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Abstract

We introduce three variants of a symmetric matrix game corresponding
to three ways of comparing two partitions of a fixed integer (σ) into a fixed
number (n) of parts. In the random variable interpretation of the game, each
variant depends on the choice of a copula that binds the marginal uniform
cumulative distribution functions (cdf) into the bivariate cdf. The three copu-
las considered are the product copula TP and the two extreme copulas, i.e. the
minimum copula TM and the Łukasiewicz copula TL. The associated games
are denoted as the (n, σ)P, (n, σ)M and (n, σ)L games. In the present paper,
we characterize the optimal strategies of the (n, σ)M and (n, σ)L games and
compare them to the optimal strategies of the (n, σ)P games. It turns out that
the characterization of the optimal strategies is completely different for each
game variant.

1 Description of the games

1.1 Preliminary concepts

Consider a collection {X1, X2, . . . , Xm} of discrete random variables that are uni-
formly distributed on integer multisets. Any two random variables Xi and Xj can
be statistically compared, yielding the probabilistic relation Q = [qij] generated
by the collection, defined by

qij = Prob{Xi > Xj} +
1

2
Prob{Xi = Xj} . (1)

Received by the editors September 2007.
Communicated by J. Thas.
Key words and phrases : Matrix game, Optimal strategy, Partition theory, Copula, Probabilistic

relation.

Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 67–89



68 B. De Schuymer – H. De Meyer – B. De Baets

Note that qij denotes the winning probability of Xi w.r.t. Xj. The term probabilistic
relation refers to the property that qij + qji = 1, for any i and j, in particular
qii = 1/2 for any i. This probabilistic relation, in particular its transitivity [2], has
been studied in various settings (see, e.g., [3, 4, 6, 7]).

In the present paper, the random variables are uniformly distributed on mul-
tisets of n strictly positive integers summing up to σ, where n and σ are given
fixed numbers. Each element of the multiset therefore has the same probability
1/n. In partition theory, an ordered multiset of n strictly positive integers sum-
ming up to σ is known as a partition of σ into n parts. Throughout this paper, we
will maintain the latter terminology.

Definition 1.1. The n-tuple π = (i1, i2, . . . , in) consisting of n strictly positive
integers ordered nondecreasingly and with collective sum equal to σ, is called
a partition of σ into n parts. We will denote this type of partition by an (n, σ)
partition.

The integers composing a partition are called the parts of that partition. Note
that in partition theory, the parts are usually ordered nonincreasingly. Through-
out this paper, when considering an (n, σ) partition π1, resp. π2, the parts will be
denoted as (i1, i2, . . . , in), resp. (i′1, i′2, . . . , i′n) (the primes distinguishing partition
π2 from π1). It is sometimes helpful to use a notation that makes explicit the num-
ber of times a particular integer appears in a partition. We use the same notation
as in partition theory, known as the multiplicity representation of the partition.

Definition 1.2. The multiplicity representation of an (n, σ) partition π is given by
(1t12t23t3 . . .) in which ti denotes the number of times i appears in the partition π.
When ti = 0 the entry iti can be omitted.

For the multiplicity representation (1t12t23t3 . . .) of a given (n, σ) partition π it
clearly holds that 0 ≤ ti ≤ n, ∑i>0 ti = n and ∑i>0 iti = σ.

In the next subsection, we will define three variants of the same game. The
payoff matrix of this game, needed for determining the corresponding optimal
strategies, is completely determined by the probabilistic relation generated by
the collection of random variables. This probabilistic relation depends upon the
copula used for coupling the random variables.

It is well known that for discrete random variables Xi and Xj the probability
pXi ,Xj

(k, l) that Xi takes value k and Xj takes value l, can be obtained from the

joint cumulative distribution function FXi ,Xj
as follows:

pXi,Xj
(k, l) = FXi ,Xj

(k, l) + FXi ,Xj
(k − 1, l − 1)− FXi ,Xj

(k, l − 1)− FXi ,Xj
(k − 1, l) .

Sklar’s theorem [10] says that if a joint cumulative distribution function FXi ,Xj
has

marginals FXi
and FXj

, then there exists a copula C such that for all x, y:

FXi ,Xj
(x, y) = C(FXi

(x), FXj
(y)) . (2)

On the other hand, if C is a copula and FXi
and FXj

are cumulative distribution

functions, then the function defined by (2) is a joint cumulative distribution func-
tion with marginals FXi

and FXj
. Let us recall [8, 9] that a copula is a binary
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operation C : [0, 1]2 → [0, 1] that has neutral element 1 and absorbing element 0
and that satisfies the property of moderate growth: for any (x1, x2, y1, y2) ∈ [0, 1]4

(x1 ≤ x2 ∧ y1 ≤ y2) ⇒ C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1) .

All copulas are situated between the Łukasiewicz copula TL(x, y) = max(0, x +
y − 1) (also called Fréchet-Hoeffding lower bound and denoted W) and the min-
imum copula TM(x, y) = min(x, y) (also called Fréchet-Hoeffding upper bound
and denoted M).

1.2 The three game variants

We consider three variants of the same game, played between two players who
want to maximize their individual profit. The game is therefore a non-cooperative
game. The strategies for both players are the (n, σ) partitions, with n and σ fixed
before the game begins. As already mentioned, with each (n, σ) partition πi we
let correspond a random variable Xi that is uniformly distributed on the partition
parts. The payoff matrix for player 1 is then given by A = [aij], where aij =
qij − 1/2 and qij is given by (1). As Q = [qij] is a probabilistic relation, it holds
that aij = −aji and the game therefore is a symmetric matrix game. For such
games, it holds that the payoff in a saddle point is zero and it is well known that
the optimal strategies of a matrix game are the strategies occurring in a saddle
point. When verifying that some strategy πi is optimal in the games discussed in
this paper, it therefore suffices to verify that qij ≥ 1/2, for all strategies πj.

The three game variants differ from each other in the use of a different copula
to couple pairwisely the random variables. The connection to copulas will be
shown in the next subsection. For two (n, σ) partitions πi = (i1, . . . , in) and πj =
(j1, . . . , jn):

(i) the first game variant defines qij as

qP
ij =

#{(k, l) | ik > jl}

n2
+

#{(k, l) | ik = jl}

2n2
, (3)

(ii) the second game variant defines qij as

qM
ij =

#{k | ik > jk}

n
+

#{k | ik = jk}

2n
, (4)

(iii) and the third game variant defines qij as

qL
ij =

#{k | ik > jn−k+1}

n
+

#{k | ik = jn−k+1}

2n
. (5)

One can verify that Q = [qij] is, in all three game variants, a probabilistic relation.
We say that an (n, σ) partition πi wins, resp. loses, from an (n, σ) partition πj

if qij > 1/2, resp. qij < 1/2. When it is better suited to explicitly mention the
partitions defining qij, we will use the notation Qπi,πj

.
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The first (second, third) game variant is denoted as an (n, σ)P game ((n, σ)M

game, (n, σ)L game). Here, P refers to the product copula TP, M to the minimum
copula TM and L to the Łukasiewicz copula TL, which are the respective copulas
used for coupling the random variables [9].

Consider e.g. the (4, 16) partitions π1 = (1, 2, 5, 8) and π2 = (2, 3, 5, 6). Fig-
ure 1 shows graphically, for each considered game variant, which parts of the
partitions have to be compared. We obtain qP

12 = (0 + 0.5 + 2.5 + 4)/16 = 7/16,
qM

12 = 0 + 0 + 1/8 + 1/4 = 3/8 and qL
12 = 0 + 0 + 1/4 + 1/4 = 1/2.
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Figure 1: The three game types for a specific example.

