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†

Abstract

We derive an inequality for the Z2-cup-length of any smooth closed con-
nected manifold unorientedly cobordant to zero. In relation to this, we in-
troduce a new numerical invariant of a smooth closed connected manifold,
called the characteristic rank. In particular, our inequality yields strong up-
per bounds for the cup-length of the oriented Grassmann manifolds G̃n,k

∼=
SO(n)/SO(k) × SO(n − k) (6 ≤ 2k ≤ n) if n is odd; if n is even, we ob-
tain new upper bounds in a different way. We also derive lower bounds
for the cup-length of G̃n,k. For G̃2t−1,3 (t ≥ 3) our upper and lower bounds
coincide, giving that the Z2-cup-length is 2t − 3 and the characteristic rank
equals 2t − 5. Some applications to the Lyusternik-Shnirel’man category are
also presented.

1 Introduction and statement of results

The Z2-cup-length, cup(X), of a compact path connected topological space X is
defined to be the maximum of all numbers c such that there exist, in positive
degrees, cohomology classes a1, . . . , ac ∈ H∗(X; Z2) such that their cup product
a1 ∪ · · · ∪ ac is nonzero. Instead of the usual notation a ∪ b, we shall mostly write
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a · b or just ab. For applications, the well known Elsholz inequality

cat(X) ≥ 1 + cup(X), (1)

is often important; here cat(X) is the Lyusternik-Shnirel’man category, that is,
the least positive integer k such that X can be covered by k open subsets each of
which is contractible in X (see, e.g., [4]).

If a closed smooth connected d-dimensional manifold M is (unorientedly)
cobordant to zero, then it is not true that each element in the Z2-cohomology al-
gebra H∗(M; Z2) can be expressed as a polynomial in the Stiefel-Whitney classes
wi(M). Indeed, if we admit that the contrary is true, then some of the Stiefel-
Whitney classes, say wκ(M), must be nonzero. By Poincaré duality, there exists
a cohomology class x ∈ Hd−κ(M; Z2) such that wκ(M)x 6= 0. The possibility of
expressing x as a polynomial in the classes wi(M) yields then a contradiction to
the fact that all the Stiefel-Whitney numbers of M vanish. Nevertheless, for any
M of this type, there exists an integer z such that each element of H j(M; Z2) with
j ≤ z can be expressed as a polynomial in the Stiefel-Whitney classes wi(M) (we
observe that the same z can be taken for all smooth closed manifolds homotopy
equivalent to M; we recall (see, e.g., [11, 11.13]) that the Stiefel-Whitney classes
of homotopy equivalent manifolds are the same up to the obvious isomorphism).
For example, since w0(M) = 1, we can take z = 0 for any M.

For the cup-length of manifolds unorientedly cobordant to zero, we shall
prove the following new inequality.

Theorem 1.1. Let M be a closed smooth connected d-dimensional manifold unorientedly
cobordant to zero. Let H̃r(M; Z2), r < d, be the first nonzero reduced cohomology group
of M. Let z (z < d − 1) be an integer such that for j ≤ z each element of H j(M; Z2) can
be expressed as a polynomial in the Stiefel-Whitney classes of the manifold M. Then we
have that

cup(M) ≤ 1 +
d − z − 1

r
. (2)

This theorem and some other results (see, e.g., [8, Theorem C]) motivate us to
introduce a new numerical invariant of a closed smooth connected d-dimensional
manifold M called the characteristic rank, denoted charrank(M), as the largest
integer k, 0 ≤ k ≤ d, such that each element of H j(M; Z2) with j ≤ k can
be expressed as a polynomial in the Stiefel-Whitney classes of M. Of course,
charrank(M) depends only on the homotopy type of M.

It is clear that to use Theorem 1.1 optimally means to use it with z equal to the
characteristic rank, and so we are confronted with the following natural problem.

Problem 1.1. Find the characteristic rank for all closed smooth connected manifolds.

This task in its generality certainly represents a hard problem, requiring fur-
ther research. Now let us look – in the context of the new estimate (2) and Problem
1.1 – at the oriented Grassmann manifolds.

