscr{N} = \{N_s \subset N : |N_s| = \omega, s \in S\}$, where $S \cap N = \emptyset$, be infinite such that $N_s \cap N_{s'}$ is finite if $s \neq s'$ and that \mathscr{N} is maximal with respect to the last property, that is, \mathscr{N} is the maximal almost disjoint family of N. Define a topology τ on $X = N \cup S$ by the neighborhood system $\{\mathscr{B}(x) : x \in X\}$, where $\mathscr{B}(x) = \{\{x\}\}$ if $x \in N$ and $\mathscr{B}(x) = \{\{s\} \cup (N_s \setminus F) : F \subset N, |F| < \omega\}$ if $x = s \in S$. Put $\Psi(N) = (X, \tau)$. Since the set of all isolated points of $\Psi(N)$ is N and the subspace S of $\Psi(N)$ is discrete, $\Psi(N)$ is a monotone D-space ([14]) (so a D-space). However $\Psi(N)$ is not meta-Lindelöf ([2]).

Let *X* be a space, $A \subset X$ and \mathscr{U} be a family of subsets of *X*, put $st(A, \mathscr{U}) = st^1(A, \mathscr{U}) = \cup \{U \in \mathscr{U} : U \cap A \neq \emptyset\}$. Inductively $st^{n+1}(A, \mathscr{U}) = \cup \{U \in \mathscr{U} : U \cap st^n(A, \mathscr{U}) \neq \emptyset\}$. A space *X* is ω -star Lindelöf ([8]) if for every open cover \mathscr{U} of *X*, there is $n \in \mathbb{Z}^+$ and a countable $B \subset X$ such that $st^n(B, \mathscr{U}) = X$.

Theorem 5. The Michael line M is not an ω -star Lindelöf space.

Proof. Let $Q = \{q_1, q_2, ..., q_i, ...\}$ and for each $q_i \in Q$, the open interval I_i containing q_i be with the length less than $\frac{1}{2^i}$. Then $\mathscr{U} = \{I_i : i \in \mathbb{Z}^+\} \cup \{\{p\} : p \in \mathbb{P}\}$ is an open cover of M. For any countable subset B of \mathbb{R} , $T = \mathbb{R} \setminus (\cup \{I_i : i \in \mathbb{Z}^+\} \cup B)$ is uncountable. Take $t_0 \in T$, then for any $n \in \mathbb{Z}^+$, $t_0 \notin st^n(B, \mathscr{U})$. So M is not an ω -star Lindelöf space.

A space *X* is ω_1 -compact if every closed discrete subset has cardinality $< \omega_1$.

Remark 6. (1) An ω_1 -compact D-space X is Lindelöf: for the D-space X, l(X) = e(X) ([9]). By ω_1 -compactness of X, $e(X) = \omega$ and thus $l(X) = \omega$.

(2) A space is Lindelöf if and only if it is ω_1 -compact and meta-Lindelöf: note that every point-countable open cover of the ω_1 -compact space has a countable sub-cover (Lemma 7.5 of [11]).

(3) The Michael line M cannot be the following: strongly n-star-Lindelöf, n-star-Lindelöf, ω_1 -compact or Lindelöf: by Theorem 5 and Fig. 4 of [8].

Since *M* is a meta-Lindelöf *D*-space without Lindeöfness, the ω_1 -compactness condition in (1) and (2) cannot be removed.

The Alexandroff duplicate space $\mathscr{A}(X)$ for the space X is the set $X \times \{0, 1\}$ equipped with the topology as follows: points in $X \times \{1\}$ are isolated and each point $\langle x, 0 \rangle$ in $X \times \{0\}$ has the basic neighborhoods as the form: $(U \times \{0, 1\}) \setminus \{\langle x, 1 \rangle\}$, where U is an open neighborhood of x in X. The following Lemma is obvious.

