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Abstract

Let G be a non-amenable discrete group. We construct the paradoxical
decomposition of G, by using the configuration equations under some con-
ditions. This gives a positive answer to a question proposed by G. A. Willis.
We find an upper bound for the Tarski number of a given group, by using
configurations.

1 introduction and preliminaries

Let G be a discrete group. The equivalence between non-amenability and exis-
tence of paradoxical decompositions is a result due to A. Tarski and it is called
the Tarski alternative theorem (see [2], [3], [5], [6] ,[9]) and [10]).

In [1] it is proved that if G is finitely generated and admits a paradoxical de-
composition, then the system of configuration equations introduced by Rosen-
blatt and Willis admits no non-negative solutions. In the present paper, we in-
troduce a paradoxical condition for Rosenblatt-Willis configuration equation sys-
tems and prove the following slightly weaker converse to the Abdollali-Rejali-
Willis above mentioned result: Let G be a finitely generated group and assume
that the Rosenblatt- Willis configuration equation system (associated with an or-
dered finite generating subset and a finite partition of G) admits no non-negative
solutions and satisfies the paradoxical condition. Then G admits a paradoxical
decomposition (and therefore is non-amenable).
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The proof is constructive and we deduce an estimate from above of the Tarski
number of such a non-amenable group in terms of the cardinality of the configu-
ration set associated with the given finite generating subset and the given finite
partition of G.

The first section of this paper is designed to introduce the notation and the
concepts involved in the statements of the main theorems. The process of con-
structing the paradoxical decomposition is given in section 2. At first we need
some preliminaries.

Definition 1.1. [9] A discrete group is amenable if it admits a G−invariant finitely
additive probability measure, that is a map µ : P(G) → [0, 1] defined on the set
P(G) of all subsets of G such that

µ(A ∐ B) = µ(A) + µ(B) f or disjoint subsets A and B o f G,

µ(gA) = µ(A) f or g ∈ G and A ⊆ G,

µ(G) = 1,

where ∐ is disjoint union and gA = {ga : a ∈ A} for g ∈ G and A ⊆ G.

Proposition 1.2. Let G be a group. Then the following statements are equivalent
1) There exist a partition {A1, . . . , An, B1, . . . Bm} of G and g1, . . . , gn and h1, . . . ,

hm in G such that {gj Aj}
n
j=1 and {hjBj}

m
j=1 form partitions of G.

2) There exist pairwise disjoint subsets A1, . . . , An, B1, . . . , Bm of G and ele-
ments g1, . . . , gn and h1, . . . , hm in G such that {gj Aj}

n
j=1 and {hjBj}

m
j=1 form par-

titions of G.
3) There exist pairwise disjoint subsets A1, . . . , An, B1, . . . , Bm of G and ele-

ments g1, . . . , gn and h1, . . . , hm in G such that

G =
n
⋃

j=1

gj Aj =
m
⋃

j=1

hjBj

(not necessarily pairwise disjoint).

Proof. Clearly (1) implies (2) and (2) implies (3). Suppose (2) holds. Let A =
⋃n

j=1 Aj and B =
⋃m

j=1 Bj. Note that A ∩ B = ∅. Define f : G → B by f (x) = bx,

where x = hjbx for some unique bx ∈ Bj.

Put D :=
⋃∞

k=0 f k(A) and T = (G \ A) \ f (D). Note that A ∩ f (D) = ∅ and
A ∪ f (D) = D.

Let Dj := Bj ∩ h−1
j D. Then

T ∪ (
m
⋃

j=1

Dj) = G \ A

and

G =
n
⋃

i=1

gi Ai = eT ∪ (
m
⋃

j=1

hjDj),
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where e denotes the neutral element of the group G. Hence (1) holds.

Suppose (3) holds. Define inductively A′
1 = A1, A′

k = Ak \ g−1
k (

⋃k−1
i=1 gi A

′
i),

B′
1 = B1 and B′

k = Bk \ h−1
k (

⋃k−1
i=1 hiB

′
i). It is easy to show that {gi A

′
i, i = 1, . . . , n}

and {hjB
′
j, j = 1, . . . , m} form partitions of G, so (2) holds.

We say that G admits a complete paradoxical decomposition, if condition (1)
of Proposition (1.2) holds.

The number τ = n + m for n and m in the previous definition is called the
Tarski number of that paradoxical decomposition; the minimum of all such num-
bers over all the possible paradoxical decompositions of G, is called the Tarski
number of G and denoted by τ(G). In the case that there is no paradoxical de-
composition, we set τ(G) = ∞ (see [4]).