In the last two sections of this paper, the optimal strategies of the (n, σ)M and
the (n, σ)L games are laid bare. Both sections start with a subsection that bundles
the results, after which a subsection follows in which these results are proven.
For the sake of completeness, the optimal strategies of the (n, σ)P game, which
were already obtained by the present authors in [5], are presented in the next
section. We end the present section with a proof of the connection between the
probabilistic relation (4), resp. (5), and the copula TM, resp. TL.

1.3 Connection with the extreme copulas

For discrete random variables, equation (1), defining qij, can be restated as

qij = ∑
k>l

pXi ,Xj
(k, l) +

1

2 ∑
k=l

pXi ,Xj
(k, l) . (6)

Assume now that the r.v. Xi, resp. Xj, with cumulative distribution function FXi
,

resp. FXj
, and probability mass function pXi

, resp. pXj
, correspond to a multi-

set (i1, i2, . . . , in), resp. (j1, j2, . . . , jn), the elements of the multisets ordered non-
decreasingly and each element of the multiset having probability 1/n. We first
consider the probabilistic relation when using the copula TM. It then holds that

pM
Xi,Xj

(k, l) = min(FXi
(k), FXj

(l)) + min(FXi
(k − 1), FXj

(l − 1))

−min(FXi
(k), FXj

(l − 1)) − min(FXi
(k − 1), FXj

(l)) ,

which is equivalent to:

pM
Xi,Xj

(k, l) =







0 , if FXi
(k) ≤ FXj

(l − 1) ∨ FXj
(l) ≤ FXi

(k − 1) ,

min(FXi
(k), FXj

(l)) − max(FXi
(k − 1), FXj

(l − 1))

, otherwise .
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As each element in the multiset has probability 1/n, the first line of the above ex-
pression is equivalent to saying that when #{ℓ | iℓ = k ∧ jℓ = l} = 0, it holds
that pM

Xi ,Xj
(k, l) = 0. The second line is then equivalent to saying that when

#{ℓ | iℓ = k ∧ jℓ = l} = f > 0, it holds that pM
Xi ,Xj

(k, l) = f /n. Using (6),

definition (4) now follows immediately.
Secondly, we consider the copula TL, and obtain:

pL
Xi ,Xj

(k, l) =

max(FXi
(k) + FXj

(l) − 1, 0) + max(FXi
(k − 1) + FXj

(l − 1)− 1, 0)

−max(FXi
(k) + FXj

(l − 1)− 1, 0)− max(FXi
(k − 1) + FXj

(l) − 1, 0) ,

which is equivalent to:

pL
Xi ,Xj

(k, l) =







0 , if FXi
(k) ≤ 1 − FXj

(l) ∨ 1 − FXj
(l − 1) ≤ FXi

(k − 1) ,

min(FXi
(k), 1 − FXj

(l − 1))− max(FXi
(k − 1), 1 − FXj

(l))

, otherwise .

The first line of the above expression is equivalent to demanding that when #{ℓ |
iℓ = k ∧ jn+ℓ−1 = l} = 0, it holds that pL

Xi ,Xj
(k, l) = 0. The second part is then

equivalent to saying that when #{ℓ | iℓ = k ∧ jn+ℓ−1 = l} = f > 0, it holds that
pL

Xi ,Xj
(k, l) = f /n. Using (6), definition (5) follows immediately.

2 Optimal strategies for (n, σ)P games

For the proofs of the statements in this section we refer to [5].

Theorem 2.1. An (n, σ)P game has at least one optimal strategy if and only if one of the
following six mutually exclusive conditions is satisfied:

(i) n ≤ 2

(ii) (n, σ) = (3, 7)

(iii) (n, σ) = (3, 8)

(iv) (n, σ) = (2l, 4l + 1), l > 1

(v) n > 2 and there exist a, b, k ∈ N such that
{

n = (a + b) k − b
σ = n k

(7)

(vi) n > 2 and there exist a, b, k ∈ N such that






n = (a + b) k
σ = (n + b) k
a 6= 0 ∧ b 6= 0

(8)
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Proposition 2.2.

1. The (1, σ)P game: the unique strategy (σ) is optimal.

2. The (2, σ)P game: all ⌊σ

2 ⌋ different strategies are optimal.

3. The (3, 7)P game: (1132) is the only optimal strategy.

4. The (3, 8)P game: (113141) is the only optimal strategy.

5. The (n, n)P game: the unique strategy (1n) is optimal.

6. The (2n, 4n + 1)P game, n > 1: (1n−1213n) is the only optimal strategy.

Proposition 2.3. All (n, σ)P games, with n 6= σ, satisfying (7) have exactly
⌊a/(k− 1)⌋+ ⌊b/k⌋+ 1 optimal strategies and their multiplicity representation is given
by (1a2b3a4b . . . (2k − 2)b(2k − 1)a), where a, b are different but k is the same for each
optimal strategy.

Proposition 2.4. All (n, σ)P games satisfying (8) have exactly one optimal strategy
(1a2b3a4b . . . (2k − 1)a(2k)b).

Two interesting corollaries follow from the above propositions.

Corollary 2.5. For given values n and σ (n 6= σ), the entity ⌊a/(k − 1)⌋ + ⌊b/k⌋ is
an invariant of the solution space of system (7). If this system has a solution, then it has
exactly ⌊a/(k − 1)⌋ + ⌊b/k⌋ + 1 solutions.

Corollary 2.6. For given values n and σ, the system (8) has at most one solution.

We end this section with an example, namely the game that contains the clas-
sical dice usually encountered in games with dice.

Example 2.7. The (6, 21)P game has 110 strategies and one optimal strategy, namely
the classical dice (1, 2, 3, 4, 5, 6), which is of type (8) with a = b = 1 and k = 3.

3 Optimal strategies for (n, σ)M games

3.1 Results

The following lemma states a remarkable result about the integers occurring as
parts of an optimal strategy in an (n, σ)M game.

Lemma 3.1. The only optimal strategy in an (n, σ)M game, with n ≥ 3, for which the
highest part is strictly greater than 5 is (2, 4, 6), a strategy of the (3, 12)M game.

The above lemma will be crucial in our proof of the following theorem.

Theorem 3.2. An (n, σ)M game has optimal strategies if and only if one of the following
three mutually exclusive conditions is satisfied:
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(i) n ≤ 2

(ii) (n, σ) = (3, 12)

(iii) n > 2 and there exist t1, . . . , t5 ∈ N such that the following conditions are satis-
fied:























t1 + t2 + t3 + t4 + t5 = n
t1 + 2t2 + 3t3 + 4t4 + 5t5 = σ

t3 > 0 ⇒ t2 + 2 > (t3 − 1) + t4 + t5

t4 > 0 ⇒ t3 + 2 > t1 + (t4 − 1) + t5

t5 > 0 ⇒ t4 + 2 > t1 + t2 + (t5 − 1)

(9)

We are also able to describe the optimal strategies of the (n, σ)M games. We
first handle the special cases.

Proposition 3.3.

1. The (1, σ)M game: the unique strategy (σ) is optimal.

2. The (2, σ)M game: all ⌊σ

2 ⌋ different strategies are optimal.

3. The (3, 12)M game: (2, 4, 6) is the only optimal strategy.

All other optimal strategies are identified in the next proposition.