We recall that the oriented Grassmann manifold G̃n,k
∼= SO(n)/SO(k) × SO

(n − k) consists of oriented k-dimensional vector subspaces in Euclidean n-space
R

n. The spheres G̃n,1
∼= Sn−1 and the complex quadrics G̃n,2 are well understood
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special cases, and so we shall suppose that k ≥ 3 throughout the paper. In addi-
tion to this, due to the obvious diffeomorphism G̃n,k

∼= G̃n,n−k, we shall suppose
that 2k ≤ n.

The manifold G̃n,k is the universal double covering space for the Grassmann
manifold Gn,k

∼= O(n)/O(k) × O(n − k) of unoriented k-dimensional vector sub-
spaces in R

n. We denote by p : G̃n,k → Gn,k the obvious covering projection. For
the tangent bundles we have TG̃n,k

∼= p∗(TGn,k).
Let γ̃n,k (briefly γ̃) be the canonical oriented k-plane bundle over G̃n,k, and let

γn,k (briefly γ) be the canonical k-plane bundle over Gn,k. Of course, the pullback
p∗(γ) is isomorphic to γ̃. By the ith canonical Stiefel-Whitney class of G̃n,k or
Gn,k we shall mean the ith Stiefel-Whitney class of the corresponding canonical

k-plane bundle, that is, the class wi(γ̃n,k) ∈ Hi(G̃n,k; Z2), briefly denoted by w̃i, or

wi(γn,k) ∈ Hi(Gn,k; Z2), briefly denoted by wi.
We now examine the cup-length of the oriented Grassmann manifolds; we

first present some results on the height of cohomology classes. We recall that
for a topological space X, the Z2-height (briefly height), ht(y), of a cohomology
class y ∈ H∗(X; Z2) is defined to be sup{t; yt 6= 0 ∈ H∗(X; Z2)}. For instance,
ht(w1(γn,k)) is known due to R. Stong [13]; for 6 ≤ 2k ≤ n we cite the following:
If s is such that 2s

< n ≤ 2s+1, then

ht(w1(γn,k)) =

{

2s+1 − 2 if k = 3 and n = 2s + 1,
2s+1 − 1 otherwise.

(3)

For ht(w2(γ̃n,k)) with k ≥ 3, no general formula is available up to now. Of
course, we have

ht(w2(γ̃n,k)) ≤ ht(w2(γn,k)),

and so a source supplying some upper bounds for the height of w2(γ̃n,k) is S.
Dutta and S. Khare’s paper [5], where they calculated the values of ht(w2(γn,k)).
Recently, in [10], we derived another interesting upper bound for ht(wi(γ̃n,k)): in
particular, we have that (for 6 ≤ 2k ≤ n) ht(w2(γ̃n,k)) does not exceed

κ̃(n, k) :=

{

⌊ (k−1)(n−k)
2 ⌋ if n is odd,

⌊ (k−1)(n−k+1)
2 ⌋ if n is even.

(4)

Here and elsewhere ⌊a⌋ denotes the integer part of a ∈ R. For k = 3 the upper
bound (4) is mostly better and never worse than the upper bound ht(w2(γn,k)),
while for k ≥ 4, (4) is sometimes better and sometimes worse.

In this paper, we shall prove that the bound (4) coincides with the actual
value of the height for the manifolds G̃2t−1,3, t ≥ 3. I am grateful to Tomohiro
Fukaya who pointed out, after having read an earlier version of this paper, that
my original proof for G̃2t−1,3 can readily be adjusted to also cover the manifolds

G̃2t,3, t ≥ 3. The bound (4) turns out to differ a little from the actual value of
ht(w2(γ̃2t ,3)).

