About spaces of $\omega_{1}-\omega_{2}$-ultradifferentiable functions

Jean Schmets
Manuel Valdivia*

Abstract

Let Ω_{1} and Ω_{2} be non empty open subsets of \mathbb{R}^{r} and \mathbb{R}^{s} respectively and let ω_{1} and ω_{2} be weights. We introduce the spaces of ultradifferentiable functions $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right), \mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right), \mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\mathcal{D}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$, study their locally convex properties, examine the structure of their elements and also consider their links with the tensor products $\mathcal{E}_{*}\left(\Omega_{1}\right) \otimes \mathcal{E}_{*}\left(\Omega_{2}\right)$ and $\mathcal{D}_{*}\left(\Omega_{1}\right) \otimes \mathcal{D}_{*}\left(\Omega_{2}\right)$ endowed with the ε-, π - or i-topologies. This leads to kernel theorems.

1 Introduction

Spaces of ultradifferentiable functions can be defined by use of special sequences of positive numbers or by use of weights. The first point of view has been developed in [7]. In this paper, we investigate the second point of view. The results are similar but not identical. We concentrate on the differences and refer to [7] when the methods are the same.

All functions we consider are complex-valued and all vector spaces are \mathbb{C}-vector spaces. The euclidean norm of $x \in \mathbb{R}^{n}$ is designated by $|x|$. If f is a function on $A \subset \mathbb{R}^{n}$, we set $\|f\|_{A}:=\sup _{x \in A}|f(x)|$.

If E is a Hausdorff locally convex topological vector space (in short: a locally convex space), then we designate by E^{\prime} its topological dual endowed with the strong topology $\beta\left(E^{\prime}, E\right)$. If E and F are locally convex spaces, $L_{b}(E, F)$ designates the

[^0]space of the continuous linear maps from E into F equipped with the bounded convergence topology. We refer to [3] and [6] for properties of the locally convex spaces.

Unless explicitely stated, r and s are positive integers; Ω_{1} and Ω_{2} are non empty open subsets of \mathbb{R}^{r} and \mathbb{R}^{s} respectively; ω_{1} and ω_{2} are weights (notion defined in Paragraph 2).

Definition. Let us describe the four basic spaces we deal with:
a) $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)$: its elements are the \mathcal{C}^{∞}-functions on $\Omega_{1} \times \Omega_{2}$ such that

$$
\|f\|_{H \times K, h}:=\sup _{(\alpha, \beta) \in \mathbb{N}_{0}^{r} \times \mathbb{N}_{0}^{s}} \frac{\left\|\mathrm{D}^{(\alpha, \beta)} f\right\|_{H \times K}}{\exp \left(\varphi_{1}^{*}(h|\alpha|) / h+\varphi_{2}^{*}(h|\beta|) / h\right)}<\infty
$$

for every $h>0$ and compact subsets H of Ω_{1} and K of Ω_{2}.
b) $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)$: its elements are those of $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)$ which have a compact support contained in $\Omega_{1} \times \Omega_{2}$.
c) $\mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$: its elements are the \mathcal{C}^{∞}-functions on $\Omega_{1} \times \Omega_{2}$ such that, for every compact subsets H of Ω_{1} and K of Ω_{2}, there is $h>0$ such that $\|f\|_{H \times K, h}<\infty$. d) $\mathcal{D}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$: its elements are those of $\mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$ which have a compact support contained in $\Omega_{1} \times \Omega_{2}$.

As usual if a statement is valid for $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$ [resp. $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\left.\mathcal{D}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)\right]$, we simply write that it is valid for the space $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ [resp. $\left.\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)\right]$.

In Paragraph 5 , we endow these four spaces with locally convex topologies by means of the auxiliary spaces $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)$ and $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)$ where H and K are compact subsets of Ω_{1} and Ω_{2} respectively, these compact subsets being strictly regular in the case of $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)$. We obtain that $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)$ is a Fréchet nuclear space; $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)$ is a (LFN)-space; $\mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$ is complete, nuclear and (by Proposition 6.4) ultrabornological; $\mathcal{D}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$ is a (DFN)-space.