Proposition 3.4. All optimal strategies of (n, σ)M games that are not covered by Propo-
sition 3.3 have a multiplicity representation (1t12t23t34t45t5), such that (t1, . . . , t5) is a
solution of (9).

However, a closed formula expressing the number of optimal strategies of an
arbitrary (n, σ)M game, has not yet been found.

Example 3.5. The (5, 16)M game has 37 strategies and only one optimal strategy,
namely π = (2, 2, 3, 4, 5) for which (t1, t2, t3, t4, t5) = (0, 2, 1, 1, 1). One can easily
verify that conditions (9) are satisfied for π. Moreover, none of the other (5, 16)
partitions satisfy these conditions.

3.2 Proof

We start this subsection by introducing increment and decrement operations,
which will be essential in the subsequent proof. Any (n, σ) partition π2 can be
constructed starting from any (n, σ) partition π1 using increment/decrement op-
erations. An increment/decrement operation on an (n, σ) partition is an oper-
ation in which one part of the partition is increased by 1 (the increment opera-
tion) while a second part is decreased by 1 (the decrement operation), resulting
in another (n, σ) partition. In the case of the (n, σ)M game, we represent an (n, σ)
partition as a nondecreasingly ordered column of integers and we apply an incre-
ment or decrement operation to a specific row. Consider e.g. the (5, 12) partitions
π1 = (1, 1, 3, 3, 4) and π2 = (1, 1, 2, 3, 5) (for which qM

12 = 1/2):
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π1 π1

1 1
1 1
3 3
3 3
4 4

→

π1 π2

1 1
1 1
3 2
3 3
4 5

We see that the increment operation is applied to row 5 and the decrement op-
eration to row 3. For brevity, we say that row 5 is incremented and row 3 is
decremented. In the present case, row 4 cannot be decremented instead of row
3, since the then obtained column of integers would no longer be nondecreasing.
Through a concatenation of these increment/decrement operations, any (n, σ)
partition π2 can be obtained from the partition π1. We can restrict these concate-
nations in the sense that once a row has been incremented (resp. decremented),
it cannot be decremented (resp. incremented). Indeed, an increment operation
followed later by a decrement operation (and vice versa) applied to the same
row cancel each other out and can therefore be ignored. A concatenation of in-
crement/decrement operations transforming π1 into π2 will be called a (π1, π2)
transformation.

Let νi (resp. νd) denote the number of different incremented (resp. decremented)
rows in the transformation of π1 into π2. Then we have that Qπ1,π2 > 1/2 ⇔ νi <

νd. This is easily seen by noting that νi (resp. νd) is nothing else but #{j | ij < i′j}

(resp. #{j | ij > i′j}). In general it thus holds that

Qπ1,π2 =
1

2
−

νi − νd

2 n
. (10)

We illustrate (10) on some more examples.

Example 3.6.

(i) Consider the (5, 18) partitions π1 = (2, 3, 4, 4, 5) and π2 = (1, 3, 3, 5, 6). The
transformation of π1 in π2 goes (e.g.) as follows:

π1 π1

2 2
3 3
4 4
4 4
5 5

→

π1 π
(1)
1

2 1
3 3
4 4
4 5
5 5

→

π1 π2

2 1
3 3
4 3
4 5
5 6

We obtain νi = νd = 2 and therefore Qπ1,π2 = 1
2 .
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(ii) Consider the (5, 18) partitions π1 = (2, 3, 4, 4, 5) and π2 = (1, 1, 5, 5, 6). The
transformation of π1 in π2 now goes (e.g.) as follows:

π1 π1

2 2
3 3
4 4
4 4
5 5

→

π1 π
(1)
1

2 1
3 3
4 4
4 5
5 5

→

π1 π
(2)
1

2 1
3 2
4 4
4 5
5 6

→

π1 π2

2 1
3 1
4 5
4 5
5 6

Here, we obtain νi = 3 and νd = 2, which implies Qπ1,π2 = 1
2 −

1
10 .

The above reasoning will be applied below. We discuss all (n, σ) partitions by
considering three consecutive steps. The fourth step then determines the maxi-
mum value for the parts of an optimal strategy in an (n, σ)M game.
Step 1: n ≤ 2.

When n = 1 there is only one (n, σ) partition, when n = 2 it is obvious that all
(n, σ) partitions play a draw. Indeed, for two (2, σ) partitions π1 = (a1, σ − a1)
and π2 = (b1, σ − b1), a1 ≤ b1, it holds that either σ − a1 > σ − b1 when a1 < b1,
or σ − a1 = σ − b1 when a1 = b1. The first two parts of Proposition 3.3 and (i) of
Theorem 3.2 are therefore already proven.
Step 2: Partitions satisfying

(∃ j > 1) (tj+1 > 0 ∧ n ≥ 2 tj + 3 + tj−1) . (11)

These partitions are not optimal. Indeed, construct π2 starting from π1 by decre-
menting all tj parts having value j by 1, decrementing a part having value j + 1
by two and incrementing tj + 2 other parts from π1, all different from j − 1. This
transformation can be done using increment/decrement operations. The idea be-
hind the transformation is that there will be two decrement operations applied to
the row on which the first occurrence of j + 1 is situated in the original partition
π1, while all increment operations are applied to different rows. Using (10) we
obtain that Qπ1,π2 = (n − 1)/(2n) and π1 is therefore not optimal. Essential for
this construction is that (11) holds, as this condition must be satisfied to be able
to do all the increment operations on different rows.

Example 3.7. Consider the (8, 23) partition π1 = (1, 2, 2, 3, 3, 3, 4, 5). Condition
(11) is satisfied for j = 4. If we choose π2 = (2, 3, 3, 3, 3, 3, 3, 3), we obtain Qπ1,π2 =
n−1
2n = 7

16 <
1
2 .

π1 π1

1 1
2 2
2 2
3 3
3 3
3 3
4 4
5 5

→

π1 π
(1)
1

1 1
2 2
2 3
3 3
3 3
3 3
4 3
5 5

→

π1 π
(2)
1

1 1
2 3
2 3
3 3
3 3
3 3
4 3
5 4

→

π1 π2

1 2
2 3
2 3
3 3
3 3
3 3
4 3
5 3
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In the last transformation, we see that the decremented part is again on the row
where the first occurrence of j + 1 is situated in π1, which is the reason why
Qπ1,π2 <

1
2 .

Step 3: All partitions not yet covered above are optimal.

These partitions satisfy

n ≥ 3 ∧ (∀ j > 1) (tj+1 > 0 ⇒ n < 2 tj + 3 + tj−1) . (12)

Before presenting the proof, we fix some notation. We say that an increment or
decrement operation yields a decrementable (resp. incrementable) row, if after
the increment or decrement operation a row becomes available for a decrement
(resp. increment) operation and that row was not available before the increment
or decrement operation was performed. Consider e.g. π1 = (2, 3, 3, 5). It holds
that incrementing row 3 yields an incrementable row (namely row 2) while incre-
menting row 4 does not yield an incrementable or decrementable row. Indeed,
by incrementing row 3 we obtain π′

1 = (2, 3, 4, 5) and in this partition row 2 is in-
crementable while it was not incrementable in partition π1. Incrementing row 4
yields π′′

1 = (2, 3, 3, 6) and all incrementable or decrementable rows are the same
for π1 and π′′

1 . We will also use the notions of first increment (resp. decrement)
operation on a row and first increment (resp. decrement) operation on the same
row. The former denotes an increment (resp. decrement) operation done on a
row that has not yet been incremented or decremented in the process of trans-
forming π1 into π2. The latter denotes the increment (resp. decrement) operation
in the transformation step in which it happens for the first time that a row is
incremented (resp. decremented) for a second time.