Theorem 1.2. For t ≥ 3, we have

ht(w2(γ̃2t−1,3)) = ht(w2(γ̃2t ,3)) = 2t − 4.
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As regards the cup-length itself, our Theorem 1.1 applies, in particular, to the
oriented Grassmann manifolds G̃n,k with n odd. Indeed, we recall (see the remark
after the proof of [3, 24.2]) that each oriented Grassmann manifold is, thanks to
the fixed point free involution D 7→ −D (where the oriented vector subspace
−D is obtained from D by reversing its orientation), unorientedly cobordant to
zero. If n is odd, then the algebra H∗(G̃n,k; Z2) is in dimensions less than or
equal to n − k − 1 generated by the canonical Stiefel-Whitney classes w̃2, . . . , w̃k

or, alternatively, by the classes w2(G̃n,k), . . . , wk(G̃n,k). [By an obvious adjust-
ment of [1, 3.6.2], the class wi(G̃n,k) (i ≤ k < n − k) can then be expressed as
wi(G̃n,k) = w̃i + Qi(w̃2, . . . , w̃i−1), where Qi is a Z2-polynomial. By induction,
w̃i = wi(G̃n,k) + Pi(w2(G̃n,k), . . . , wi−1(G̃n,k)), where Pi is a polynomial, for i =
2, . . . , k: we have w̃2 = w2(G̃n,k) (it suffices to use the formula for w2(Gn,k) from
[1] and the fact that p∗(γ) = γ̃, TG̃n,k

∼= p∗(TGn,k)). By what we have said above,
we have w̃j = wj(G̃n,k) + a polynomial in w̃2, . . . , w̃j−1 for j ≥ 2. The induc-

tion hypothesis then implies that w̃j = wj(G̃n,k) + Pj(w2(G̃n,k), . . . , wj−1(G̃n,k))
for some polynomial Pj.] As a consequence, if n is odd, then we have r = 2 and

can take z = n − k− 1 for M = G̃n,k in Theorem 1.1 (of course, in relation to Prob-
lem 1.1, we have that charrank(G̃n,k) ≥ n − k − 1 in this situation), which yields
an interesting estimate:

cup(G̃n,k) ≤ 1 +
(n − k)(k − 1)

2
.

To show its strength, we shall prove, using also the information coming from
Theorem 1.2, that this estimate really gives the value of cup(G̃2t−1,3). For n

even, we obtain a general upper bound for cup(G̃n,k) implied by [9, Theorem
A(b)] using the upper bound (4). This bound is sometimes better and sometimes
worse than the upper bound given by [9, Proposition D]. More precisely, we shall
prove the following theorem; we exclude G̃6,3, because it is already known that
cup(G̃6,3) = 3 by [9, Proposition D(a)].

Theorem 1.3. (a) For the oriented Grassmann manifolds G̃n,k with n odd such that
6 ≤ 2k ≤ n we have that

cup(G̃n,3) ≤ n − 2;

in particular, for t ≥ 3 we have

cup(G̃2t−1,3) = 2t − 3,

and for k ≥ 4 we have that

cup(G̃n,k) ≤ min{u(n, k), ⌊1 +
(n − k)(k − 1)

2
⌋},
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where

u(n, k) =







































































⌊
5 · 2s − 13

3
⌋ i f n = 2s + 1, s ≥ 3, k = 4,

2s+1 − 4 i f n = 2s + 2, s ≥ 3, k = 4,

2s+1 − 3 i f n = 2s + 3, s ≥ 3, k = 4,

⌊
2s+1 + 4n − 17

3
⌋ i f 2s + 4 ≤ n ≤ 2s+1, k = 4,

⌊
(k + 1) · 2s + k − k2 − 1

3
⌋ i f n = 2s + 1, s ≥ 3, k ≥ 5,

⌊
2s+1 + kn − k2 − 1

3
⌋ i f 2s + 2 ≤ n ≤ 2s+1, k ≥ 5.

(b) For the oriented Grassmann manifolds G̃n,k with n even such that 6 ≤ 2k ≤ n,
n 6= 6, we have that

cup(G̃n,3) ≤ κ̃(n, 3) + ⌊
3(n − 3)− 2κ̃(n, 3)

3
⌋

and for k ≥ 4

cup(G̃n,k) ≤ min{u(n, k), κ̃(n, k) + ⌊
k(n − k)− 2κ̃(n, k)

3
⌋}.

We note that if n is odd, then the upper bound κ̃(n, k) + ⌊
k(n − k)− 2κ̃(n, k)

3
⌋

“mechanically” obtained from [9, Theorem A] is not better than the upper bound

⌊1 +
(n − k)(k − 1)

2
⌋ given in Theorem 1.3(a).