In the paragraphs 9 and 10 , different approximation and denseness properties are developed. This leads to the study of the structure of the elements of $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ in Paragraph 11. We then investigate tensor product descriptions of these spaces; in particular we obtain in part d) of Theorem 13.1 that the spaces $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\mathcal{D}_{*}\left(\Omega_{1}\right) \widehat{\otimes}_{i} \mathcal{D}_{*}\left(\Omega_{2}\right)$ coincide, a result leading to kernel theorems in Paragraph 13.

2 Weights

The Young conjugate of a function $\psi:[0, \infty[\rightarrow[0, \infty[$ which is convex, increasing and such that $\psi(0)=0$ and $\lim _{y \rightarrow \infty} \psi(y) / y=\infty$, is the function $\psi^{*}:[0, \infty[\rightarrow[0, \infty[$ defined by $\psi^{*}(y):=\sup _{x \geq 0}(x y-\psi(x))$. It is a convex and increasing function that verifies $\psi^{*}(0)=0$ and $\lim _{y \rightarrow \infty} \psi^{*}(y) / y=\infty$.

Let us adopt the definition of Braun, Meise and Taylor (cf. [1]) and say that a weight is a continuous and increasing function $\omega:[0, \infty[\rightarrow[0, \infty[$ identically 0 on the interval $[0,1]$ and verifying the following four conditions:
(α) there is $M>1$ such that $\omega(2 t) \leq M(1+\omega(t))$ for every $t \geq 0$;
(β) $\int_{0}^{\infty} \omega(t)\left(1+t^{2}\right)^{-1} d t<\infty$;
($\gamma) \lim _{t \rightarrow \infty}(\log (1+t)) / \omega(t)=0$;
(δ) the function $\varphi:\left[0, \infty\left[\rightarrow\left[0, \infty\left[\right.\right.\right.\right.$ defined by $\varphi(t)=\omega\left(e^{t}\right)$ is convex. So it has a meaning to speak about the Young conjugate φ^{*} associated to ω.

Lemma 2.1. If ω is a weight,
a) $\varphi(t+1) \leq M(M+1)(1+\varphi(t))$ for every $t \geq 0$;
b) for every $b \geq M(M+1)$ and $h>0$, there is $a_{0}>0$ such that

$$
\begin{equation*}
a+\varphi^{*}(a h) / h \leq 1 / h+\varphi^{*}(a b h) /(b h), \quad \forall a \geq a_{0} /(b h) . \tag{1}
\end{equation*}
$$

Proof. a) It suffices to note that, for every $t \geq 0$, we successively have $\varphi(t+$ 1) $\leq \omega\left(4 e^{t}\right) \leq M\left(1+M\left(1+\omega\left(e^{t}\right)\right)\right) \leq M(M+1)(1+\varphi(t))$.
b) So, by use of the Lemma 1.4 of [1], there is a positive number y_{0} such that $\varphi^{*}(y)-y \geq b \varphi^{*}(y / b)-b$ for every $y \geq y_{0}$. Hence the conclusion by setting $y_{0}=a_{0}$, replacing y by $a b h$ and dividing both members by $b h$.