We now prove that all (n, σ) partitions π1 satisfying (12) are optimal strategies.
Suppose that there exists an (n, σ) partition π2 that wins from π1. Partition π2

can again be obtained from partition π1 using increment/decrement operations.
From (10) we know that the number of incremented rows must be higher than
the number of decremented rows. We now show that this implies that (11) holds,
which contradicts (12).

Notice first that if (11) would be satisfied then there exists an (n, σ) partition
π2 that wins from π1 such that there exists a (π1, π2) transformation in which the
first decrement on the same row happens earlier than the first (if any) increment
operation on the same row. Conversely, when there exists a (π1, π2) transforma-
tion such that the first decrement on the same row happens earlier than the first
(if any) increment on the same row, then (11) must hold.

Since we suppose that π1 is not optimal, the only case in which (11) would
not be satisfied is when for all (n, σ) partitions π2 that win from π1, all possi-
ble (π1, π2) transformations would be such that the first increment on the same
row happens earlier or at the same time as the first decrement on the same row.
We therefore only need to show that a first increment on the same row is useless
for obtaining rows that can be decremented and also for obtaining rows that can
be incremented for the first time. In the next paragraph, we will show that an
increment on the same row can only yield another row that has already been in-
cremented. As the number of incremented rows must be higher than the number
of decremented rows, it is therefore never necessary for the first increment on the
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same row to happen earlier or at the same time as the first decrement on the same
row.

It is obvious that, in general, not all rows can be used for an increment. For
example, for the partition π = (3, 3, 3) only the third row can be incremented.
However, a first increment on a row can yield a row that can be incremented for
the first time. For example, decrementing the first row and incrementing the last
row of π results in π′ = (2, 3, 4). The increment of row 3 makes it possible to
use row 2 of π′ for an increment operation. This was impossible for partition
π. A second increment on the same row, however, never yields a row that can
be incremented for the first time. It is also obvious that an increment operation
never yields a decrementable row.

As Qπ1,π2 < 1/2, the above reasoning shows that there always exists a (π1, π2)
transformation in which the second decrement on a certain row happens before
the second increment (if any) on some other row. But this is impossible, since (12)
would then not be satisfied.

As Step 2 proved that all (n, σ) partitions, with n ≥ 3, not satisfying (12) are
not optimal, Step 3 proves that an (n, σ) partition, with n ≥ 3, is optimal if and
only if (12) is satisfied.

Step 4: Determining a maximum value µ for the parts of an optimal strategy π1

in any (n, σ)M game with n ≥ 3.

It can be easily verified that π1 = (2, 4, 6) is the only optimal strategy in the
(3, 12)M game, which implies µ > 5.

First note that when an integer j > 1 exists such that tj−1 = tj = 0 and tj+1 6=
0, it holds that (12) is not satisfied for this value j and the partition therefore is
not an optimal strategy. We can therefore assume tj−1 = tj = 0 ⇒ tj+1 = 0,

for any j > 1. This implies that n ≥ ⌈
µ

2 ⌉ and that there are at least ⌈
µ

2 ⌉ ≥ 3
distinct parts in π1. When ti 6= 0 for all 2 ≤ i ≤ 6, one can verify that (12) is not
satisfied. Suppose therefore for some 1 < i < 6 that ti = 0 and ti+1 6= 0, then
it must hold that n < 3 + ti−1. As there are at least 3 distinct parts, it holds that
n − ti−1 ≥ 2. This in turn implies that n = 2 + ti−1, which implies that there are
exactly three distinct numbers in the partition, implying µ ≤ 6. When µ = 6,
the fact that there are exactly three distinct numbers implies that t2i−1 = 0 and
t2i > 0, for i ∈ {1, 2, 3}. As n < 3 + t2, n < 3 + t4 and n = t2 + t4 + t6 we obtain
t2 = t4 = t6 = 1, resulting in π1 = (2, 4, 6). Note that π1 clearly satisfies (12).

Step 4 proves Lemma 3.1 and also the third part of Proposition 3.3.

The above results can now be combined to prove Proposition 3.4. Indeed,
from the above reasoning it follows that an (n, σ) partition π1 is optimal if and
only if either n < 3, or (12) holds. If n ≥ 3 and π1 6= (2, 4, 6), then we also
know from the above reasoning that the optimal strategy contains no parts strictly
greater than 5 and therefore has as multiplicity representation (1t12t23t34t45t5). We
can now conclude the proof of Proposition 3.4 by making the following remarks.
Firstly, it is obvious that

t1 + t2 + t3 + t4 + t5 = n , t1 + 2t2 + 3t3 + 4t4 + 5t5 = σ , (13)

is equivalent to saying that the partition is an (n, σ) partition and that it contains
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no parts strictly greater than 5. Secondly, the three other conditions







t3 > 0 ⇒ t2 + 2 > (t3 − 1) + t4 + t5

t4 > 0 ⇒ t3 + 2 > t1 + (t4 − 1) + t5

t5 > 0 ⇒ t4 + 2 > t1 + t2 + (t5 − 1)

are merely a restatement of (12) using (13). This proves the third part of Proposi-
tion 3.4.
Theorem 3.2 now follows immediately.

4 Optimal strategies for (n, σ)L games

4.1 Results

While not all (n, σ)P and (n, σ)M games have an optimal strategy, the situation is
different for (n, σ)L games.

Theorem 4.1. All (n, σ)L games have at least one optimal strategy.

The exact characterization of these optimal strategies in an (n, σ)L game is
given by the following proposition.

Proposition 4.2. Consider an (n, σ) partition π = (i1, i2, . . . , in) and let

a =
⌊n

2

⌋

+ 1 , b =
⌊σ − n

a

⌋

+ 1 , c =

{

n + 1 − ⌊σ−n
b−1 ⌋ , when b 6= 1 ,

n + 1 − (σ − n) , when b = 1 .
(14)

The (n, σ) partition π is an optimal strategy of an (n, σ)L game if and only if one of the
following four mutually exclusive conditions holds:

(i) σ − n ≤ ⌊n/2⌋ and:

- π = (1c−12n−c+1) .

(ii) (n, σ) = (n, 2n), n ≥ 1 and:

- π = (1m2(n−2m)3m), m ∈ {0, 1, . . . , ⌊n
2⌋} .

(iii) (n, σ) = (2l, σ), l > 0, σ 6= 2n, σ > 3l and:

- (ic = b ∧ σ 6= l(b + 2) + b − 1) , or

- il+1 ≥ b + 1, or

- π = (1l−1b2(b + 1)l−1), implying (n, σ) = (2l, l(b + 2) + b − 2) .

(iv) (n, σ) = (2l + 1, σ), l ≥ 0, σ 6= 2n, σ > 3l + 1 and:

- ic = b, or

- π = (1lb1(b + 1)l), implying (n, σ) = (2l + 1, l(b + 2) + b) .
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Example 4.3.

(i) The (6, 17)L game has 44 strategies of which 5 are optimal: (134261), (134152),
(12214251), (123143) and (112243). Note that for this game b = 3 and it there-
fore holds that σ = l(b + 2) + b − 1 (with l = 3), which implies that only the
partitions for which il+1 ≥ b + 1 are optimal strategies.

