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Abstract

We point out some results on the qualitative theory of three-parameter
semiflows by analyzing the stability of the associated linear skew-product
semiflow. Extensions of the well-known theorems due to Datko, Pazy, Rolewicz
are obtained.

1 Introduction and Preliminaries

It is known that the qualitative theory of (semi)flows on (locally) compact spaces
or (σ−)finite measure spaces uses notions like stability or exponential dichotomy
of the associated linear skew-product (semi)flow. In the finite-dimensional con-
text, the Sacker-Sell spectrum provides an important and useful characteriza-
tion of these properties (see [25, 26 and 27]). Also, recent extensions to norm-
continuous linear skew-product (semi)flows on infinite-dimensional Banach spa-
ces have been obtained by Latushkin and Stepin in [13]. However, all truly
infinite-dimensional situations, e.g. flows originating from partial differential
equations and functional differential equations, only yield linear skew-product
(semi)flows. In recent decades, significant progress has been made in the study
of asymptotic behavior of linear skew-product (semi)flows and nonautonomous
Cauchy problems (see [5, 15, 25]), giving a unified answer to an impressive list
of classical problems. Also, in last few years important contributions were done
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in infinite-dimensional case (see [3, 4, 9, 12, 27]) and in the applications. For in-
stance, it is known by now that well-known equations like Navier-Stokes, Bubnov-
Galerkin, Taylor-Couette can be modeled asymptotically by associating a linear
skew-product (semi)flow (for details we refer the reader to [22]).

Let us consider (Θ, d) a metric space, X a Banach space, B(X) the space of all
bounded operators acting on X and ∆ = {(t, t0) ∈ R

2 : t ≥ t0 ≥ 0}. We denote
the norm of vectors on X and operators on B(X) by || · ||. Also Rn will denote the
classical n−dimensional Euclidean space and Rn×n will denote the set of all real
n × n matrices.

Definition 1.1. A two-parameter (nonlinear) semiflow σ : Θ × R+ → Θ is defined by
the properties:

i) σ(θ, 0) = θ, for all θ ∈ Θ;

ii) σ(θ, t + s) = σ(σ(θ, s), t); for all θ ∈ Θ and t, s ∈ R+

If in addition (θ, t) → σ(θ, t) is continuous, then σ is called a continuous two-
parameter (nonlinear) semiflow on Θ .

Remark 1.2. If the above properties hold for any t, s ∈ R then σ is said to be a
(nonlinear) two-parameter flow on Θ.

Definition 1.3. A family {T(t)}t≥0 of linear and bounded operators acting on X, is said
to be a C0-semigroup on X if the following conditions hold:

i) T(0) = I;

ii) T(t + s) = T(t)T(s), for all t, s ≥ 0;

iii) there exists lim
t→0+

T(t)x = x, for all x ∈ X

If the second property holds for any t, s ∈ R then {T(t)}t∈R is called a C0-
group.

For a general presentation of the theory of C0-semigroups we refer the reader
to [8], [17] or [19].

Remark 1.4. It is well-known the connection between (nonlinear) (semi)flows, first
order differential operators, and (linear) (semi)groups. For instance, consider a
continuously differentiable vector field F : Rn −→ Rn with
supθ∈Rn ||DF(θ)|| < ∞, for the derivative DF(θ) of F and θ ∈ R

n. Take the
first order differential operator on

X := C0(R
n) = { f : R

n → R
n : f is continuous vanishing at infinity }

corresponding to the vector field F,

A f (θ) = 〈grad f (θ), F(θ)〉 =
n

∑
i=1

Fi(θ)
∂ f

∂θi
(θ),

for f ∈ C1
c (R

n) = { f : Rn → Rn : f continuously differentiable, with compact
support }, and θ ∈ Rn. It can be easily shown that A is dissipative. Since F is
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globally Lipschitz it follows from standard arguments that there exists a continu-
ous two-parameter flow σ : Rn × R → Rn which solves the differential equation

∂

∂t
σ(θ, t) = F(σ(θ, t)), for all t ∈ R and θ ∈ R

n (see [1, Thm. 10.3]).