Let G be a finitely generated group. Let g = (g1, . . . , gn) be an ordered gen-
erating set for G and E = {E1, . . . , Em} be a finite partition of G. A configura-
tion corresponding to this generating sequence and partition is an (n + 1)−tuple
C = (k0, k1, . . . , kn), where ki ∈ {1, . . . , m} for each i, such that there is x ∈ G with
x ∈ Ek0

and gix ∈ Eki
for each i ∈ {1, . . . , n}. The set of configurations corre-

sponding to the generating sequence g and partition E of G, will be denoted by
Con(g, E), which is clearly a finite set.

A configuration is thus an (n + 1)−tuple of positive integers. The configura-
tion set Con(g, E) records how the generators in g multiply between sets in the
partition E .

The configuration C = (k1, . . . , kn) may be described equivalently as a labeled
tree. The tree has one vertex of degree n, labeled by k0. Emanating from this ver-
tex are edges labeled 1, . . . , n and the other vertex of the i − th edge is labeled ki.
When the generators are distinct, this tree is a subgraph of the Cayley graph of
the finitely generated group G = 〈g1, g2, . . . , gn〉, the edges labels indicate which
generator gives rise to the edge and the vertex label show which set of the parti-
tion E the vertex belongs to. From this perspective the configuration set Con(g, E)
is a set of rooted trees having height 1. This finite set carries information about G.

J. M. Rosenblatt and G. A. Willis [8] considered the amenability of groups
based on finite generating sets and finite partitions of G. For completeness we
summarize the main ideas.

The statement of the result involves the notion of the system of configuration
equations corresponding to the configuration set Con(g, E). There are |Con(g, E)|
variables in the system of equations. They are denoted by fC, where C ∈ Con(g, E).
These are |g||E | = mn equations in the system.

Let C be a configuration in Con(g, E). Call x0 ∈ G a base point of C if there is a
sequence of elements x1, . . . , xn such that xi = gix0, for each i ∈ {1, 2, . . . , n} and
xi ∈ Eki

, for each i ∈ {0, 1, . . . , n}. In this case x1, . . . , xn are called branch points
of C. Define

x0(C) = {x ∈ G : x is a base point o f C}.

Thus {x0(C) : C ∈ Con(g, E)} is a refinement of E . Moreover “C is a configura-
tion in Con(g, E)” means that x0(C) is not empty.
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Let xj(C) = gjx0(C), for 1 ≤ j ≤ n and C ∈ Con(g, E). The configuration
equations corresponding to the configuration set Con(g, E) are the equations:

∑
C: xj(C)⊆Ei

fC = ∑
C: x0(C)⊆Ei

fC,

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. This system of equations will be denoted by
Eq(g, E). A nonnegative solution to Eq(g, E) will be called normalized if

∑C∈Con(g,E) fC = 1.

Proposition 1.3. [8] There is a normalized solution of every possible instance of
the configuration equations of a group G if and only if G is amenable.

The link between amenability and normalized solutions of the configuration
equations was seen via a refinement of the partition E , in [1]. Let M be an in-
variant mean for G and set fC = M(χx0(C)), for C ∈ Con(g, E). Then { fC : C ∈

Con(g, E)} is a normalized solution of the configuration equation Eq(g, E).
Note that if { fC} is a nonnegative nonzero solution of Eq(g, E) and

F = ∑C∈Con(g,E) fC, then {
fC
F } is a normalized solution of Eq(g, E).

Using the above notation, we have

∐
C∈Con(g,E)

x0(C) = G. (1.1)

In the following examples, the corresponding configuration equations to a
configuration set is obtained. For convenience we write fi for fCi

.

Example 1.4. Let G = (Z,+), g = (1) and E1 be the set of all negative integers
and E2 be the set of all non-negative integers. Then

Con(g, E) = {(1, 1), (1, 2), (2, 2)}.

In this case m = 2, n = 1 and there are 3 configurations whose corresponding
equations are:

f1 + f2 = f1 and f3 = f2 + f3.

Clearly ( f1, f2, f3) = (1/2, 0, 1/2) is a normalized solution of Eq(g, E).

Example 1.5. Let G = F2 be the free group on generators a and b, so that each
element may be uniquely represented as a reduced word w = w1w2 · · · wk where
wi = a, b, a−1 or b−1. Let g = (a, b) and E1 = {w ∈ F2| w1 = a}, E2 = {w ∈
F2| w1 = b} and E3 = {w ∈ F2| w = e or w1 = a−1 or b−1}, so that E = {E1, E2, E3}
is a partition of F2. Then Con(g, E) = {(1, 1, 2), (2, 1, 2), (3, 1, 2), (3, 3, 2), (3, 2, 2),
(3, 1, 3), (3, 1, 1)}. In this case m = 3, n = 2 and there are 7 configurations whose
corresponding equations are:

f1 = f1 + f2 + f3 + f6 + f7,

f1 = f7,

f2 = f5,

f2 = f1 + f2 + f3 + f4 + f5,

f3 + f4 + f5 + f6 + f7 = f4,

f3 + f4 + f5 + f6 + f7 = f6.