Let us come back for a while to our Problem 1.1. On the one hand, we have
cup(G̃2t−1,3) = 2t − 3 (t ≥ 3) by Theorem 1.3, and this of course implies that z in

Theorem 1.1 cannot exceed 2t − 5 if M = G̃2t−1,3. On the other hand, we know

that charrank(G̃n,k) ≥ n − k − 1 if n is odd, and so we see (for t ≥ 3) that

charrank(G̃2t−1,3) = 2t − 5.

The question of what is charrank(G̃n,3) (more generally: charrank(G̃n,k)) for an
arbitrary n odd seems to remain open. The situation is different for G̃n,k with n
even. Indeed, for G̃n,k (recall that 6 ≤ 2k ≤ n) we have H1(G̃n,k; Z2) = 0 (of
course, also w1(G̃n,k) = 0) and H2(G̃n,k; Z2) ∼= Z2; this together with the fact that
(apply [1, Theorem 1.1]) w2(G̃n,k) = 0 if n is even implies that charrank(G̃n,k) = 1
if n is even.

We close the presentation of our results on the cup-length by the following.

Theorem 1.4. Given an oriented Grassmann manifold G̃n,k such that 6 ≤ 2k ≤ n and
(n, k) 6= (6, 3), let t be the largest integer such that 2t − 4 ≤ n − k. At the same time,
let s be the largest integer and p the least integer such that, under the conditions p ≥ 1
and 0 ≤ z ≤ 2p−1 − 2, we have that 2s − 2p + z − 1 ≤ n − k. Then

cup(G̃n,k) ≥ max{2t − 3, 2s − 3 · 2p−1, l(n, k)},
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where

l(n, k) =































































n + 3

2
i f n ≥ 7 is odd, n /∈ {9, 11}, k = 3,

n + 2

2
i f n ≥ 8 is even, n /∈ {10, 12}, k = 3,

5 i f (n, k) ∈ {(9, 3), (10, 3), (11, 3), (12, 3)},
n − k + 6

2
i f n − k + 3 is odd, n − k + 3 /∈ {9, 11}, k ≥ 4,

n − k + 5

2
i f n − k + 3 is even, n − k + 3 /∈ {10, 12}, k ≥ 4,

5 i f n − k + 3 ∈ {9, 10, 11, 12}, k ≥ 4.

Finally, we add a corollary on the Lyusternik-Shnirel’man category. By Gross-

man ([6], [7, Proposition 5.1]), we have cat(X) ≤ 1 +
dim(X)

r
if X has the homo-

topy type of an (r − 1)-connected (r ≥ 1) finite CW-complex. For those oriented
Grassmann manifolds G̃n,k (6 ≤ 2k ≤ n) having even dimension, Grossman’s
upper bound can be improved by one, and we obtain a wider result.

Corollary 1.1. For the oriented Grassmann manifold G̃n,k such that 6 ≤ 2k ≤ n we
have that

1 + max{2t − 3, 2s − 3 · 2p−1, l(n, k)} ≤ cat(G̃n,k) ≤ ⌈
k(n − k)

2
⌉;

the numbers t, s, p, and l(n, k) are specified in Theorem 1.4, and ⌈a⌉ is the ceiling value
of a ∈ R.

In particular, we have (for all q ≥ 3) that

2q − 2 ≤ cat(G̃2q−1,3) ≤ 3 · 2q−1 − 6. (5)

Remark 1.1. Work on the cup-length of the oriented Grassmann manifolds has
also been done independently by T. Fukaya. The author learned of this work
thanks to Mamoru Mimura and Masaki Nakagawa. In a 2006 preprint (Cup-
length of G̃n,3), Fukaya presented the results of computer calculations of the cup-
length of G̃n,3 for n = 7, . . . , 200. This established that cat(G̃7,3) = 6. In October
2007, he posted improved results; see arXiv:0710.4033v1 [math.AT] (Application
of Gröbner bases to the cup-length of oriented Grassmann manifolds). There are
two specific overlaps with this paper. We both calculated the Z2-cup-length of
G̃2t−1,3 using different methods, and Fukaya’s Corollary (op. cit., p. 2) coincides
with estimate (5) of our Corollary 1.1.