To such a flow we associate a one-parameter group of linear operators on C0(R
n)

given by
(T(t) f )(θ) := f (σ(θ, t)), for θ ∈ R

n, t ∈ R,

the so-called group induced by the flow σ. It can be proved that the generator
of the above group is the closure of the first order differential operator A. The
domain of the generator will be D(A) = C1

c (R
n). For details we refer the reader

to [8].

The general relation between (nonlinear) two-parameter semiflows and linear
semigroups is given in the remark below.

Remark 1.5. Let Θ be a compact metric space and take X = C(Θ), where

C(Θ) = { f : Θ → C : f continuous on Θ}

i) The two-parameter (nonlinear) semiflow σ is continuous if and only if it
induces a strongly continuous semigroup {T(t)}t≥0 on X by the formula:

(T(t) f )(θ) := f (σ(θ, t)), for θ ∈ Θ, t ≥ 0, f ∈ X (1.5.1)

ii) The generator (A, D(A)) of {T(t)}t≥0 is a derivation.

iii) Every strongly continuous semigroup {T(t)}t≥0 on X that consists of al-
gebra homomorphisms originates, via (1.5.1), from a continuous two-para-
meter (nonlinear) semiflow on Θ. (see[17 ,B-II, Thm. 3.4])

For details we refer the reader to [8, page 95].
Taking into account the relation between two-parameter (nonlinear) semi-

flows and one-parameter semigroups (see the example above) we consider in the
next a three-parameter (nonlinear) semiflow to approach and extend some well-
known theorems given in the case of two-parameter evolution families. We will
define the three-parameter (nonlinear) (semi)flow as in [23].

Definition 1.6. A three-parameter(nonlinear) semiflow σ : Θ × ∆ → Θ is defined by
the properties:

i) σ(θ, t, t) = θ, for all t ∈ R+, and all θ ∈ Θ;

ii) σ(σ(θ, s, t0), t, s) = ϕ(θ, t, t0) for all t ≥ s ≥ t0 ≥ 0, and all θ ∈ Θ.

If in addition (θ, t, t0) 7→ σ(θ, t, t0) is continuous then σ is called a continuous
three-parameter (nonlinear) semiflow on Θ.

If instead of ∆ = {(t, t0) ∈ R
2 : t ≥ t0 ≥ 0} we consider I × I (where I can be

any of the intervals (−∞, o], [0, ∞) or R) then σ will be called a three-parameter
flow on Θ.
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Remark 1.7. It can be seen that the above concept is a natural extension of the clas-
sical two-parameter semiflow and it appears when we pass to nonautonomous
differential equations. The set Θ is the so-called phase space and I × Θ is called
the extended phase space. It is known that, in the finite-dimensional setting, the
general solution of a nonautonomous differential equation ẋ = f (t, x) is a three-
parameter flow (of course, if f : R × R

n → R
n satisfy conditions guaranteeing

global existence and uniqueness of solutions). In case Θ = Rn, a three-parameter
flow is called linear if

σ(aθ1 + bθ2, t, t0) = aσ(θ1, t, t0) + bσ(θ2, t, t0),

for all θ1, θ2 ∈ Rn, a, b ∈ R, and t, t0 ∈ I.
For instance a linear three-parameter flow is generated by a linear nonau-

tonomous differential equation ẋ = A(t)x, where A : R → Rn×n is continuous.
Given a linear three-parameter flow there exists a corresponding matrix valued
function Φ : I × I → Rn×n with Φ(t, t0)θ = σ(θ, t, t0) for all t, t0 ∈ R and θ ∈ Rn.