(ii) The (8, 23)L game has 146 strategies and only one optimal strategy, given by
(1345). Indeed, b = c = 4 and there are no strategies satisfying il+1 = b + 1.

(iii) The (9, 23)L game has 123 strategies of which two are optimal: (1237) and
(143144). As b = c = 3, the first partition corresponds to the case ic = b
while the second one is of the form (1lb1(b + 1)l).

We can also state the number of optimal strategies in function of p(N, M, n).
The function p(N, M, n) is well known in partition theory and denotes the num-
ber of partitions of n into at most M parts, each smaller or equal to N [1]. By
definition it holds that p(N, M, 0) = 1, and p(N, M, n) = 0 when n < 0. As there
exists a generating function for p(N, M, n), the numerical value of the number of
optimal strategies can easily be obtained.

Proposition 4.4. Let pn(M, N) = ∑
N
i=0 p(N, M, N − i)p(N, n − M, i) and let

Σ1 = σ − n − ⌊
σ − n

b − 1
⌋(b − 1) , Σ2 = σ − l(b + 2) , (15)

with b and c defined in (14). The number of optimal strategies in an (n, σ)L game,
here denoted as ν(n, σ), is then given in one of the following 5 mutually exclusive cases
(l > 0).

(i) σ − n ≤ ⌊n/2⌋ ∨ n = 1:
ν(n, σ) = 1 .

(ii) (n, σ) = (n, 2n) ∧ n > 1:
ν(n, σ) = ⌊n

2 ⌋ + 1 .

(iii) (n, σ) = (2l, σ) ∧ σ = l(b + 2) + b − 1 ∧ σ > 3l:
ν(n, σ) = pn(l, Σ2) .

(iv) (n, σ) = (2l, σ) ∧ σ 6= 2n ∧ l(b + 2) + b − 1 > σ > 3l:
ν(n, σ) = pn(c − 1, Σ1) + pn(l, Σ2) + ⌈ l−c

l+1−c⌉⌊
σ

l(b+2)+b−2
⌋ .

(v) (n, σ) = (2l + 1, σ)∧ σ 6= 2n ∧ σ > 3l + 1:
ν(n, σ) = pn(c − 1, Σ1) + ⌈ l+1−c

l+2−c⌉⌊
σ

l(b+2)+b
⌋ .
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4.2 Proof

In the next five steps Theorem 4.1 and Proposition 4.2 are proven and thereafter,
using the results from these five steps, Proposition 4.4 is proven.
Step 1: σ − n ≤ ⌊n/2⌋.

We start by considering the special case of (n, σ)L games for which σ − n ≤
⌊n/2⌋, corresponding to Case (i) of Proposition 4.2. Note that this condition is
equivalent to b = 1. It is obvious that π1 = (1c−12n−c+1), with c = n + 1 −
(σ − n), is an (n, σ) partition and that π1 wins from any other (n, σ) partition π2.
Indeed, let k = #{j | i′j = 1} and m = #{j | i′j > 1} = n − k. As π2 6= π1 it

holds that k ≥ c > ⌈n/2⌉ and Qπ2,π1
= (2m + (c − m − 1))/(2n) = (n − k + c −

1)/(2n) < 1/2. In the remainder, we will assume σ − n > ⌊n/2⌋ and therefore
b > 1.

A partition will be represented graphically as a Ferrers graph, well known in
the theory of partitions for visualizing a partition. Formally, it is the set of points
with integral coordinates (j, k) in the plane such that if π = (i1, i2, . . . , in), then
(j, k) ∈ Gπ if and only if 0 ≥ j ≥ −n + 1 and 0 ≤ k ≤ i|j|+1 − 1 [1]. Although
this representation is not essential in the proof, it helps to visualize the meaning
of some variables that will be introduced.

For an (n, σ) partition π1 we utilize the following values, which were already
introduced in Proposition 4.2 (recall that b > 1):

a =
⌊n

2

⌋

+ 1, b =
⌊σ − n

a

⌋

+ 1, c = n + 1 −
⌊σ − n

b − 1

⌋

. (16)

In words, b denotes the highest possible value for i⌈ n
2 ⌉

and c denotes the lowest

possible value j such that ij = b is possible. Therefore, an (n, σ) partition π1 for
which i⌈ n

2 ⌉
= b surely exists.

Step 2: n = 2l + 1 ∧ il+1 < b, or, n = 2l ∧ il < b ∧ il+1 < b + 1.

When n = 2l + 1, any (n, σ) partition π1 for which il+1 < b loses from any
partition π2 for which i′l+1 = b and is therefore not an optimal strategy. Indeed, it
then holds that i′n−j > ij+1, for any 0 ≤ j ≤ l, which implies Qπ2,π1

≥ (l + 1)/n >

1/2. When n = 2l, then any partition π1 for which il < b and il+1 < b + 1 loses
from any partition π2 for which i′l = b. Indeed, it then holds that i′n−j > ij+1, for

any 0 ≤ j < l and i′l ≥ il+1, which again implies Qπ2,π1
> 1/2. We can therefore

already exclude these partitions π1 as they are not optimal strategies. Note that
this does not exclude a priori the possibility for an (n, σ)L game to have optimal
strategies.
Step 3: (n, σ) = (n, 2n).

All optimal strategies π1 are given by

π1 = (1m2n−2m3m), m ∈ {0, 1, . . . , ⌊n/2⌋} . (17)

We first prove that the strategies of type (17) are optimal. Let π2 be another (n, 2n)
partition, with k′ = #{j | i′j = 1} and m′ = #{j | i′j > 2}. As σ = 2n, we have

that k′ ≥ m′. When m′ ≤ m, we obtain Qπ2,π1
≤ (2m + (n − 2m))/(2n) = 1/2.

When m′ > m, we obtain Qπ2,π1
≤ (2m′ + n − k′ − m′)/(2n) ≤ 1/2. We now
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prove that the strategies (17) are the only optimal strategies in the (n, 2n)L game.
For any π2, with k′ and m′ as defined above, such that k′ > m′ > 0, and π1 with
m < m′ it holds that Qπ2,π1

< 1/2. When m′ = 0 it holds that π2 = (2n), which is
of type (17). This proves Case (ii) of Proposition 4.2.

We now subdivide the not yet covered (n, σ)L games into those where n is
even and those where n is odd.
Step 4: n = 2l ∧ σ 6= 2n ∧ b 6= 1.

Step 4.1: il+1 ≥ b + 1.

All (n, σ) partitions π1 for which il+1 ≥ b + 1, if there are any, are optimal
strategies. Indeed, suppose such a partition π1 exists. For any (n, σ) partition π2

it holds that i′l < b + 1. Therefore, in−j > i′j+1, for any 0 ≤ j < l, which implies

Qπ1,π2 ≥ 1/2. This corresponds to the second part of Case (iii) of Proposition 4.2.

Step 4.2: (n, σ) partitions satisfying

σ = l(b + 2) + b − 1 . (18)

At least one (n, σ) partition π1 satisfying il+1 ≥ b + 1 exists and these (n, σ)
partitions comprise all optimal strategies. Indeed, any partition π2 for which
i′l+1 < b + 1 loses from the partition π1 = (1l−1b1(b + 1)l). This explains the
condition σ 6= l(b + 2) + b − 1 in the first part of Case (iii) of Proposition 4.2.