2 Proofs of the results

2.1 Proof of Theorem 1.1

The cup-length of the manifold M is realized by a nonzero product of maximal
degree,

α1 · · · αm · β1 · · · βs ∈ Hd(M; Z2),
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such that r ≤ deg(αi) ≤ z and deg(β j) ≥ z + 1. Set α = α1 · · · αm and β =
β1 · · · βs. Then

cup(M) = m + s

≤ deg(α)/r + deg(β)/(z + 1)

= deg(α)/r + (d − deg(α)/(z + 1))

=
(z + 1 − r)deg(α) + d · r

r · (z + 1)
. (6)

By the definition of z, it is clear that α is in the subalgebra generated by the Stiefel-
Whitney classes of M, and we also know that deg(β) ≥ z + 1, because otherwise
the product α · β would be a nontrivial characteristic number, contrary to the
hypothesis that M is cobordant to 0. Hence we have

deg(α) ≤ d − (z + 1).

This inequality combined with (6) implies that

cup(M) ≤
(z + 1 − r)(d − (z + 1)) + d · r

r · (z + 1)

= 1 +
d − (z + 1)

r
.

The proof of Theorem 1.1 is finished.

2.2 An auxiliary result on H∗(G̃n,k; Z2)

We identify (see, e.g., [2]) the Z2-cohomology ring H∗(Gn,k; Z2) with

Z2[w1, . . . , wk]/In,k,

where In,k is the ideal generated by the dual Stiefel-Whitney classes

w̄n−k+1(γ), . . . , w̄n(γ).

In other words, In,k is generated by the homogeneous components of

1

1 + w1 + · · ·+ wk
= 1 + w1 + · · ·+ wk + (w1 + · · ·+ wk)

2 + . . .

in dimensions n − k + 1, . . . , n.
At the same time, we denote by gi(w2(γ), . . . , wk(γ)) or briefly gi, for i =

n − k + 1, . . . , n, the i-dimensional homogeneous component of

1

1 + w2 + · · ·+ wk
= 1 + w2 + · · ·+ wk + (w2 + · · ·+ wk)

2 + . . . .

So we can pass from w̄i(γ) to gi by reducing it modulo w1. Let Jn,k denote the
ideal of Z2[w2, . . . , wk] generated by gn−k+1, . . . , gn.
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The Gysin exact sequence associated with the double covering projection p :

G̃n,k → Gn,k (see, e.g., [11, 12.3]) implies that w̃i2
2 · · · w̃

ik
k = p∗(wi2

2 · · · w
ik
k ) (where

p∗ : H∗(Gn,k; Z2) → H∗(G̃n,k; Z2) is the induced cohomology homomorphism)

does not vanish if and only if wi2
2 · · · w

ik
k ∈ H2i2+···+kik(Gn,k; Z2) cannot be rep-

resented as a multiple of w1. By the definitions of the ideals In,k and Jn,k, it

is clear that wi2
2 · · · w

ik
k ∈ H2i2+···+kik(Gn,k; Z2) is a multiple of w1 if and only if

wi2
2 · · · w

ik
k ∈ Jn,k. Thus we have verified the following.

Lemma 2.1. The cohomology class w̃i2
2 · · · w̃

ik
k ∈ H∗(G̃n,k; Z2) does not vanish if and

only if wi2
2 · · ·w

ik
k is not a multiple of w1, hence if and only if wi2

2 · · · w
ik
k does not belong

to the ideal Jn,k.

2.3 Proof of Theorem 1.2

Our upper bound (4), applied to G̃2t−1,3, immediately gives that the height of w̃2

does not exceed 2t − 4 (note that, in particular, we have w̃2t−3
2 = 0). We wish to

prove that 2t − 4 is also a lower bound; for this it suffices to show that w̃2t−4
2 6= 0.