Definition 1.8. A family of linear and bounded operators {U(t, t0)}t≥t0≥0 is said to be
a two-parameter evolution family if it satisfies to the following conditions:

i) U(t, t) = I, for all t ≥ 0;

ii) U(t, s)U(s, t0) = U(t, t0), for all t ≥ s ≥ t0 ≥ 0;

iii) U(·, t0)x is continuous on [t0, ∞), for all t0 ≥ 0, x ∈ X;

U(t, ·)x is continuous on [0, t], for all t ≥ 0, x ∈ X;

If in addition {U(t, t0)}t≥t0≥0 satisfies the condition below

iv) there exist M, ω > 0 such that

||U(t, t0)|| ≤ Meω(t−t0), for all t ≥ t0 ≥ 0.

then we say that {U(t, t0)}t≥t0≥0 is an evolution family with exponential growth.

For a general presentation of the theory of two-parameter evolution families
we refer the reader to [2] and [5].

Example 1.9. Take X = C(Θ). If σ is a continuous three-parameter
(nonlinear)semiflow on Θ, then

(U(t, t0))( f )(θ) = f (σ(θ, t, t0)).

defines a two-parameter evolution family on X.

Example 1.10. If Θ = R+ (or R) then σ : Θ × ∆ → Θ, σ(θ, t, t0) = θ + t − t0 is a
linear three-parameter semiflow on Θ.
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As we pointed out in the introduction section, the qualitative theory of (non-
linear) (semi)flows relies on notions like stability or dichotomy for the associated
linear skew-product (semi)flow. Taking into account this aspect, we will asso-
ciate in the classical fashion a linear skew-product three-parameter semiflow to
the above three-parameter (nonlinear) (semi)flow. It is interesting to note that the
linear skew-product three-parameter semiflow that we consider, arises as solu-
tion operators for the variational equation:

{

ẋ(t) = A(σ(θ, t, t0))x(t), t ≥ t0 ≥ 0
x(t0) = x0

For details we refer the reader to Example 1.12.

Definition 1.11. The pair π = (Φ, σ) is said to be a linear skew-product three-parameter
semiflow on X if Φ : Θ × ∆ → B(X) satisfies the following properties:

i) Φ(θ, t, t) = I, for all t ∈ R+ and all θ ∈ Θ, where I represents the identity
operator on X;

ii) Φ(σ(θ, s, t0), t, s)Φ(θ, s, t0) = Φ(θ, t, t0), for all t ≥ s ≥ t0 ≥ 0 and
all θ ∈ Θ.

iii) t 7→ Φ(θ, t, t0)x : [t0, ∞) → X is continuous;
τ 7→ Φ(θ, t, τ)x : [0, t] → X is continuous;

iv) there exists M, ω ∈ R, M ≥ 1 such that

||Φ(θ, t, t0)|| ≤ Meω(t−t0), for all t ≥ t0 ≥ 0, and θ ∈ Θ.

Example 1.12. Let σ be a continuous three-parameter (nonlinear) semiflow on Θ,
A : Θ → B(X) a continuous map and f a locally integrable function on X.

It is easy to see that the solution of the homogeneous Cauchy problem:
{

ẋ(t) = A(σ(θ, t, t0))x(t), t ≥ t0 ≥ 0
x(t0) = x0

verifies the integral equation

x(t) = x0 +
∫ t

t0

A(σ(θ, τ, t0))x(τ)dτ, (1.12.1)

and that of the inhomogeneous Cauchy problem:
{

ẋ(t) = A(σ(θ, t, t0))x(t) + f (t), t ≥ t0 ≥ 0
x(t0) = x0

verifies the integral equation

x(t) = Φ(θ, t, t0)x0 +
∫ t

t0

A(σ(θ, τ, t0), t, τ)x(τ)dτ +
∫ t

t0

f (τ)dτ (1.12.2)

due to the fact that in both cases, the solution of the variational Cauchy problem is an
absolutely continuous function.
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With a similar argument as in the proof of the existence and uniqueness theo-
rems for the non-autonomous systems (see for instance J.L. Daleckij, M.G. Krein
[5] and J.L. Massera, J.J. Schäffer [15]), one can show that the solution of the varia-
tional homogeneous equation (1.12.1) is Φ(θ, t, t0)x0 = x(t), where π = (Φ, σ) is a
linear skew-product three-parameter semiflow, and that (1.12.2) has the solution

x(t) = Φ(θ, t, t0)x0 +
∫ t

t0

Φ(σ(θ, τ, t0), t, τ) f (τ)dτ.