Clearly Eq(g, E) has no nonnegative nonzero solution.
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2 Paradoxical decomposition and free groups

It is interesting to find the relation between the paradoxical decomposition and
a system of configuration equations with no normalized solution. Considering
Proposition(1.2), the following is immediate.

Proposition 2.1. Let Con(g, E) = {C1, . . . Cl} and suppose there exist positive
integers n, m such that n + m ≤ l and elements h1, . . . , hn, k1, . . . , km ∈ G such that

G =
n
⋃

i=1

hix0(Ci) =
m
⋃

j=1

kjx0(Cn+j).

Then G admits a paradoxical decomposition and τ(G) ≤ |Con(g, E)|.

In the following example we use configurations to construct a paradoxical
decomposition. This generalizes the construction of paradoxical decomposition
of free group F2 by using configuration set in [8], for Fn.

Let n be a positive integer. We say that the group G admits a G = nG para-
doxical decomposition if there exist a partition

{E11, E12, . . . , E1m1
; . . . ; En1, En2, . . . , Enmn}

and a generating sequence

{g11, g12, . . . , g1m1
; . . . ; gn1, gn2, . . . , gnmn}

of G such that for each i, 1 ≤ i ≤ n,

G =
mi
⋃

k=1

gikEik.

Example 2.2. Let G be a finitely generated free group. Then there exist a partition
E and a generating set g of G such that the configuration equation Eq(g, E) has
no nonnegative nonzero solution. Furthermore there is a G = nG paradoxical
decomposition of G, for some positive integer n.

Proof. Let {g1, . . . , gn} be a free base of Fn. Each non identity element of G is a
reduced word w = wε1

1 wε2
2 · · · w

εk
k , where wi ∈ {g1, . . . gn} and εi ∈ {1,−1}. Put

Ei = {w : w1 = gi} f or 1 ≤ i ≤ n and

En+1 = {w : w1 ∈ {g−1
1 , ..., g−1

n }} ∪ {e}.

Then the configuration equations corresponding to the mentioned (free) gener-
ators and partition have no nonnegative nonzero solution and in addition they
provide a paradoxical decomposition for G.

By the definition of configurations, putting g = (g1, . . . , gn) and E = {E1, . . . ,
En+1}, we have Con(g, E) = {C1, . . . Cn2+n+1}, where























C1 = ( 1 , 1, 2, ..., n)

C2 = ( 2 , 1, 2, ..., n)
...

Cn = ( n , 1, 2, ..., n)
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Cn+1 = (n + 1, 1, 2, ..., n)























Cn+2 = (n + 1, n+1 , 2, 3, ..., n)

Cn+3 = (n + 1, 2 , 2, 3, ..., n)
...

C2n+1 = (n + 1, n , 2, 3, ..., n)






























C2n+2 = (n + 1, 1, n+1 , 3, 4, ..., n)

C2n+3 = (n + 1, 1, 1 , 3, 4, ..., n)

C2n+4 = (n + 1, 1, 3 , 3, 4, ..., n)
...

C3n+1 = (n + 1, 1, n , 3, 4, ..., n)










































C3n+2 = (n + 1, 1, 2, n+1 , 4, 5, ..., n)

C3n+3 = (n + 1, 1, 2, 1 , 4, 5, ..., n)

C4n+4 = (n + 1, 1, 2, 2 , 4, 5, ..., n)

C4n+5 = (n + 1, 1, 2, 4 , 4, 5, ..., n)
...

C4n+1 = (n + 1, 1, 2, n , 4, 5, ..., n)

...































Cn2+2 = (n + 1, 1, 2, ..., n − 1, n+1 )

Cn2+3 = (n + 1, 1, 2, ..., n − 1, 1 )

Cn2+4 = (n + 1, 1, 2, ..., n − 1, 2 )
...

Cn2+n+1 = (n + 1, 1, 2, ..., n − 1, n-1 ).

Above, the set of boxed numbers in each n first column together with one of
the numbers boxed in the (n + 1)st column is {1, . . . , n + 1}. For examples, for
1 ≤ k ≤ n2 + n + 1, write Ck = (Ck,0, Ck,1, . . . , Ck,n). Hence we have

{C1,0, C2,0, . . . , Cn,0, Cn2+2,n+1} = {1, . . . , n + 1}

and
{Cn+2,1, Cn+3,1, . . . , C2n+1,1, Cn2+3,n+1} = {1, . . . , n + 1}.