We know by [9, (3.3), p. 2982] that the ideal J2t ,3 is generated by

gκ(w2(γ2t ,3), w3(γ2t ,3)) := ∑
κ
3≤i≤ κ

2

(

i

3i − κ

)

w2(γ2t ,3)
3i−κw3(γ2t ,3)

κ−2i , (7)

κ = 2t − 2, 2t − 1, 2t.
By the same [9, (3.3)], the ideal J2t−1,3 is generated by

gκ(w2(γ2t−1,3), w3(γ2t−1,3))

:= ∑
κ
3≤i≤ κ

2

(

i

3i − κ

)

w2(γ2t−1,3)
3i−κw3(γ2t−1,3)

κ−2i , (8)

κ = 2t − 3, 2t − 2, 2t − 1.
We shall show, a little later, that

g2t−3(w2(γ2t−1,3), w3(γ2t−1,3)) = 0. (9)

Taking (9) for granted, we prove that w̃2(γ2t−1,3)
2t−4 does not vanish by showing

(see Lemma 2.1) that w2(γ2t−1,3)
2t−4 is not in the ideal J2t−1,3. Indeed, suppose

that w2(γ2t−1,3)
2t−4 is in J2t−1,3. Then there are some Z2-polynomials a(x, y) and

b(x, y) such that w2(γ2t−1,3)
2t−4 is equal to

a(w2(γ2t−1,3), w3(γ2t−1,3)) · g2t−2(w2(γ2t−1,3), w3(γ2t−1,3))
+ b(w2(γ2t−1,3), w3(γ2t−1,3)) · g2t−1(w2(γ2t−1,3), w3(γ2t−1,3)).

But (see (7) and (8)) since the generators

g2t−2(w2(γ2t−1,3), w3(γ2t−1,3)) and g2t−2(w2(γ2t ,3), w3(γ2t ,3))
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are “the same”, and also the generators

g2t−1(w2(γ2t−1,3), w3(γ2t−1,3)) and g2t−1(w2(γ2t ,3), w3(γ2t ,3))

are “the same”, then we must also have

w2(γ2t ,3)
2t−4 = a(w2(γ2t ,3), w3(γ2t ,3)) · g2t−2(w2(γ2t ,3), w3(γ2t ,3))

+ b(w2(γ2t ,3), w3(γ2t ,3)) · g2t−1(w2(γ2t ,3), w3(γ2t ,3)).

This means that w2(γ2t ,3)
2t−4 is in J2t,3, and so (by Lemma 2.1) w2(γ2t ,3)

2t−4 is a
multiple of w1(γ2t ,3). But the latter is impossible, because it is known, thanks to

Stong [13, p. 104], that w1(γ2t ,3)
2t−1w2(γ2t ,3)

2t−4 does not vanish, and by [13, p.

103] (see (3) in Sec. 1) the height of the class w1(γ2t ,3) is 2t − 1.

Of course, we also proved that w2(γ̃2t ,3)
2t−4 6= 0. Since we know (see the

very beginning of this proof and Lemma 2.1) that w2(γ2t−1,3)
2t−3 is in J2t−1,3, it is

clear, by what we have seen above, that w2(γ2t ,3)
2t−3 is in J2t ,3; therefore we have

w2(γ̃2t ,3)
2t−3 = 0.

It remains to show that, for t ≥ 3, we have

g2t−3(w2, w3) = 0.

In the proof, we shall use, among other things, the well known Lucas’ theorem
saying that if a has the dyadic expansion ∑

m
i=0 ai2

i and b has the dyadic expansion

∑
m
i=0 bi2

i, then
(

a

b

)

≡

(

a0

b0

)(

a1

b1

)

· · ·

(

am

bm

)

(mod 2).

By this, e.g., one immediately sees that each binomial coefficient of the form (even
odd )

is even, and if a and b are even, then
(

a

b

)

≡

(

a · 2−1

b · 2−1

)

(mod 2). (10)

We also recall Pascal’s identity
(

a + 1

b + 1

)

=

(

a

b

)

+

(

a

b + 1

)

. (11)

To prove that g2t−3(w2, w3) = 0 for t ≥ 3, we first observe that, by the formula
(8) cited above, we have

g2t−3 =























∑
2t−1

3 ≤i≤2t−1−2

(

i

3i − 2t + 3

)

w3i−2t+3
2 w2t−3−2i

3 if t is even,

∑
2t−2

3 ≤i≤2t−1−2

(

i

3i − 2t + 3

)

w3i−2t+3
2 w2t−3−2i

3 if t is odd.
(12)