Example 1.13. Let Θ = R and σ be the three-parameter linear semiflow given in Ex-
ample 1.10. Considering the continuous and bounded mapping a : R → R and the
variational equation

{

ẋ(t) = a(θ + t − t0)x(t)
x(t0) = 1

Then

x(t) = e
∫ t

t0
a(θ+s−t0)ds

.

By taking

Φ(θ, t, t0) = e
∫ t

t0
a(θ+s−t0)ds

we have that π = (Φ, σ) is a linear skew-product three-parameter semiflow on Θ.

Example 1.14. If {U(t, t0)}t≥t0≥0 is a two-parameter evolution family (on X) with ex-
ponential growth and σ is a three-parameter semiflow on Θ, then π = (Φ, σ) is a linear
skew-product three-parameter semiflow, where

Φ(θ, t, t0) = U(t, t0), for all t ≥ t0 ≥ 0.

Conversely, considering Θ = R+, σ : R+ × ∆ → R+, σ(θ, t, t0) = θ, and π = (Φ, σ)
a linear skew-product three-parameter semiflow on X, we have that {U(t, t0)}t≥t0≥0,
U(t, t0) = Φ(0, t, t0) is an evolution family on X.

Thus, we can consider that evolution families with exponential growth are
particular cases of linear skew-product three-parameter semiflows.

Example 1.15. Let Θ = R+ and σ be the linear three-parameter semiflow given in
Example 1.10. If {U(t, t0)}t≥t0≥0 is a two-parameter evolution family (on X) with ex-
ponential growth, then π = (Φ, σ) is a linear skew-product three-parameter semiflow,
where

Φ(θ, t, t0) = U(θ + t − t0, θ), for all t ≥ t0 ≥ 0.

Example 1.16. Let A be the set of all continuous functions u : R → R endowed with
the topology of uniform convergence on compact sets. A is metrizable with respect to the
following distance:

δ(u, v) =
∞

∑
n=1

1

2n

δn(u, v)

1 + δn(u, v)
, where δn = sup

t∈[−n,n]

|u(t) − v(t)|.

Let un : R+ →
(

1
2n+1 , 1

2n

)

, n ∈ N∗ be a decreasing function with
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lim
t→∞

un(t) =
1

2n + 1
,

we denote ut0
n = un(t + t0), t, t0 ≥ 0.

Let Θ be the closure (in A) of the set {ut0
n , n ∈ R+}. The mapping

σ : Θ × ∆ → Θ, σ(u, t, t0) = ut−t0 , where ut−t0(s) = u(t − t0 + s), s ≥ 0

is a three-parameter semiflow on Θ. Let X = R
n, n ≥ 1 endowed with the norm

||(x1, ..., xn)|| = |x1|+ ... + |xn|.
The pair π = (Φ, σ) is a linear three-parameter skew-product semiflow for

Φ : Θ × ∆ → B(X), Φ(u, t, t0) =
(

e
a1

∫ t
t0

u(s−t0)ds
x1, ..., e

an
∫ t

t0
u(s−t0)ds

xn

)

Definition 1.17. Let π = (Φ, σ) be a linear skew-product three-parameter semiflow.
π = (Φ, σ) is said to be uniformly exponentially stable if there exists N ≥ 1 and ν > 0
such that:

||Φ(θ, t, t0)x|| ≤ Ne−ν(t−t0)||x||, for all x ∈ X, θ ∈ Θ, and t ≥ t0 ≥ 0.

Definition 1.18. Let π = (Φ, σ) be a linear skew-product three-parameter semiflow.
π = (Φ, σ) is said to be uniformly exponentially unstable if there exists N ≥ 1 and
ν > 0 such that:

||Φ(θ, t, t0)x|| ≥ Neν(t−t0)||x||, for all x ∈ X, θ ∈ Θ, and t ≥ t0 ≥ 0.