In the proof of Lemma 2.2, we use the following information. Let the function $w:[0,+\infty[\rightarrow[0,+\infty[$ be defined by $w(t)=0$ if $t \in[0,1]$ and $w(t)=t-1$ if $t \in] 1,+\infty\left[\right.$. Then we have $\phi(t):=w\left(e^{t}\right)=e^{t}-1$ for every $t \in[0, \infty[$ and the function $\phi^{*}:\left[0, \infty\left[\rightarrow\left[0, \infty\left[\right.\right.\right.\right.$ defined by $\phi^{*}(y):=\sup _{x \geq 0}(x y-\phi(x))$ is explicitely given by $\phi^{*}(y)=0$ if $y \in[0,1]$ and $\phi^{*}(y)=y \log (y)-y+1$ if $\left.y \in\right] 1,+\infty[$. Given a weight ω, we have $\omega(t) / t \rightarrow 0$ if $t \rightarrow \infty$ hence there is $B>1$ such that $\omega(t) \leq B t \leq B(w(t)+1)$ for every $t \in[0,+\infty[$ hence $x y-\varphi(x) \geq B(x y / B-\phi(x))-B$ for every $x, y \in[0,+\infty[$. This leads to: for every weight ω, there is $B>1$ such that

$$
\begin{equation*}
B \phi^{*}(y / B)-B \leq \varphi^{*}(y), \quad \forall y \in[0,+\infty[. \tag{2}
\end{equation*}
$$

Lemma 2.2. For every weight ω, there is $B>1$ such that

$$
\begin{equation*}
\alpha!(h /(4 B))^{|\alpha|} \leq \exp \left(\varphi^{*}(h|\alpha|) / h+B / h\right) \tag{3}
\end{equation*}
$$

for every $h>0, n \in \mathbb{N}$ and $\alpha \in \mathbb{N}_{0}^{n}$.
Proof. Let $B>1$ verify the inequality (2). Given $h>0, n \in \mathbb{N}$ and $\alpha \in \mathbb{N}_{0}^{n}$, we clearly have

$$
\alpha!(h /(4 B))^{|\alpha|} \leq|\alpha|^{|\alpha|}(h /(4 B))^{|\alpha|}=\exp (|\alpha| \log (h|\alpha| /(4 B))) .
$$

As we also have

$$
|\alpha| \log \left(\frac{h|\alpha|}{4 B}\right) \leq 0 \leq \frac{B}{h} \phi^{*}\left(\frac{h|\alpha|}{B}\right)
$$

if $h|\alpha| /(4 B) \leq 1$ and

$$
|\alpha| \log \left(\frac{h|\alpha|}{4 B}\right) \leq \frac{B}{h}\left(\frac{h|\alpha|}{B} \log \left(\frac{h|\alpha|}{e B}\right)+1\right)=\frac{B}{h} \phi^{*}\left(\frac{h|\alpha|}{B}\right)
$$

if $h|\alpha| /(4 B)>1$, we conclude at once by use of the inequality (2).

Notation. From now on, unless explicitely stated, $M>1$ is fixed so that ω_{1} and ω_{2} verify condition (α); b is an integer such that $b \geq M(M+1)$.

Therefore there are $a_{0}>0$ and $B>1$ such that the inequalities (1) and (3) are valid for $\omega=\omega_{1}$ and $\omega=\omega_{2}$. There also is $C>0$ such that

$$
\begin{equation*}
a+\varphi_{j}^{*}(a h) / h \leq C+1 / h+\varphi_{j}^{*}(a b h) /(b h), \quad \forall a \in \mathbb{N}_{0}, j \in\{1,2\} . \tag{4}
\end{equation*}
$$

3 The auxiliary space $\mathcal{E}_{p}(K)$

Definition. A compact subset of \mathbb{R}^{n} is strictly regular if it has a finite number of connected components and if each of these connected components B verifies the following two properties:
a) B is regular, i.e. $B=B^{\circ-}$;
b) there is a constant $C>0$ such that, for every $x, y \in B^{\circ}$, there is a polygonal path joining x to y in B°, of length $L \leq C|x-y|$.