Lemma 7. Let X be a space. Then if F is a closed set in X, $F \times \{0, 1\}$ is closed in $\mathscr{A}(X)$; if D is a discrete set in X, $D \times \{0, 1\}$ is discrete in $\mathscr{A}(X)$.

Theorem 8. Let X be a space. Then X is a D-space if and only if $\mathscr{A}(X)$ is a D-space; X is monotonically D if and only if $\mathscr{A}(X)$ is monotonically D.

Proof. Sufficiency: let ψ be a neighborhood assignment for $\mathscr{A}(X)$. If X is a D-space, for each $\langle x, 0 \rangle \in \mathscr{A}(X)$, take an open U_x in X containing x with $(U_x \times \{0,1\} \setminus \{\langle x,1 \rangle\}) \subset \psi(\langle x,0 \rangle)$. Then for the neighborhood assignment $\{U_x : x \in X\}$ for X there is a closed discrete subset F of X such that $X = \bigcup \{U_x : x \in F\}$. By Lemma 7 $F' = F \times \{0,1\}$ is a closed discrete subset of $\mathscr{A}(X)$ and $\mathscr{A}(X) = \bigcup \{\psi(z) : z \in F'\}$. So $\mathscr{A}(X)$ is a D-space. If X is monotonically D, for each $x \in X$, put

$$V_x = \{x\} \cup \{y \in X : y \neq x \text{ and } \{\langle y, 0 \rangle, \langle y, 1 \rangle\} \subset \psi(\langle x, 0 \rangle)\}.$$

Take an open $U_x \subset X$ containing x with $(U_x \times \{0,1\} \setminus \{\langle x,1 \rangle\}) \subset \psi(\langle x,0 \rangle)$, then $U_x \subset V_x$ and thus $x \in V_x^\circ$. Put $\psi_X(x) = V_x^\circ$. Then the neighborhood assignment ψ_X for X satisfying that $(\psi_X(x) \times \{0,1\}) \setminus \{\langle x,1 \rangle\} \subset \psi(\langle x,0 \rangle)$. So there is a closed discrete subset F_{ψ_X} of X such that $X = \cup \{\psi_X(x) : x \in F_{\psi_X}\}$. For the closed discrete subset $F_{\psi} = F_{\psi_X} \times \{0,1\}$ of $\mathscr{A}(X)$, it holds that $\mathscr{A}(X) = \cup \{\psi(z) : z \in F_{\psi}\}$. The rest proof of the sufficiency is obvious.

Necessity: note that the *D*-property and the monotone *D*-property are closed hereditary and the closed subspace $X \times \{0\}$ is homeomorphic to *X*.

In the following corollary, M, \mathbb{R} , S, P, C and $[0, \omega_1]$ are the Michael line, the Euclidean space, the Sorgenfrey line (the real line with the half-open intervals of the form [a, b) as a basis for the topology), the Niemytzki plane, the Cantor set and the usual ordinal space respectively.

Corollary 9. $\mathscr{A}(M)$ *is a monotone D*-space; $\mathscr{A}(\mathbb{R})$, $\mathscr{A}(S)$, $\mathscr{A}(P)$, $\mathscr{A}(C)$ and $\mathscr{A}([0, \omega_1])$ *are D*-spaces, but not monotone *D*-spaces.

Proof. M is monotonically *D* ([14]). Clearly \mathbb{R} , *S*, *P*, *C* and $[0, \omega_1]$ are *D*-spaces. By [14], *S*, *C*, $[0, \omega_1]$ and [0, 1] are not monotonically *D*. Since \mathbb{R} has a closed subspace [0, 1] and *P* has a closed subspace $[0, 1] \times \{1\}$ homeomorphic to [0, 1], \mathbb{R} and *P* are not monotonically *D*. Hence by Theorem 8, the conclusion of the corollary is true.