This means that we can make G as union of {E1, . . . , En+1}, n times and indepen-
dently. Therefore we have

G = x0(C1) ∪ ... ∪ x0(Cn) ∪ gnx0(Cn2+2)
G = g1[x0(Cn+2) ∪ ... ∪ x0(C2n+1)] ∪ gnx0(Cn2+3)
G = gk[x0(Ckn+2) ∪ ... ∪ x0(Ckn+n+1)] ∪ gnx0(Cn2+2+k),

(2.1)

for 2 ≤ k ≤ n − 1.
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It is a G = nG paradoxical decomposition (see the statements before Example
2.2). In fact two first lines of (2.1) form a paradoxical decomposition. But this
decomposition is not complete. We can use the process mentioned in Proposition
1.2 to complete this decomposition. But we prefer to do this in a way which
depends on the structure of this special example as follow.

Note that x0(Cn+2) ∪ x0(Cn+1) ⊆ En+1 and x1(Cn+2) = En+1 . Now let
A =

⋃∞
m=1 g−m

1 x0(Cn+1) and B = x0(Cn+2)\A . By an easy induction we have
A ⊆ x0(Cn+2). This choosing of A shows that g1A = A ∪ x0(Cn+1) and therefore
the paradoxical decomposition of G can be constructed as below:

G = x0(C1) ∪ ... ∪ x0(Cn) ∪ gnx0(Cn2+2),
G = g1B ∪ A ∪ x0(Cn+1) ∪ g1[x0(Cn+3 ∪ ... ∪ x0(C2n+1] ∪ gnx0(Cn2+3),
G = gk[x0(Ckn+2) ∪ ... ∪ x0(Ckn+n+1)] ∪ gnx0(Cn2+2+k),
for 2 ≤ k ≤ n − 1.

Note that this decomposition is not complete yet. We can change it to a com-
plete paradoxical decomposition. Clearly

{

G = x0(C1) ∪ ... ∪ x0(Cn) ∪ gnx0(Cn2+2)

G = g1[x0(Cn+2) ∪ ... ∪ x0(C2n+1)] ∪ gnx0(Cn2+3)
(2.2)

forms an uncomplete paradoxical decomposition. We now complete this decom-
position. The set

M := x0(Cn+1)
⋃

(
4n+2
⋃

i=n+3

x0(Ci))
⋃

(
n2+n+1

⋃

i=n2+4

x0(Ci))

is not used in (2.2).
Put

S =
∞
⋃

m=1

g−m
1 M and T = x0(Cn+2) \ S.

Then g1S = M ∪ S and therefore x1(Cn+2) = g1x0(Cn+2) = g1T ∪ M ∪ S and
finally we have by (2.2)

G = g1T ∪ M ∪ S ∪ g1x0(Cn+3) ∪ ... ∪ g1x0(C2n+1) ∪ gnx0(Cn2+3).

This together with

G = x0(C1) ∪ ... ∪ x0(Cn) ∪ gnx0(Cn2+2)

forms a complete paradoxical decomposition for G.
We now show that the configuration equation Eq(g, E) has no nonzero non-

negative solution.
Note that by the definition of configuration equations we have:

∑
C: x1(C)⊆E1

fC = ∑
C: x0(C)⊆E1

fC

and

∑
C: x2(C)⊆E2

fC = ∑
C: x0(C)⊆E2

fC.
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In other words,

fC1
= fC1

+ fC2
+ · · ·+ fCn+1

+ fC2n+2
+ · · ·+ fC

n2+n+1
,

fC2
= fC1

+ fC2
+ · · ·+ fC2n+1

+ fC3n+2
+ · · ·+ fC

n2+n+1
,

which implies fC1
= · · · = fC

n2+n+1
= 0.

3 Paradoxical decomposition and configurations

In [1], the authors proved that if G admits a paradoxical decomposition, then the
corresponding system of configuration equations has no normalized solution. In
the following, for completeness we give a proof for it.

Let {A1, A2, . . . , An, B1, B2, . . . , Bm; g1, g2, . . . , gn, h1, h2, . . . , hm} be a
complete paradoxical decomposition of a finitely generated group G. Put g =

(g−1
1 , . . . , g−1

n , h−1
1 , . . . , h−1

m , t1, . . . , tk), where t1, . . . , tk are elements of G such that
G = 〈g〉. Put also E = {A1, . . . , An, B1, . . . Bm}. Since by assumption {g1A1, . . . ,
gn An} is a partition for G, for each C ∈ Con(g, E) there is exactly one j ∈ {1, . . . , n}
such that xj(C) ⊆ Aj. Thus

∑
C∈Con(g,E)

fC =
n

∑
j=1

∑
xj(C)⊆Aj

fC.