It is immediate that a finite union $\cup_{j=1}^{p} B_{j}$ of closed balls in \mathbb{R}^{n} is a strictly regular compact set if, whenever B_{j} meets $B_{k}, B_{j} \cap B_{k}$ has non empty interior. Therefore every non empty open subset of \mathbb{R}^{n} has a cover $\left(K_{n}\right)_{n \in \mathbb{N}}$ by means of a sequence of strictly regular compact subsets such that $K_{n} \subset K_{n+1}^{\circ}$ for every $n \in \mathbb{N}$. Let us also remark that, if the compact subsets K of \mathbb{R}^{r} and K^{\prime} of \mathbb{R}^{s} are strictly regular, then $K \times K^{\prime}$ is a strictly regular compact subset of \mathbb{R}^{r+s}.

Notation. Let K be a strictly regular compact subset of \mathbb{R}^{n} and let f be a function defined on K°. If, for some $\alpha \in \mathbb{N}_{0}^{n}$, the derivative $\mathrm{D}^{\alpha} f$ exists on K° and has a continuous extension on $K, \mathrm{D}^{\alpha} f$ will also designate this extension.

Definition. a) The notation $\mathcal{E}_{p}(K)$ requires that p is a non negative integer and that K is a strictly regular compact subset of some euclidean space \mathbb{R}^{n}. It designates the following Banach space: its elements are those of $\mathcal{C}^{p}\left(K^{\circ}\right)$ whose derivatives of order $\leq p$ have a continuous extension on K and its norm is $|\cdot|_{(K, p)}$ defined by

$$
|f|_{(K, p)}:=\sup _{|\alpha| \leq p}\left\|\mathrm{D}^{\alpha} f\right\|_{K}, \quad \forall f \in \mathcal{E}_{p}(K) .
$$

b) The notation $\mathcal{D}_{p}(K)$ requires that p is a non negative integer and that K is a compact subset of some euclidean space \mathbb{R}^{n}. It designates as usual the Banach space of the \mathcal{C}^{∞}-functions on \mathbb{R}^{n} with support contained in K and is equiped with the norm $|\cdot|_{(K, p)}$.

Construction. Let K be a strictly regular compact subset of \mathbb{R}^{n} and let us proceed as in ([4], p. 42). We first choose $l>0$ so that K is contained in the interior of $L=[-l, l]^{n}$. Next we apply successively results of [9] and [10] and obtain a continuous linear extension map $E: \mathcal{E}_{n+1}(K) \rightarrow \mathcal{D}_{n+1}(\pi L)$, i.e. a map such that $\left.(E f)\right|_{K}=f$ for every $f \in \mathcal{E}_{n+1}(K)$.

For every $m \in \mathbb{Z}^{n}$, we introduce the linear functional u_{m} on $\mathcal{D}_{n+1}(\pi L)$ by

$$
\left\langle u_{m}, f\right\rangle:=\int_{\pi L} f(y) e^{-i \sum_{k=1}^{n} m_{k} y_{k} / l} d y, \quad \forall f \in \mathcal{D}_{n+1}(\pi L)
$$

If $m=0$, we have $\left|\left\langle u_{m}, f\right\rangle\right| \leq(2 \pi l)^{n}|f|_{(\pi L, n+1)}$. If $m \neq 0$, we proceed as follows: we choose $j \in\{1, \ldots, n\}$ such that $\left|m_{j}\right| \geq\left|m_{k}\right|$ for every $k=1, \ldots, n$ and note that this implies $\left|m_{j}\right| \geq(1+|m|) /(1+n)$. Integrating $n+1$ times by parts with respect to y_{j} leads directly to the existence of some $C>1$ such that

$$
\left|\left\langle u_{m}, f\right\rangle\right| \leq C(1+|m|)^{-n-1}|f|_{(\pi L, n+1)}, \quad \forall f \in \mathcal{D}_{n+1}(\pi L), m \in \mathbb{Z}^{n}
$$