Example 4.5. Consider the (8, 27)L game, which has 352 strategies of which 10
are optimal, and for which (18) clearly holds (b = ⌊19

5 ⌋ + 1 = 4). The Ferrers

graph for the partition (13b1(b + 1)4) is shown in Figure 2.

n = 8b = 4

Figure 2: Ferrers graph for the (8, 27) partition (1, 1, 1, 4, 5, 5, 5, 5).

We now investigate the last remaining class of (2l, σ)L games.
Step 4.3: il = il+1 = b ∧ σ 6= l(b + 2) + b − 1 ∧ b 6= 1.

The fact that (18) is not satisfied implies that for any two partitions π1 satisfy-
ing il = b and π2 satisfying i′l+1 ≥ b + 1 it holds that Qπ1,π2 = 1/2. It therefore
suffices to investigate Qπ1,π2 with π1 satisfying il = il+1 = b and π2 satisfying
i′l = i′l+1 = b. Note that the strict inequality

σ < l(b + 2) + b − 1 (19)

must then hold. Indeed, σ > l(b + 2)+ b− 1 implies b <
σ−n+1

l+1 ≤ ⌊σ−n+l+1
l+1 ⌋ = b,

which is impossible.
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We first introduce a useful lemma, considering both n even and n odd, which
will make the subsequent proof and the proof of Step 5 simple.

Lemma 4.6. For an (n, σ) partition π1 with i⌈ n
2 ⌉

= i⌈ n
2 ⌉+1 = b > 1 (b defined by (16)),

let s = min{j | ij = b} and t = max{j | ij = b}. It then holds that t ≥ n + 2 − s if
s < ⌈n/2⌉ ∧ b > 2, and t ≥ n + 1 − s if s = ⌈n/2⌉ ∨ b = 2.

Let n = 2l (resp. n = 2l + 1) when n is even (resp. odd). It holds that c ≤ s ≤
⌈n/2⌉ (c defined by (16)) and t ≥ ⌈n/2⌉ + 1. By definition of s and t it must hold
that

σ ≥ s − 1 + (t − s + 1)b + (n − t)(b + 1) , (20)

or equivalently,
t ≥ n − σ + nb − (s − 1)(b − 1) . (21)

First assume n is even. As (19) holds, we obtain (adding s to both sides of (21))

t + s > n − l(b + 2)− b + 1 + nb − (s − 1)(b − 1) + s ,

which simplifies to
t + s > n + (l − s)(b − 2) , (22)

from which the desired inequalities immediately follow.
Now assume n is odd. From the tautology b− 1 < b, it follows that ⌊σ−n

l+1 ⌋ < b,
which implies σ − n < (l + 1)b, finally implying σ < l(b + 2) + b + 1. Together
with (21) this implies that

t + s > n + (l + 1 − s)(b − 2) , (23)

from which the desired inequalities again follow.
Suppose i′c = i′l+1 = il = il+1 = b, with n = 2l. Let r = max{j | i′j = b} and let

s and t be defined as in the above lemma. Hence, the parts of π1 and π2 satisfy







ij < b, if 1 ≤ j < s ,
ij = b, if s ≤ j ≤ t ,
ij > b, if t < j ≤ n ,











i′j < b, if 1 ≤ j < c ,

i′j = b, if c ≤ j ≤ r ,

i′j > b, if r < j ≤ n .

It now holds that

Qπ2,π1
=

1

n

(

max(s − 1, n − r)+

1

2
(min(n + 1 − c, t)− max(s − 1, n − r))

)

=
1

2n

(

min(n + 1 − c, t) + max(s − 1, n − r)
)

.

First consider s = c. Using Lemma 4.6, we then obtain Qπ2,π1
= (n + 1 − c + s −

1)/(2n) = 1/2. Partitions π1 and π2 satisfying ic = b resp. i′c = b therefore play a
draw. Next, consider s > c, implying

Qπ2,π1
=

1

2n

(

min(n + 1 − c, t) + s − 1
)

.
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If t ≥ n + 1 − c, then Qπ2,π1
= (n + s − c)/(2n), which implies Qπ2,π1

> 1/2
for s 6= c. If t < n + 1 − c then it holds that Qπ2,π1

= (t + s − 1)/(2n) ≥ 1/2
(again using Lemma 4.6). Moreover, when s < l or b > 2, the same lemma
implies Qπ2,π1

> 1/2. The above already proves the first part of Case (iii) of
Proposition 4.2.

Partitions satisfying s = l and the case b = 2 need to be investigated further,
to see if there are other optimal strategies possible. We therefore investigate when
it holds that Qπ2,π1

= 1/2, or equivalently when t + s − 1 = n. Inequality (20) is
then equivalent to

σ ≥ 2n + t(b − 2) . (24)

The definition of b from (16) implies b(l + 1) > σ−n and combining this with (24),
we obtain the strict inequality

(b − 2)(t − l) < b . (25)

Inequality (25) is only satisfied when b = 2 or when t = l + 1 (recall that b = 1
is excluded and that t ≥ l + 1). Indeed, when t − l > 1, it holds that (25) is
equivalent to b < 2 + 2/(t − l − 1), which can only hold when b = 2. When b = 2
it holds that σ ≥ 2n and the definition of b then implies σ = 2n or σ = 2n + 1. The
case σ = 2n corresponds to Step 3 while σ = 2n + 1 implies that inequality (19)
is not satisfied. When t = l + 1, we obtain σ ≥ 2n + (l + 1)(b − 2). When
σ > 2n + (l + 1)(b − 2), (19) is again not satisfied.

We now consider the case where σ = 2n + (l + 1)(b − 2), t = l + 1 and s = l,
implying that π1 = (1l−1b2(b + 1)l−1). We will prove that π1 is optimal and
therewith prove the third part of Case (iii) of Proposition 4.2. Consider another
(n, σ) partition π2 with i′l = i′l+1 = b and let s′ = min{j | i′j = b} ≤ l and

t′ = max{j | i′j = b} > l. The parts of π1 and π2 then satisfy







ij < b, if 1 ≤ j < l ,
ij = b, if l ≤ j ≤ l + 1 ,
ij > b, if l + 1 < j ≤ n ,











i′j < b, if 1 ≤ j < s′ ,

i′j = b, if s′ ≤ j ≤ t′ ,

i′j > b, if t′ < j ≤ n .

It follows that

Qπ2,π1
=

1

n

(

(l − 1) +
1

2

(

min(t′ − s′ + 1, 2)
)

)

=
1

2
,

and therefore
π1 = (1l−1b2(b + 1)l−1) (26)

is an optimal strategy. This corresponds to the third part of Case (iii) of Proposi-
tion 4.2.

The aggregation of the reasonings from Step 4 prove Case (iii) of Proposi-
tion 4.2.
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Example 4.7.

(i) Consider the (6, 20)L game, for which it holds that b = 4 and c = 3. In
Figure 3 the Ferrers graph of each optimal strategy of the game is given. The
optimal strategies satisfying ic = b are given by (113144), (2244), (11214351),
(124252) and (124361). Note that the fourth partition is of type (26), but as
c = l it is not a special case. As can be easily seen in the Ferrers graphs,
these optimal strategies differ from each other by rearranging the Σ1 = 2
dots that can be moved around freely. The remaining optimal strategies
are those satisfying il+1 ≥ b + 1, given by (123153), (112253), (12215261),
(135162) and (135271). These latter optimal strategies differ from each other
by rearranging the Σ2 = 2 free dots. Note that Σ1 and Σ2 are defined by (15).

�1 = 2b = 4

il+1 � b + 1�2 = 2

Figure 3: Optimal strategies of the (6, 20)L game.