Remark 1.19. A trivial consequence of Definition 1.18. is that Φ(θ, t, t0) is one-to-
one, for each θ ∈ Θ and t ≥ t0 ≥ 0.

2 Results

In this section we will extend the well-known Datko’s theorem (regarding the
uniform exponential stability of two-parameters evolution families) to the case
of linear skew-product three-parameter semiflows. Variants for the exponential
instability are also given.

For convenience, we will briefly introduce the reader to Datko’s theorem and
related results. The history of this subject goes back to 1970, when Datko shows
in [6] that all the trajectories T(·)x (of a C0-semigroup {T(t)}t≥0) have an expo-
nential decay as t → ∞, if and only if, the function t → ||T(t)x|| lies in L2(R+, R),
for each vector x ∈ X. Later, A.Pazy shows in [18] that the result remains valid
if we replace L2(R+, R) with Lp(R+, R), where p ∈ [1, ∞). In 1972, R.Datko
generalizes the above result for two-parameter evolution families. He points
out in [7] that a two-parameter evolution family {U(t, t0)}t≥t0≥0 with exponen-
tial growth is uniformly exponentially stable (i.e. there exist N, ν > 0 such that

||U(t, t0)|| ≤ Ne−ν(t−t0), for all t ≥ t0 ≥ 0) if and only if there exists p ∈ [1, ∞)

such that sup
t0≥0

∞
∫

t0

||U(t, t0)x||
pdt < ∞, for each x ∈ X. An improvement of the
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above Datko’s result was obtained by Rolewicz in 1986 (see [24]) when he proved
that if ϕ : R+ → R+ is a continuous, nondecreasing function with ϕ(0) = 0
and ϕ(u) > 0 for each strictly positive u, and if {U(t, t0)}t≥t0≥0 is an evolution

family (on X) with exponential growth such that sup
t0≥0

∞
∫

t0

ϕ(||U(t, t0)x||)dt < ∞ for

each x ∈ X then {U(t, t0)}t≥t0≥0 is uniformly exponentially stable. A shorter
proof of the Rolewicz theorem was given by Q. Zheng [30] who removed the
continuity assumption about ϕ. Also we note that an analogous result was ob-
tained independently by Littman [14] in 1989, in the case of C0-semigroups, and
again without the assumption of continuity for ϕ. A discrete-time version of
Rolewicz theorem was obtained in 1974 by Zabczyk [29] for the particular case
of C0-semigroups.

We establish below a technical characterization of the uniform exponential
stability for a linear skew-product three-parameter semiflow.

Theorem 2.1. Let π = (Φ, σ) be a linear skew-product three-parameter semiflow. Then
π = (Φ, σ) is uniformly exponentially stable if and only if there exists c ∈ (0, 1) and
h > 0 such that for each t0 ≥ 0, θ ∈ Θ and x ∈ X we can find u ∈ (0, h] (u depends on
t0, θ and x) with the property that

||Φ(θ, t0 + u, t0)x|| ≤ c||x||. (2.1.1)

Proof. The necessity is immediate if we consider in Definition 1.17, t = t0 + u and
c = e−νh.

For the sufficiency we consider x ∈ X, θ ∈ Θ and t0 ≥ 0.Then there exists
u ∈ (0, h] such that:

||Φ(θ, t0 + u, t0)x|| ≤ c||x||.

Denoting y = Φ(θ, t0 + u, t0)x, θ′ = σ(θ, t0 + u, t0) and t′ = t0 + u and applying
(2.1.1) we obtain that there exists u′ ∈ (0, h] such that:

||Φ(σ(θ, t′ , t0), t0 + u′, t′)Φ(θ, t′ , t0)x|| ≤ c2||x||, for all x ∈ X.