Therefore we have by Definition (1.5),

∑
C∈Con(g,E)

fC =
n

∑
j=1

∑
x0(C)⊆Aj

fC. (3.1)

Similarly

∑
C∈Con(g,E)

fC =
m

∑
k=1

∑
x0(C)⊆Bk

fC. (3.2)

But we know by (1.1), that ∐C∈Con(g,E) x0(C) = G. Thus by adding equations
(3.1) and (3.2), we have

2 ∑
C∈Con(g,E)

fC ≤ ∑
C∈Con(g,E)

fC.

This shows that Eq(g, E) has no nonzero nonnegative solution.
In the following we give a positive answer to the converse of this fact, under

some suitable conditions (see Definition 2.4).
The existence of a paradoxical decomposition, non amenability and the exis-

tence of no normalized solution for some configuration equation of a group G
are equivalent [8]. In the following, we want to present a constructive way for
finding a paradoxical decomposition by using a system of configuration equa-
tions with no normalized solution. We present this under some conditions. The
general case is still open.



Configuration of groups and paradoxical decompositions 165

Before proving the main Theorem, we introduce some notation which is used
throughout this paper.

Notation. Classify the members of Con(g, E) as below:

A
j
i = {C ∈ Con(g, E) : xj(C) ⊆ Ei} (1 ≤ i ≤ m, 1 ≤ j ≤ n). (3.3)

It is clear that for each j ∈ {0, ..., n}, {A
j
1, ..., A

j
m} is a partition of Con(g, E).

Lemma 3.1. For each i ∈ {1, . . . , m} and j, j′ ∈ {0, . . . , n},

g−1
j′ gj







⋃

C∈A
j
i

x0(C)






=

⋃

C∈A
j′

i

x0(C).

Proof. By definition

gj′







⋃

C∈A
j′

i

x0(C)






=

⋃

C∈A
j′

i

xj′(C) = Ei =
⋃

C∈A
j
i

xj(C) = gj







⋃

C∈A
j
i

x0(C)






.

Therefore

g−1
j′ gj







⋃

C∈A
j
i

x0(C)






=

⋃

C∈A
j′

i

x0(C).

By [5, Proposition 2.4], G is amenable if and only if there is a normalized so-
lution for every possible instance of the configuration equations. Let the corre-
sponding system whose solution is normalized, have the form AX = 0, where A
is an (nm) × |Con(g, E)| matrix whose entries are 0, 1 or -1, X is the vector [ fC],
where C runs over Con(g, E). Suppose Con(g, E) = {C1, . . . , Cl} and A = [ast]. If
1 ≤ i ≤ m, then ast = 1 [resp. ast = −1] if and only if xs(Ct) ⊆ Ei and x0(Ct) 6⊆ Ei

[resp. xs(Ct) ⊆ Ei and x0(Ct) 6⊆ Ei] for (i − 1)n + 1 ≤ s ≤ in; otherwise ast = 0.
It is easy to see that a matrix equation AX = 0 has a nonzero solution if and only
if rank(A) is less than the number of columns of A. Therefore that matrix has no
nonzero solutions if and only if rank(A) = |Con(g, E)|.

We now state the key lemma of this paper.

Lemma 3.2. If the system Eq(g, E) has no nonnegative nonzero solutions and
AX = 0 is the corresponding system, then by row operations, A can be changed
into an equivalent matrix B with nonnegative entries and no zero column.

Proof. Let A be the coefficient matrix of the configuration equations system and
let rank(A) = r. Then A is equivalent to the following matrix (by a new indexing
of the members of Con(g, E), if necessary)
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A′ =

(

I D
0 0

)

,

where I is the r × r identity matrix. Note that if the system has no nonzero so-
lutions, then D may be omitted. But if it has some nonzero solution which are
not nonnegative, then D is an r × (|Con(g, E)| − r) matrix with no zero columns.
We claim that in all of D’s columns, if there are negative entries, then there are
also positive entries. Indeed if all of the entries of the kth column were nega-
tive or zero for example (αik)

mn
i=1, where each αik ≤ 0, then fCk

= 1, fC1
= −α1k,

fC2
= −α2k, ..., fCr = −αrk and fCj

= 0, for r < j 6= k would be a nonnegative

nonzero solution of the system, which is a contradiction. Therefore by suitable
adding of rows, the obtained matrix B say, involves just nonnegative entries.

Suppose that j-th column of B is zero. Then ( fCi
= 0, for i 6= j and fCj

= 1) is

a nonzero nonnegative solution for the system, which is a contradiction.