(ii) Consider the (12, 32)L game. We obtain that b = 3, c = 3, l(b + 2) + b − 1 =
32 = σ. The only (12, 32) partition satisfying ic = b is π1 = (12310) and
when π2 = (153146) it indeed holds that Qπ2,π1

> 1/2. All optimal strate-
gies are therefore those satisfying il+1 ≥ b + 1, given by (153146), (142246),
(15214551), (164561) and (164452).

(iii) Consider the (14, 36)L game. We now obtain that b = 3, c = 4, l(b + 2) +
b − 1 = 37 > σ. There is one (14, 36) partition satisfying ic = b, namely
(13311), and it is an optimal strategy. The other optimal strategies all satisfy
il+1 ≥ b + 1, and are given by (162147) and (174651).

(iv) Consider the (4, 22)L game. For the above 3 examples the optimal strategies
satisfying il+1 ≥ b always satisfied il+1 = b + 1. In general this is not
true, as is indicated by the present example, for which it holds that b = 7
and for which the optimal strategy (12(10)2) satisfies il+1 > b + 1. We do
not explicitly specify the other optimal strategies for this game, as they are
numerous.
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Step 5: n = 2l + 1 ∧ σ 6= 2n ∧ b 6= 1.

All (n, σ) partitions π1 for which ic = b or for which il+1 = b ∧ il+2 = b + 1
are the only optimal strategies. The proof is completely analogous to the proof
for n even. It follows directly that all optimal strategies π1 must satisfy the con-
dition il+1 = b, and that such a strategy always exists. Secondly, it is evident that
partitions of type

π1 = (1lb1(b + 1)l) (27)

are optimal strategies and these only exist in (2l + 1, l(b + 2) + b)L games. Finally,
using Lemma 4.6, we obtain in a completely analogous way as in Step 4.3 that
partitions of type (27) are the only possible optimal strategies that do not satisfy
ic = b, and that all (n, σ) partitions that satisfy ic = b are optimal. This proves
Case (iv) of Proposition 4.2. Note that if c = l + 1, partition (27) satisfies ic = b
and is then not a special case.

Example 4.8. Consider the (7, 18)L game. We obtain that b = c = 3 and σ =
l(b + 2) + b. The optimal strategies are therefore given by (133143), (123441) and
(112135), the first one being of type (27).

As the cases above covered all possible (n, σ)L games and for each game there
was always at least one optimal strategy, we have also proven Theorem 4.1.

Using the above descriptions of the optimal strategies, we can state the num-
ber of optimal strategies for any (n, σ)L game using the function pn(M, N) =

∑
N
i=0 p(N, M, N − i)p(N, n− M, i), which was already introduced. Proposition 4.4

is proven below, using the previously introduced values b and c, defined by (16),
and Σ1 and Σ2 defined by (15). The number of optimal strategies in an (n, σ)L

game, here denoted as ν(n, σ), is then given by:

(i) σ − n ≤ ⌊n/2⌋ ∨ (n, σ) = (1, σ):
ν(n, σ) = 1 .

When n = 1 there is only one strategy, namely (σ). The result for σ − n ≤
⌊n/2⌋, which is equivalent to b = 1, follows from the result of Step 1.

(ii) (n, σ) = (2, σ):
ν(n, σ) = ⌊σ

2 ⌋ .

All strategies are optimal, this follows implicitly from the proofs of this sub-
section and this case is implicitly included in Proposition 4.4.

(iii) (n, σ) = (n, 2n):
ν(n, σ) = ⌊n

2 ⌋ + 1 .

This is immediately clear by counting the optimal strategies obtained in
Step 3.

(iv) (n, σ) = (2l, σ) ∧ σ = l(b + 2) + b − 1 ∧ σ 6= 2n ∧ b 6= 1:
ν(n, σ) = pn(l, Σ2) .

This corresponds to Step 4.2. We have to count the number of (n, σ) parti-
tions for which il+1 ≥ b + 1. We can construct all of them by starting with
the Ferrers graph of (1l(b + 1)l) and distributing the remaining Σ2 dots in all
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possible combinations to obtain all Ferrers graphs of (n, σ) partitions with
il+1 ≥ b + 1 (cfr. the bottom row of Figure 3).

(v) (n, σ) = (2l, σ) ∧ σ = l(b + 2) + b − 2 ∧ σ 6= 2n ∧ b 6= 1:
ν(n, σ) = pn(c − 1, Σ1) + pn(l, Σ2) + ⌈ l−c

l+1−c⌉ .

This corresponds to Steps 4.1 and 4.3, in the case that (26) is a possible strat-
egy. Here, we have to count the number of (n, σ) partitions for which ic = b,
this is given by pn(c − 1, Σ1). We also have to count the number of (n, σ)
partitions for which il+1 ≥ b + 1, given by pn(l, Σ2). Finally we also have to
take into account the special case (26). Unless c = l, this partition has not
yet been counted.

(vi) (n, σ) = (2l, σ) ∧ σ < l(b + 2) + b − 2 ∧ σ 6= 2n ∧ b 6= 1:
ν(n, σ) = pn(c − 1, Σ1) + pn(l, Σ2) .

This corresponds to Steps 4.1 and 4.3, when (26) is not a possible strategy.
This case and the previous case are combined into Case (iv) of Proposi-
tion 4.4.

(vii) (n, σ) = (2l + 1, σ) ∧ σ = l(b + 2) + b ∧ σ 6= 2n ∧ b 6= 1:
ν(n, σ) = pn(c − 1, Σ1) + ⌈ l+1−c

l+2−c⌉ .

This corresponds to Step 5, in the case that (27) is a possible strategy. Here,
we have to count the number of (n, σ) partitions for which ic = b and also
the special partition (1lb1(b + 1)l), which has not yet been counted unless
c = l + 1.

(viii) (n, σ) = (2l + 1, σ) ∧ σ < l(b + 2) + b ∧ σ 6= 2n ∧ b 6= 1:
ν(n, σ) = pn(c − 1, Σ1) .

This corresponds to Step 5, when (27) is not a possible strategy. The current
case and the previous case are combined into Case (v) of Proposition 4.4.

5 Conclusion

We have introduced three interesting variants of the same game, played with
partitions of σ into n parts, σ and n fixed before the game starts. The games are
defined by viewing a partition as a random variable uniformly distributed over
the parts of the partition and by stochastically comparing these random vari-
ables. The definitions of the game variants differ from each other only by the
copula used to couple the marginal uniform cdf into the bivariate cdf. For each
game variant, we have characterized which games possess optimal strategies and
we explicitly stated these strategies. It is clear from the results that the optimal
strategies are characterized completely differently for each game variant.

We conclude by giving four tables containing the number of (n, σ) partitions
and the number of optimal strategies in the (n, σ)M, resp. (n, σ)P, resp. (n, σ)L

game (for n ∈ [1, 25] and σ ∈ [n, n + 24]). The row number denotes the value
n, while the column number denotes the value σ − n. For example, the number
of optimal strategies of the (8, 27)L game, is located in Table 4 in row number 8
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and column number 27 − 8 = 19 and is given by 10. As can be deduced from the
tables, the most interesting games are those where σ > 2n > 4.

References

[1] G.E. Andrews, The Theory of Partitions (Cambridge University Press, Cam-
bridge, 1984).

[2] B. De Baets, H. De Meyer, B. De Schuymer and S. Jenei, Cyclic evaluation of
transitivity of reciprocal relations, Social Choice and Welfare 26 (2006), 217–238.