Consider now s0 = t0, s1 = s0 + u, s2 = s1 + u′, and keep going like this we can
find a sequence sn+1 > sn, sn+1 − sn ∈ (0, h] such that

||Φ(θ, sn, t0)x|| ≤ cn||x||, for all n ∈ N and x ∈ X.

Let t > t0 ≥ 0 and θ ∈ Θ. Then if sn → ∞ we obtain that there exists n ∈ N such
that sn ≤ t < sn+1, which implies that

||Φ(θ, t, t0)x|| = ||Φ(σ(θ, sn , t0)t, sn)Φ(θ, sn, t0)x|| ≤ Meω(sn−t)cn||x||

≤ Meωhcn||x|| = Meωhe−νnheνhe−νh||x||

=
Meωh

c
e−ν(n+1)h||x|| ≤

Meωh

c
e−ν(t−t0)||x||,

where ν = − 1
h ln c > 0 and N = Meωh

c .
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On the other hand, if sn → s ∈ R+ then s ≥ t0. Since

||Φ(θ, sn, t0)x|| ≤ cn||x||, for all n ∈ N,

for n → ∞ it follows that
||Φ(θ, s, t0)|| = 0,

which implies that
Φ(θ, s, t0)x = 0.

Consider now t ≥ s ≥ t0. Then

Φ(θ, t, t0)x = Φ(σ(θ, s, t0)t, s)Φ(θ, s, t0)x = 0.

Furthermore, if s > t ≥ t0 and sn → s we have that there exists n ∈ N such that
sn ≤ t < sn+1. This leads us to

||Φ(θ, t, t0)x|| = ||Φ(σ(θ, sn , t0)t, sn)Φ(θ, sn , t0)x|| ≤

Meωhcn||x|| ≤
Meωh

c
e−ν(t−t0)||x||.

Therefore

||Φ(θ, t, t0)x|| ≤ Ne−ν(t−t0)||x||, for all t ≥ t0 ≥ 0, x ∈ X and θ ∈ Θ,

where ν = − 1
h ln c > 0 and N = Meωh

c .

Theorem 2.2. Let π = (Φ, σ) be a linear skew-product three-parameter semiflow. Then
π = (Φ, σ) is exponentially stable if and only if there exist k, p > 0 such that

(

∫ ∞

t0

||Φ(θ, t, t0)x||
pdt

)
1
p
≤ k||x||, for all x ∈ X, θ ∈ Θ, t0 ≥ 0.

Proof. The necessity is immediate, taking k = 1
νp . For the sufficiency we assume

that Φ is not exponentially stable. Applying Theorem 2.1 we obtain that for all
c ∈ (0, 1) and all h > 0 there exist t0 ≥ 0, θ ∈ Θ and x ∈ X with ||x|| = 1 such
that

||Φ(θ, t0 + u, t0)x|| > c, for all u ∈ (0, h].

This implies that
(

∫ h

0
||Φ(θ, t0 + u, t0)x||

pdu
)

1
p
> ch

1
p

and therefore
(

∫ t0+h

t0

||Φ(θ, s, t0)x||
pds

)
1
p
> ch

1
p .

Thus

k ≥
(

∫ ∞

t0

||Φ(θ, s, t0)x||
pds

)
1
p
≥

(

∫ t0+h

t0

||Φ(θ, s, t0)x||
pds

)
1
p
> ch

1
p ,

for all c ∈ (0, 1) and h > 0. For h → ∞ we obtain that

k

c
≥ ∞,

which is a contradiction.
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Theorem 2.3. Let π = (Φ, σ) be a linear skew-product three-parameter semiflow, such
that Φ(θ, t, t0) is one-to-one, for each θ ∈ Θ and t ≥ t0 ≥ 0. If there exists ϕ : R+ →
R+ a nondecreasing function, ϕ(t) > 0 for all t > 0, then π = (Φ, σ) is exponentially
stable if and only if there exists k > 0 such that

∫ ∞

t0

ϕ(||Φ(θ, t, t0)x||)dt ≤ kϕ(||x||), for all x ∈ X, θ ∈ Θ, and t0 ≥ 0.