One readily proves (e.g., by induction) that the integer 3−1 · (2t − 1) is of the form
4s + 1 if t is even, and if t is odd, then the integer 3−1 · (2t − 2) is of course of the
form 8z + 2.
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Let us first suppose that t = 2r, r ≥ 2. The coefficients in the expression (12)
for g22r−3 are now of the form

(

3−1 · (22r − 1) + y

3y + 2

)

, (13)

where y ≥ 0 (as always, we have (a
b) = 0 if a < b). Writing 3−1 · (22r − 1) = 4s+ 1,

we show, by induction on r, that all the coefficients (13) are even.
First, one directly calculates that they are even for r = 2. It is also clear, for any

r, that the coefficient (3−1·(22r−1)+y
3y+2 ) is even if y is odd. If y = 4k for some k, then

the coefficient (13) is (4(s+k)+1
12k+2 ), hence obviously even by Lucas’ theorem. Finally,

let us suppose that x = 4k + 2 for some k. So the coefficient (13) is (4(s+k)+3
12k+8 ) and,

using Pascal’s identity (11), one readily sees that

(

4(s + k) + 3

12k + 8

)

≡

(

4(s + k) + 2

12k + 8

)

(mod 2).

Then (see (10))

(

4(s + k) + 2

12k + 8

)

≡

(

2(s + k) + 1

6k + 4

)

(mod 2).

Having this, using (11) and (10) again, we obtain that

(

2(s + k) + 1

6k + 4

)

≡

(

s + k

3k + 2

)

(mod 2),

hence
(

2(s + k) + 1

6k + 4

)

≡

(

3−1 · (22r−2 − 1) + k

3k + 2

)

(mod 2).

So we see that

(

3−1 · (22r − 1) + y

3y + 2

)

≡

(

3−1 · (22r−2 − 1) + k

3k + 2

)

(mod 2).

Of course, the coefficient on the right is even by the induction hypothesis, and so
we proved that the coefficient (13) is even for any even t ≥ 4.

For t odd, the proof is similar. Indeed, let us write t = 2r + 1, r ≥ 1. The
binomial coefficients in the expression (12) for g22r+1−3 are now of the form

(

3−1 · (22r+1 − 2) + x

3x + 1

)

, (14)

where x ≥ 0, and we show, by induction on r, that all of them are even. Let us
write 3−1 · (22r+1 − 2) = 8z + 2. The claim is obviously true for r = 1. For any r,
the coefficient (14) is clearly even if x is even. If x = 4k + 3 for some k, then the

coefficient (14) is (4(2z+k)+5
12k+10 ), hence an even number by Lucas’ theorem. Finally,
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let us suppose that y = 4k+ 1 for some k. So the coefficient (14) is now (4(2z+k)+3
12k+4 ).

Using (11) and (10) similarly to the case of t even, we obtain that

(

3−1 · (22r+1 − 2) + x

3x + 1

)

≡

(

3−1 · (22r−1 − 2) + k

3k + 1

)

(mod 2).

Again, the coefficient on the right hand side is even by the induction hypothesis,
and so we proved that the coefficient under question is also even for any odd
t ≥ 3.

We have verified that

g2t−3(w2, w3) = 0

for any t ≥ 3; this proves that ht(w2(γ̃2t−1,3)) = ht(w2(γ̃2t ,3)) = 2t − 4.

2.4 Proof of Theorem 1.3

Proof of Theorem 1.3(a). The upper bound 1 +
(n − k)(k − 1)

2
in Theorem 1.3(a)

is a special case of Theorem 1.1 (where we have r = 2 and z = n − k − 1). To
complete the proof of Theorem 1.3(a), we first note that for G̃n,3 the upper bound
n − 2 implied by Theorem 1.1 is always better than the upper bound given in [9,
Proposition D(b)]. In particular, our upper bound for cup(G̃2t−1,3), which is 2t −

3, coincides with the lower bound implied by the fact that w̃2t−4
2 is nonzero (see

Theorem 1.2) and Poincaré duality (by this, there is some y such that w2t−4
2 y 6=

0 ∈ Htop(G̃2t−1,3; Z2)).