[3] H. De Meyer, B. De Baets and B. De Schuymer, On the transitivity of the
comonotonic and countermonotonic comparison of random variables, J. Multivari-
ate Analysis 98 (2007), 177–193.

[4] B. De Schuymer, H. De Meyer, B. De Baets, Cycle-transitive comparison of in-
dependent random variables, J. Multivariate Analysis 96 (2005), 352–373.

[5] B. De Schuymer, H. De Meyer, B. De Baets, Optimal strategies for equal-sum
dice games, Discrete Applied Mathematics 154 (2006), 2565–2576.

[6] B. De Schuymer, H. De Meyer and B. De Baets, Extreme copulas and the com-
parison of ordered lists, Theory and Decision 62 (2007), 195–217.

[7] B. De Schuymer, H. De Meyer, B. De Baets, S. Jenei, On the cycle-transitivity
of the dice model, Theory and Decision 54 (2003) 261–285.

[8] H. Joe, Multivariate Models and Dependence Concepts (Chapman &
Hall/CRC, London, 1997).

[9] R. Nelsen, An Introduction to Copulas (Springer, New York, 1998).
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σ−
nn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
3 1 1 2 3 4 5 7 8 10 12 14 16 19 21 24 27 30 33 37 40 44 48 52 56 61
4 1 1 2 3 5 6 9 11 15 18 23 27 34 39 47 54 64 72 84 94 108 120 136 150 169
5 1 1 2 3 5 7 10 13 18 23 30 37 47 57 70 84 101 119 141 164 192 221 255 291 333
6 1 1 2 3 5 7 11 14 20 26 35 44 58 71 90 110 136 163 199 235 282 331 391 454 532
7 1 1 2 3 5 7 11 15 21 28 38 49 65 82 105 131 164 201 248 300 364 436 522 618 733
8 1 1 2 3 5 7 11 15 22 29 40 52 70 89 116 146 186 230 288 352 434 525 638 764 919
9 1 1 2 3 5 7 11 15 22 30 41 54 73 94 123 157 201 252 318 393 488 598 732 887 1076
10 1 1 2 3 5 7 11 15 22 30 42 55 75 97 128 164 212 267 340 423 530 653 807 984 1204
11 1 1 2 3 5 7 11 15 22 30 42 56 76 99 131 169 219 278 355 445 560 695 863 1060 1303
12 1 1 2 3 5 7 11 15 22 30 42 56 77 100 133 172 224 285 366 460 582 725 905 1116 1380
13 1 1 2 3 5 7 11 15 22 30 42 56 77 101 134 174 227 290 373 471 597 747 935 1158 1436
14 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 175 229 293 378 478 608 762 957 1188 1478
15 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 230 295 381 483 615 773 972 1210 1508
16 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 296 383 486 620 780 983 1225 1530
17 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 384 488 623 785 990 1236 1545
18 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 489 625 788 995 1243 1556
19 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 626 790 998 1248 1563
20 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 791 1000 1251 1568
21 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1001 1253 1571
22 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1254 1573
23 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1574
24 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575
25 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575
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σ−
n

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
3 1 1 2 2 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 2 2 3 4 3 2 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 1 2 2 3 3 4 4 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 1 2 2 3 3 3 5 5 3 4 2 1 2 1 0 0 0 0 0 0 0 0 0 0
7 1 1 2 2 3 3 3 4 6 5 4 5 3 1 1 1 0 0 0 0 0 0 0 0 0
8 1 1 2 2 3 3 3 4 4 6 6 5 6 4 2 2 1 1 0 0 0 0 0 0 0
9 1 1 2 2 3 3 3 4 4 4 7 7 5 7 5 3 3 1 0 0 0 0 0 0 0

10 1 1 2 2 3 3 3 4 4 4 5 8 7 6 8 6 4 4 2 1 1 1 0 0 0
11 1 1 2 2 3 3 3 4 4 4 5 5 8 8 7 9 7 5 5 3 1 1 0 0 0
12 1 1 2 2 3 3 3 4 4 4 5 5 5 9 9 7 10 8 6 7 4 2 2 1 0
13 1 1 2 2 3 3 3 4 4 4 5 5 5 6 10 9 8 11 9 7 8 5 3 3 1
14 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 10 10 9 12 10 8 9 7 4 4
15 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 11 11 9 13 11 9 11 8 5
16 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 12 11 10 14 12 10 12 9
17 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 12 12 11 15 13 11 13
18 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 13 13 11 16 14 12
19 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 14 13 12 17 15
20 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 14 14 13 18
21 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 15 15 13
22 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 16 15
23 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 16
24 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9
25 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9

Table 2: Number of optimal strategies for (n, σ)M games.

σ−
n

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
3 1 1 1 2 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 1 3 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
5 1 1 1 1 1 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
6 1 1 1 1 1 1 4 1 1 0 1 0 2 0 0 1 0 0 1 0 0 0 0 0 0
7 1 1 1 1 1 1 1 4 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
8 1 1 1 1 1 1 1 1 5 1 1 0 1 0 1 0 2 0 0 0 0 0 0 0 1
9 1 1 1 1 1 1 1 1 1 5 0 0 0 0 0 0 0 0 2 0 0 1 0 0 1

10 1 1 1 1 1 1 1 1 1 1 6 1 1 0 1 0 1 0 1 0 2 0 0 0 0
11 1 1 1 1 1 1 1 1 1 1 1 6 0 0 0 0 0 0 0 0 0 0 2 0 0
12 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 0 1 0 1 0 1 0 1 0 3
13 1 1 1 1 1 1 1 1 1 1 1 1 1 7 0 0 0 0 0 0 0 0 0 0 0
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 1 0 1 0 1 0 1 0 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 0 0 0 0 0 0 0 0 0
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 1 0 1 0 1 0 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 0 0 0 0 0 0 0
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 0 1 0 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 0 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 0 0 0
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1
23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 0
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 13
25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 3: Number of optimal strategies for (n, σ)P games.

σ−
n

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
3 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
4 1 1 1 1 3 2 2 4 5 3 7 8 6 10 14 9 16 20 15 22 30 21 32 40 31
5 1 1 1 1 1 3 1 2 2 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1
6 1 1 1 1 1 1 4 2 1 3 4 5 2 4 10 10 3 7 15 18 6 12 23 30 11
7 1 1 1 1 1 1 1 4 1 2 1 3 1 2 5 2 1 2 5 10 1 2 5 10 1
8 1 1 1 1 1 1 1 1 5 2 1 2 2 5 5 1 3 7 7 10 2 4 10 20 20
9 1 1 1 1 1 1 1 1 1 5 1 2 1 2 2 1 2 5 1 3 1 2 5 10 2

10 1 1 1 1 1 1 1 1 1 1 6 2 1 2 1 3 4 5 1 2 6 3 8 10 1
11 1 1 1 1 1 1 1 1 1 1 1 6 1 2 1 2 1 3 1 2 5 1 2 6 1
12 1 1 1 1 1 1 1 1 1 1 1 1 7 2 1 2 1 2 2 5 5 1 2 5 2
13 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 2 1 2 1 2 2 1 2 5 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 2 1 2 1 2 1 3 4 5 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 2 1 2 1 2 1 3 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 2 1 2 1 2 1 2 2
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 2 1 2 1 2 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 2 1 2 1 2 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 2 1 2 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 2 1 2 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 2 1
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2 1
23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 13
25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4: Number of optimal strategies for (n, σ)L games.