Proof. It is similar to that of Theorem 2.2., taking into consideration the properties
of ϕ.

Corollary 2.4. (R. Datko, 1972)
Let {U(t, t0)}t≥t0≥0 be a two-parameter evolution family with exponential growth.

Then {U(t, t0)}t≥t0≥0 is uniformly exponentially stable (i.e. there exist N, ν > 0 such

that ||U(t, t0)|| ≤ Ne−ν(t−t0), for all t ≥ t0 ≥ 0) if and only if there exists p ∈ [1, ∞)
such that

sup
t0≥0

∞
∫

t0

||U(t, t0)x||
pdt < ∞, for each x ∈ X.

Proof. It follows immediately from Theorem 2.2 and Example 1.14.

Corollary 2.5. (S. Rolewicz, 1986)
If ϕ : R+ → R+ is a continuous, nondecreasing function with ϕ(0) = 0 and

ϕ(u) > 0 for each strictly positive u, and if {U(t, to)}t≥t0≥0 is a two-parameter evolu-
tion family (on X) with exponential growth,c such that

sup
t0≥0

∞
∫

t0

ϕ(||U(t, t0)x||)dt < ∞ for each x ∈ X

then {U(t, t0)}t≥t0≥0 is uniformly exponentially stable.

Proof. It follows trivially from Theorem 2.3. and Example 1.14.

We obtain below variants of Theorem 2.1, Theorem 2.2, Theorem 2.3 for the
exponential instability of a linear skew-product three-parameter semiflow.

Theorem 2.6. Let π = (Φ, σ) be a linear skew-product three-parameter semiflow. Then
π = (Φ, σ) is exponentially unstable if and only if there exist c, h > 1 such that for all
t0 ≥ 0, θ ∈ Θ and x ∈ X we can find u ∈ (0, h] (u depends on θ, t0 and x) with the
property:

||Φ(θ, t0 + u, t0)x|| ≥ c||x||. (2.6.1.)

Proof. The necessity is immediate and for sufficiency let us consider x ∈ X and
θ ∈ Θ. From the hypothesis we have that there exist c, h > 1 and u ∈ (0, h] such
that

||Φ(θ, t0 + u, t0)x|| ≥ c||x||.

Taking y = Φ(θ, t0 + u, t0)x, θ′ = σ(θ, t0 + u, t0) and t′ = t0 + u, applying (2.6.1.)
we have that there exist u′ ∈ (0, h] such that

||Φ(σ(θ, t′ , t0), t0 + u′, t′)Φ(θ, t′ , t0)x|| ≥ c2||x||.
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Consider now s0 = t0, s1 = s0 + u, s2 = s1 + u′ and keep going like this we can
find a sequence (sn)n∈N, sn+1 > sn such that

||Φ(θ, sn, t0)x|| ≥ cn||x||, for all n ∈ N.

Let t > t0 ≥ 0 and θ ∈ Θ. If sn → s ∈ R+ and s ≥ t0 and taking into account that

||Φ(θ, sn, t0)x|| ≥ cn||x||

we have that
||Φ(θ, s, t0)x|| ≥ ∞, for n → ∞,

which is a contradiction, and therefore sn → ∞.
Consider now t ≥ 0. Then there exist n ∈ N such that sn ≤ t < sn+1, which

implies that

||Φ(θ, sn+1, t0)x|| = ||Φ(σ(θ, t, t0), sn+1, t)Φ(θ, t, t0)x||,

and therefore
cn+1||x|| ≤ Meω(t−sn+1)||Φ(θ, t, t0)x||.

Since sn+1 − sn ∈ (0, h] we have that t − sn+1 ∈ (0, h] and

cn+1||x|| ≤ Meωh||Φ(θ, t, t0)x||.

Denoting c = eνh, ν > 0 we obtain that

eν(n+1)h||x|| ≤ Meωh||Φ(θ, t, t0)x||.