Therefore for every $m \in \mathbb{Z}^{n}, w_{m}:=(2 \pi l)^{-n} u_{m} \circ E$ is a continuous linear functional on $\mathcal{E}_{n+1}(K)$, of norm $\left|w_{m}\right|_{(K, n+1)}$ such that

$$
\left|w_{m}\right|_{(K, n+1)} \leq C(2 \pi l)^{-n}(1+|m|)^{-n-1}\|E\| .
$$

So, if we enumerate the set $\left\{w_{m}: m \in \mathbb{Z}^{n}\right\}$ as a sequence $\left(v_{j}\right)_{j \in \mathbb{N}}$, we have obtained the following information: there is a sequence $\left(v_{j}\right)_{j \in \mathbb{N}}$ in $\mathcal{E}_{n+1}(K)^{\prime}$ such that

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|v_{j}\right|_{(K, n+1)}<\infty \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
|g(x)| \leq \sum_{j=1}^{\infty}\left|\left\langle v_{j}, g\right\rangle\right|, \quad \forall g \in \mathcal{E}_{n+1}(K), x \in K . \tag{6}
\end{equation*}
$$

4 The auxiliary spaces $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)$ and $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)$

Definition. a) The notation $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)$ requires that H and K are compact subsets of \mathbb{R}^{r} and \mathbb{R}^{s} respectively and that h is a positive number. It designates the vector space of the \mathcal{C}^{∞}-functions f on $\mathbb{R}^{r} \times \mathbb{R}^{s}$ with compact support contained in $H \times K$ and such that $\|f\|_{H \times K, h}<\infty$, endowed with the norm $\|\cdot\|_{H \times K, h}$. It is a Banach space.
b) The notation $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)$ requires that H and K are strictly regular compact subsets of \mathbb{R}^{r} and \mathbb{R}^{s} respectively and that h is a positive number. It designates the vector space of the \mathcal{C}^{∞}-functions f on $H^{\circ} \times K^{\circ}$, the derivatives of which all have a continuous extension on $H \times K$ and such that $\|f\|_{H \times K, h}<\infty$, endowed with the norm $\|\cdot\|_{H \times K, h}$. It is a Banach space.

Proposition 4.1. The map

$$
\Lambda_{h}: \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K) \times \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K) \rightarrow \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), b h}(H \times K)
$$

(with b as in the Notation following Lemma 2.2) defined by $\Lambda_{h}(f, g)=f g$ is well defined, continuous and bilinear.

Proof. Given $f, g \in \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K),(\alpha, \beta) \in \mathbb{N}_{0}^{r} \times \mathbb{N}_{0}^{s}$ and $(x, y) \in \mathbb{R}^{r} \times$ \mathbb{R}^{s}, let us evaluate $\left|\mathrm{D}^{(\alpha, \beta)}(f g)(x, y)\right|$ as follows. We use the Leibniz formula, we majorize the absolute value of the derivatives of f and g by means of $\|f\|_{H \times K, h}$ and $\|g\|_{H \times K, h}$ respectively, we group the exponentials in φ_{1}^{*} and φ_{2}^{*} separately, we use the properties of φ_{1}^{*} and φ_{2}^{*} as well as the inequalities $2^{a} \leq e^{a}$ for every $a \in \mathbb{N}$ and the inequalities (4).This procedure leads to

$$
\left|\mathrm{D}^{(\alpha, \beta)}(f g)(x, y)\right| e^{-\varphi_{1}^{*}(b h|\alpha|) /(b h)-\varphi_{2}^{*}(b h|\beta|) /(b h)} \leq e^{2 C+2 / h}\|f\|_{H \times K, h}\|g\|_{H \times K, h}
$$

and permits to conclude at once.

Proposition 4.2. If $h, k>0$ verify $2 b h<k$, then the canonical injection

$$
J: \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K) \rightarrow \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), k}(H \times K)
$$

is a well defined quasi-nuclear linear map.
Proof. It is immediate that J is a well defined continuous linear map.
For the sake of clear notations, let us write $\|$.$\| for the norm in \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)^{\prime}$ and |.| for the norm in $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), k}(H \times K)^{\prime}$.