Remark 10. (1) For the Michael line M, $\mathscr{A}(M)$ has a point-countable base: put $\mathscr{B}_q = \{((a, b) \times \{0, 1\}) \setminus \{\langle q, 1 \rangle\} : a, b \in \mathbb{Q}, a < q < b\}, q \in \mathbb{Q}$. Then $\mathscr{B} = \cup \{\mathscr{B}_q : q \in Q\} \cup \{\{\langle x, 1 \rangle\} : x \in \mathbb{R}\} \cup \{\{\langle p, 0 \rangle\} : p \in \mathbb{P}\}$ is a point-countable base for $\mathscr{A}(M)$.

In general, a Moore space may not be monotonically *D*. For a first countable T_2 -space *X*, let $x \in X$ and $\{B_n(x) : n < \omega\}$ be fixed basis of *x* with $B_{n+1}(x) \subset B_n(x)$, $n < \omega$. Define a topology ν on $\mathcal{M}(X) = X \cup (X \times \omega)$: points of $X \times \omega$

are isolated; a basic neighborhood of $x \in X$ is the form $C_m(x) = \{x\} \cup \{\langle y, n \rangle : (n \ge m) \land (y \in B_n(x))\}, m < \omega$. Then $(\mathscr{M}(X), \nu)$ is a Moore space ([15]).

(2) *The Moore space* $(\mathcal{M}(X), \nu)$ *is monotonically* D: since the subspace X of all non-isolated points of $(\mathcal{M}(X), \nu)$ is discrete, by Theorem 1.7 of [14] $(\mathcal{M}(X), \nu)$ is monotonically D.

Acknowledgment. The authors are very grateful to the referee for many helpful comments and suggestions, especially for outlining the proof of Theorem 1 which improves the result in the previous version of the paper.

References

- [1] A. Arhangel'skii and B. Z. Buzyakova, Addition theorems and *D*-spaces, Comment. Math. Univ. Carolin., 43(2002), 653-663.
- [2] D. K. Burke, Covering properties, in: K. Kunen and J. E. Vaughan, eds., Handbook of Set Theoretic Topology, North-Holland, Amsterdam, 1984.
- [3] C. Borges, A. Wehrley, A study of *D*-spaces, Topology Proc., 16(1991) 7-15.
- [4] P. de Caux, Yet another property of the Sorgenfrey plane, Topology Proc., 6(1981) 31-43.
- [5] E. K. van Douwen, Pixley-Roy topology on spaces of subsets, in: Set-Theoretic Topology, Academic Press Inc., New York, 1977, pp. 111-134.
- [6] Eric K. van Douwen and D. J. Lutzer, A note on paracompactness in generalized ordered spaces, Proc. Amer. Math. Soc., 125(1997), 1237-1245.
- [7] E. K. van Douwen and Washek F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math., 81(1979), 371-377.
- [8] E. K. van Douwen, G. M Reed, A. W. Roscoe, I. J. Tree, Star covering properties, Top. Appl., 39(1991) 71-103.
- [9] T. Eisworth, On *D*-spaces, in: E. Pearl, ed., Open Problems in Topology II, Elsevier B. V., Amsterdam, 2007.
- [10] R. R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [11] G. Gruenhage, Generalized metrizable spaces, in: K. Kunen and J.E. Vaughan, eds., Handbook of Set Theoretic Topology, North-Holland, Amsterdam, 1984.
- [12] D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. 89(1971).
- [13] T. Miwa, N. Kemoto, Linearly ordered extensions of GO-spaces, Top. Appl., 54(1993), 133-140.

- [14] S. G. Popvassilev and J. E. Porter, Monotonically D-spaces, Topology Proc., 30(2006), 355-365.
- [15] G. M. Reed, D. W. McIntyre, A Moore space with calibre (ω_1, ω) but without calibre ω_1 , Top. Appl., 44(1992), 325-329.
- [16] W.-X. Shi, Perfect GO-spaces which have a perfect linearly ordered extension, Top. Appl., 81(1997), 23-33.

Department of Mathematics Nanjing University Nanjing 210093 China email:yzgao@nju.edu.cn, wxshi@nju.edu.cn