From t < sn+1 ≤ t0 + (n + 1)h it results that

eν(t−t0)||x|| ≤ Meωh||Φ(θ, t, t0)x||

and therefore

||Φ(θ, t, t0)x|| ≥
1

Meωh
eν(t−t0)||x||, for all t ≥ t0 ≥ 0, θ ∈ Θ, and x ∈ X,

which implies that Φ is exponentially unstable.

Theorem 2.7. Let π = (Φ, σ) be a linear skew-product three-parameter semiflow, such
that Φ(θ, t, t0) is one-to-one, for each θ ∈ Θ and t ≥ t0 ≥ 0. Then π = (Φ, σ) is
exponentially unstable if and only if there exist k, p > 0 such that

(

∫ ∞

t0

dt

||Φ(θ, t, t0)x||p

)
1
p
≤

k

||x||
, for all x ∈ X \ {0}, for all θ ∈ Θ, t0 ≥ 0.

Proof. The necessity is trivial and for the sufficiency we assume that Φ is not expo-
nentially unstable. From Theorem 2.6 we have that for all c > 1 and h > 0 there
exist t0 ≥ 0, θ ∈ Θ and x ∈ X with ||x|| = 1 such that

||Φ(θ, t0 + u, t0)x|| < c, for all u ∈ (0, h].
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Thus
1

||Φ(θ, t0 + u, t0x)||
>

1

c
,

and therefore
(

∫ h

0

du

||Φ(θ, t0 + u, t0)x||p

)
1
p
>

h
1
p

c
.

This implies that
(

∫ t0+h

t0

ds

||Φ(θ, s, t0)x||p

)
1
p
>

h
1
p

c
,

which leads to

k >

(

∫ ∞

t0

ds

||Φ(θ, s, t0)x||p

)
1
p
≥

(

∫ t0+h

t0

ds

||Φ(θ, s, t0)x||p

)
1
p
>

h
1
p

c
,

and for h → ∞ we get that kc ≥ ∞, which is a contradiction.

Corollary 2.8. Let π = (Φ, σ) be a linear skew-product three-parameter semiflow, such
that Φ(θ, t, t0) is one-to-one, for each θ ∈ Θ and t ≥ t0 ≥ 0. If there exists ϕ : R+ →
R+ a nondecreasing function, ϕ(t) > 0 for all t > 0, then π = (Φ, σ) is exponentially
unstable if and only if there exists k > 0 such that

∫ ∞

t0

ϕ
( 1

||Φ(θ, t, t0)x||

)

dt ≤ kϕ
( 1

||x||

)

, for all x ∈ X \ {0}, θ ∈ Θ, t0 ≥ 0

Proof. It is similar to that of Theorem 2.7, taking into consideration the properties
of ϕ.
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[9] C. Foiaş, G. Sell, R. Temam, Inertial manifolds for nonlinear evolutionary equa-
tions, J. Diff. Eqns 73 (1988), 309 -353. (MR0943945)(89e:58020)

[10] J.K. Hale, Ordinary differential equations, Wiley, New York, (1969)
(MR0419901)(54#7918)

[11] Y. Latushkin , S. Montgomery-Smith and T. Randolph, Evolution-
ary semigroups and dichotomy of linear skew-product flows on locally com-
pact spaces with Banach fibers, J. Differential Equations 125 (1996), 73-116.
(MR1376061)(97a:47056)

[12] Y. Latushkin and R. Schnaubelt, Evolution semigroups, translation algebra and
exponential dichotomy of cocycles, J. Differential Equations 159 (1999), 321-369.
(MR1730724)(2000k:47054)

[13] Y. Latushkin, A.M. Stepin, Linear skew-product flows and semigroups of weighted
composition operators, Lecture Notes in Math., 1486, edition, Springer - Verlag,
New York, 1991. (MR1178950)(93g:47038)

[14] W. Littman, A generalization of the theorem Datko-Pazy, Lecture Notes in
Control and Inform. Sci.130, 318-323, edition, Springer Verlag, New York,
1989. (MR1029070)(91a:47052)
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