For G̃n,k with k ≥ 4, the upper bound u(n, k) coming from [9, Proposition
D(b)] is sometimes worse and sometimes better than the upper bound given by
Theorem 1.1. That is why we take the minimum in Theorem 1.3(a). The proof of
Theorem 1.3(a) is finished.
Proof of Theorem 1.3(b). Now we have n even. By [9, Theorem D(b)], we know that
u(n, k) is an upper bound. Using the formula (b1) of [9, Theorem A(b)], taking
r = 2, q = 3, and k1 = κ̃(n, k) there, we also obtain

κ̃(n, k) + ⌊
k(n − k)− 2κ̃(n, k)

3
⌋

as an upper bound; for G̃n,3, one directly checks that this upper bound is always
better than u(n, k). This finishes the proof of Theorem 1.3.

2.5 Proof of Theorem 1.4

Let j : G̃a,b → G̃a+1,b+1 be the standard inclusion such that j∗(γ̃a+1,b+1) = γ̃a,b ⊕
ε1, where ε1 denotes the trivial line bundle; so we have j∗(w2(γ̃a+1,b+1)) = w2(γ̃a,b).
In addition to this, we have the standard inclusion i : G̃n−1,q → G̃n,q such that
i∗(γ̃n,q) = γ̃n−1,q. Suitably composing such inclusions j or i repeatedly, we ob-

tain, for t such that 2t − 4 ≤ n − k, an inclusion ι : G̃2t−1,3 → G̃n,k such that
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ι∗(w2(γ̃n,k)) = w2(γ̃2t−1,3). By Theorem 1.2, we have w2(γ̃2t−1,3)
2t−4 6= 0, hence

also w2(γ̃n,k)
2t−4 6= 0 and, using Poincaré duality, we obtain that

cup(G̃n,k) ≥ 2t − 3.

In addition to this, by Stong [13, p. 104] we know (cf. the proof of Theorem

1.2 for a similar case) that the power w2(γ2s−2p+2+z,3)
2s−3·2p−1−1 is not a multiple

of w1(γ), hence we have

w2(γ̃2s−2p+2+z,3)
2s−3·2p−1−1 6= 0.

Using an inclusion argument as above, we conclude that

cup(G̃n,k) ≥ 2s − 3 · 2p−1

if s, z, and p are as in the statement of the theorem.
Finally, the lower bounds l(n, k) come from [9, Proposition B]. This finishes

the proof of Theorem 1.4.

2.6 Proof of Corollary 1.1

In view of the Elsholz inequality (1), the lower bound stated in the corollary is
implied by Theorem 1.4. The upper bound is implied by the following theorem
due to Berstein and Švarc (see [14, Theorem 20] or [7, Proposition 5.3]).

Theorem 2.1 (I. Berstein - A. S. Švarc). Let X be a finite (r − 1)-connected CW-
complex, where r ≥ 2, and suppose that dim(X) ≤ rm, where m ≥ 1. Let ϕr(X) ∈
H̃r(X; πr(X)) be the fundamental class of X. Then cat(X) ≤ m if and only if the m-fold
cup-product ϕr(X) ∪ · · · ∪ ϕr(X) = 0.

Applying this theorem to G̃n,k (6 ≤ 2k ≤ n), we have r = 2, m = ⌈ k(n−k)
2 ⌉,

π2(G̃n,k) ∼= Z2 (see, e.g., Steenrod [12, 25.8]), and

H̃2(G̃n,k; π2(G̃n,k)) = {0, w̃2} ∼= Z2.

Hence the fundamental class ϕ2(G̃n,k) can be identified with the canonical Stiefel-
Whitney class w̃2. Our (4) of course implies that

w̃
⌈ k(n−k)

2 ⌉
2 = 0,

and we obtain that

cat(G̃n,k)) ≤ ⌈
k(n − k)

2
⌉.

This finishes the proof of the corollary.
I thank the referee for useful comments (in particular, for improving my pre-

sentation style in the proof of Theorem 1.1).
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[8] Korbaš, J.: On fibrations with Grassmannian fibers, Bull. Belg. Math. Soc. - Si-
mon Stevin 8, (2001), 119-130.
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Štefánikova 49, SK-814 73 Bratislava 1, Slovakia