Remark 3.3. Let |Con(g, E)| = l and (a1, . . . , al) be a row of matrix B such that
ai1 , . . . , aik

are positive for some 1 ≤ i1 < · · · < ik ≤ l, otherwise zero. Then by
the above argument this row is made by adding and subtracting of some rows
of the matrix A. In other words, there are t1, . . . , ts ∈ {1, . . . , m} (not necessarily
distinct) such that

ai1 fCi1
+ · · ·+ aik

fCik
=

s

∑
r=1

( ∑
C∈A

jtr
tr

fC − ∑
C∈A

ktr
tr

fC),

for some jtr , ktr ∈ {0, . . . , n}. (The case k = j is possible.) In the next theorem
we give a way for finding the paradoxical decomposition of a group using con-
figuration equation with no nonnegative nonzero solution, under the following
condition.

Definition 3.4. Let A and B be as above and L
j
i be the coefficient vector of the

equation

∑
xj(C)⊆Ei

fC − ∑
x0(C)⊆Ei

fC = 0.

We say that Eq(g, E) satisfies the paradoxical condition if each row of B is of the

form ∑
m
i=1 Ri, where Ri ∈ {L

j
i ,−L

j
i , L

j
i − Lk

i : 1 ≤ j, k ≤ n} and

A =

























L1
1
...

Ln
1
...

L1
m
...

Ln
m

























.

In other words, each row of B is of the form ∑
m
i=1(L

ji
i − Lki

i ), for some ji, ki ∈
{0, . . . , n}.
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Example 3.5. Let G be a 2-generated group, g = (g1, g2) and E = {E1, E2, E3}.
Let also Con(g, E) consists of C1 = (1, 1, 2), C2 = (1, 2, 3), C3 = (2, 3, 1), C4 =
(2, 3, 2), C5 = (3, 3, 1). Then Eq(g, E) has a nonzero solution fC1

= fC3
= − fC4

=
1, fC2

= fC5
= 0. But it does not have any nonnegative nonzero solution and

satisfies the paradoxical condition. Indeed,

A0
1 = {C1, C2} A1

1 = {C1} A2
1 = {C3, C5}

A0
2 = {C3, C4} A1

2 = {C2} A2
2 = {C1, C4}

A0
3 = {C5} A1

3 = {C3, C4, C5} A2
3 = {C2}

It is easily checked that Eq(g, E) satisfies the paradoxical condition. In fact,

B =

















0 1 0 0 0
0 0 1 1 0
1 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

















=

















−L1
1

L1
3

L2
2 + L1

3
−L1

1 − L2
3

0
0

















.

Theorem 3.6. (Main Theorem) Let G be a finitely generated group. Let g be an
ordered finite generating set for G and E a finite partition of G. Suppose that the
associated system of configuration equations Eq(g, E) admits no nonzero non-
negative solution and satisfies the paradoxical condition. Then G admits a para-
doxical decomposition.

Proof. Let |Con(g, E)| = l and B = (Rs). Suppose Rs = (bs1, . . . , bsl) is a nonzero
row of B for some 1 ≤ s ≤ r, where r = rank(B). On the other hand, by the

paradoxical condition, Rs = ∑
m
i=1(L

j′i
i − L

ji
i ), for some ji, j′i ∈ {0, . . . , n}. Therefore

by Remark(3.3)

l

∑
u=1

bsu fCu
=

m

∑
i=1

∑
C∈A

j′
i

i

fC −
m

∑
i=1

∑
C∈A

ji
i

fC

and hence
m

∑
i=1

∑
C∈A

j′
i

i

fC =
m

∑
i=1

∑
C∈A

ji
i

fC +
l

∑
u=1

bsu fCu
. (3.4)

Each bsu is nonnegative and so by (3.4), each C ∈ A
ji
i , appears in left hand

side of (3.4), p times, say. So C ∈ A
j′kC,i1
kC,i1

⋂

· · ·
⋂

A
j′kC,ip

kC,ip
. Similarly for each bsu 6=

0, and each u ∈ {1, . . . , l} each Cu appears in left hand side of (3.4), t times,

say. So there are distinct ku1
, . . . , kut such that C ∈ A

j′ku1
ku1

⋂

· · ·
⋂

A
j′kut
kut

. Clearly

kC,i1 , . . . , kC,ip
, ku1

. . . , kut are pairwise distinct.
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Denote










































Is = {(C, i) : C ∈ A
ji
i , 1 ≤ i ≤ m},

A(C,i) = gj′kC,i

x0(C) f or (C, i) ∈ Is,

h(C,i) = gji g
−1
j′kC,i

f or (C, i) ∈ Is,

Bu = gj′ku
x0(Cu) i f bsu 6= 0,

gu = g−1
j′ku

i f bsu 6= 0.

(3.5)

Then we have

⋃

α∈Is

hα Aα =
m
⋃

i=1

⋃

C∈A
ji
i

gji g
−1
j′kC,i

gj′kC,i

x0(C) =
m
⋃

i=1

⋃

C∈A
ji
i

gji x0(C) = G (3.6)

and the last two equations of (3.5) imply that:

x0(Cu) = guBu if bsu 6= 0.

Furthermore, by Lemma (3.1)

∐
C∈A

j′
i

i

x0(C) = g−1
j′i

∐
C∈A0

i

x0(C), (1 ≤ i ≤ m).

So for each i, {gj′i
x0(C) : C ∈ A

j′i
i } is a partition of ∐C∈A0

i
x0(C). But it is clear

that {A0
1, . . . , A0

m} is a partition of Con(g, E). Therefore A = {gj′i
x0(C) : C ∈

A
j′i
i , 1 ≤ i ≤ m} forms a partition for G.

It is easily checked that for each i and j, |A
j
i | ≤ l − m + 1. Therefore |Is| ≤

m(l − m + 1).

Let rank(B) = r. We prove by induction, for 1 ≤ s ≤ r, that there are a finite
index set Js and disjoint subsets Fα and Bi

u with biu 6= 0 of G and gα, hi
u ∈ G for

α ∈ Js and 1 ≤ i ≤ s such that

G =
⋃

α∈Js

gαFα and x0(Cu) = hi
uBi

u, whenever biu 6= 0.

It is correct for s = 1, by the above argument. Suppose it is true for s. Since
G =

⋃

α∈Js
gαFα, by (3.6) again, there are disjoint subsets Dβ, β ∈ Js+1 and

Bu, with b(s+1)u 6=0 of G, for some finite index set Js+1, such that

⋃

β∈Js+1

gβDβ = G =
⋃

α∈α

gαFα and huBu = x0(Cu) for b(s+1)u 6=0.

Hence there exist some finite index set J′ and disjoint subsets D′
η, B′

u of
⋃

α∈Js
Aα and members g′η , h′u such that G =

⋃

η∈J′ g′η D′
η and x0(Cu) = h′uB′

u

which are as desired.
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In particular for s = r,

{D′
η : η ∈ Jr}∐{Bur : br

u 6= 0}∐
r−1
⋃

i=1

{Bi
u : biu 6= 0} ⊆ G

and
G =

⋃

η∈Jr

g′ηD′
η.

In addition,
x0(Cu) = hi

uBi
u, (1 ≤ i ≤ r, biu 6= 0) (3.7)

But by Lemma (3.2), for each 1 ≤ u ≤ l there is 1 ≤ iu ≤ r such that biuu 6= 0.
Hence by using (3.7)

G =
l
⋃

u=1

x0(Cu) =
l
⋃

u=1

hiu
u Biu

u .

This completes the proof.

It follows by an easy induction that |Jr| ≤ δr, where δ = m(l − m + 1). Since
m, r ≤ l, we have the following Corollary.

Corollary 3.7. Let Con(g, E) be a configuration set of group G satisfying the para-
doxical condition and |Con(g, E)| = l. Then τ(G) ≤ l + δr, where δ = l2. Hence
τ(G) ≤ l + l2l .

Remark 3.8. By using the previous theorem, we can find the paradoxical decom-
position of the group G in Example (3.5).

As we have seen in that example, Eq(g, E) satisfies the paradoxical condition.
One can show (by using the process in the proof of Theorem,) that

{A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, C}

is a partition of G, where A1 = g−2
1 x0(C1), A2 = g−2

1 x0(C2), A3 = g1(x0(C3),

A4 = g2x0(C4), A5 = g−1
2 x0(C5), B1 = g2x0(C1), B2 = g−1

1 x0(C2), B3 =

g2
1(x0(C3), B4 = g1x0(C4), B5 = g2

1(x0(C5) and C = g2
1x0(C4).

Furthermore
G = g2

1 A1

⋃

g2
1 A2

⋃

g−1
1 A3

⋃

g−1
2 A4

⋃

g2A5

and
G = g−1

2 B1

⋃

g1B2

⋃

g−2
1 B3

⋃

g−1
1 B4

⋃

g−2
1 B5

give a paradoxical decomposition of G.

Definition 3.9. Let G be a group and Con(g, E) be a configuration set of G. Let
also sets As

r be as in (3.3) and suppose that

(i) there exist 1 ≤ i ≤ m and 0 ≤ ji, ki ≤ n such that A
ji
i $ A

ki
i ,

(ii) for each 1 ≤ s ≤ m there exists 0 ≤ ts ≤ n such that Ats
s ⊆ A

ji
i \ A

ki
i .

Then Eq(g, E) is said to satisfy the strong paradoxical condition.
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Example 3.10. Let G = Fn the free group of rank n and (g, E) be as in Exam-
ple (2.2). Then Eq(g, E) satisfies the strong paradoxical condition. [For A0

1 $
A1

1, A0
s ⊆ A1

1 \ A0
1 for 2 ≤ s ≤ n and An

n+1, An
1 ⊆ A1

1 \ A0
1.]

Lemma 3.11. If Eq(g, E) satisfies the strong paradoxical condition, this system
also satisfies the paradoxical condition.

Proof. Let Eq(g, E) satisfy the strong paradoxical condition. It is easily checked

that for each j, ∑
m
i=1 L

j
i = 0, in particular,

∑
s 6=i

Lti
s = −Lti

i .

Let B be as in Lemma 3.2. Then

B =

































−Lt1
1 + Lki

i − L
ji
i

...

−L
ti−1

i−1 + Lki
i − L

ji
i

−L
ti+1

i+1 + L
ki
i − L

ji
i

...

−Ltm
m + L

ki
i − L

ji
i

∑s 6=i Lti
s + Lki

i − L
ji
i

0

































,

which follows that Eq(g, E) satisfies the paradoxical condition.

Example (3.5) shows that Eq(g, E) satisfies the paradoxical condition but it
does not satisfy the strong paradoxical condition.

Corollary 3.12. If Eq(g, E) satisfies the strong paradoxical condition, then G has
a paradoxical decomposition.

In the following theorem we give a similar and independent proof for this
corollary, such that the paradoxical decomposition is complete.

Theorem 3.13. Let G be a group, g = (g1, . . . , gn) be a generating sequence of G,
E = {E1, . . . , Em} be a finite partition of G and Eq(g, E) satisfies the strong para-

doxical condition and sets A
j
i be as in (3.3). Then G has a complete paradoxical

decomposition.

Proof. At first we find the paradoxical decomposition and then complete it. Set

I :=
⋃

{x0(C) : C ∈ A
ji
i },

J :=
⋃

{x0(C) : C ∈ Aki
i \ A

ji
i },

g := g−1
ji

gki
,

Bs := J \
⋃

{x0(C) : C ∈ Ats
s }, for 1 ≤ s ≤ m,
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Note that with this notation and by Lemma(3.1), Definition (2.9)(ii) means for
1 ≤ s ≤ m,

J = (g−1
ts

⋃

C∈A0
s

x0(C))
⋃

Bs (3.8)

and
I = g

⋃

C∈A
ki
i

x0(C). (3.9)

On the other hand it follows by Definition (2.9)(i) that,

I = g(I
⋃

J ). (3.10)

Now (3.9) implies

I = g(g
⋃

C∈A
ki
i

x0(C)
⋃

J ) = g2I
⋃

gJ .

By induction and (3.10) we have for each r ∈ N,

I = grI
⋃

gr−1J
⋃

· · ·
⋃

g2J
⋃

gJ . (3.11)

Therefore by (3.11) and (3.8) and for r = m + 1,

I = gm+1I
⋃

gm(g−1
t1 ∐

C∈A0
1

x0(C)
⋃

B1)
⋃

gm−1(g−1
t2 ∐

C∈A0
2

x0(C)
⋃

B2)

⋃

· · ·
⋃

g(g−1
tm ∐

C∈A0
m

x0(C)
⋃

Bm). (3.12)

Put A := gm+1I and As := (gm+1−sg−1
ts

∐C∈A0
s

x0(C)), for 1 ≤ s ≤ m. Thus

{A}
⋃

{As : 1 ≤ s ≤ m}
⋃

{x0(C) : C /∈ A
ji
i }

⋃

{gmB1, . . . , gBm}

is a partition of G. In addition by (1.1) and (3.12)

G =
m

∐
s=1

gts g
m+1−s As. (3.13)

The fact that
G = I ∪

⋃

{x0(C) : C ∈ Con(g, E) \ A
ji
i }

= g−m−1A ∪
⋃

{e.x0(C) : C ∈ Con(g, E) \ A
ji
i },

where e is the identity element of G, with (3.13) shows the existence of a paradox-
ical decomposition for G. This decomposition may be uncomplete. We complete
it as below.

Set Ds =
⋃∞

k=m+1−s gkBs. Then Ds ⊆ I and g−1Ds = Ds
⋃

gm−sBs. Thus

A = gm+1I = gm+2[(D1
⋃

gm−1B1)
⋃

· · ·
⋃

(Dm
⋃

Bm)
⋃

(I \
⋃m

s=1 Ds)].
By substituting this in the above, the paradoxical decomposition will be com-

plete.
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