The construction made in Paragraph 3 provides a sequence $\left(v_{j}\right)_{j \in \mathbb{N}}$ in the space $\mathcal{E}_{r+s+1}(H \times K)^{\prime}$ such that $\sum_{j=1}^{\infty}\left|v_{j}\right|_{(H \times K, r+s+1)}<\infty$ and

$$
\begin{equation*}
\|g\|_{H \times K} \leq \sum_{j=1}^{\infty}\left|\left\langle v_{j}, g\right\rangle\right|, \quad \forall g \in \mathcal{E}_{r+s+1}(H \times K) . \tag{7}
\end{equation*}
$$

For every $j \in \mathbb{N}$ and $(\alpha, \beta) \in \mathbb{N}_{0}^{r} \times \mathbb{N}_{0}^{s}$, let us define the continuous linear functional $u_{(\alpha, \beta), j}$ on $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), k}(H \times K)$ by

$$
\left\langle u_{(\alpha, \beta), j}, f\right\rangle:=\left\langle v_{j}, \mathrm{D}^{(\alpha, \beta)} f\right\rangle \exp \left(-\varphi_{1}^{*}(k|\alpha|) / k-\varphi_{2}^{*}(k|\beta|) / k\right) .
$$

Then developing the functionals and using the inequality (7) provides

$$
\|f\|_{H \times K, k} \leq \sum_{(\alpha, \beta) \in \mathbb{N}_{0}^{r} \times \mathbb{N}_{0}^{s}} \sum_{j \in \mathbb{N}}\left|\left\langle u_{(\alpha, \beta), j}, f\right\rangle\right|, \quad \forall f \in \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), k}(H \times K) .
$$

Therefore, as every $u_{(\alpha, \beta), j}$ also belongs to $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)^{\prime}$, to conclude we just have to prove that we also have $\sum_{(\alpha, \beta) \in \mathbb{N}_{0}^{r} \times \mathbb{N}_{0}^{s}} \sum_{j \in \mathbb{N}}\left\|u_{(\alpha, \beta), j}\right\|<\infty$.

For every $(\alpha, \beta) \in \mathbb{N}_{0}^{r} \times \mathbb{N}_{0}^{s}$ and $j \in \mathbb{N}$, let us evaluate $\left\|u_{(\alpha, \beta), j}\right\|$. For this purpose, let f be any element of $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)$. As f belongs to $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), k}(H \times K)$, we have

$$
\left|\left\langle u_{(\alpha, \beta), j}, f\right\rangle\right| \leq\left|v_{j}\right|\left|\mathrm{D}^{(\alpha, \beta)} f\right|_{(H \times K, r+s+1)} e^{-\varphi_{1}^{*}(k|\alpha|) / k-\varphi_{2}^{*}(k|\beta|) / k}
$$

with

$$
\left|\mathrm{D}^{(\alpha, \beta)} f\right|_{(H \times K, r+s+1)} \leq\|f\|_{H \times K, h} \sup _{|(\gamma, \delta)| \leq r+s+1} e^{\varphi_{1}^{*}(h|\alpha+\gamma|) / h+\varphi_{2}^{*}(h|\beta+\delta|) / h} .
$$

Now we note that for $j \in\{1,2\}$ and $p, q \in \mathbb{N}_{0}$ such that $q \leq r+s+1$, the properties of φ_{j}^{*} provide

$$
\varphi_{j}^{*}(h(p+q)) \leq \varphi_{j}^{*}(2 h p) / 2+\varphi_{j}^{*}(2 h(r+s+1)) / 2 .
$$

So, if we set $A(h):=\exp \left(\varphi_{1}^{*}(2 h(r+s+1)) /(2 h)+\varphi_{2}^{*}(2 h(r+s+1)) /(2 h)\right)$, we end up with

$$
\left\|u_{(\alpha, \beta), j}\right\| \leq A(h)\left|v_{j}\right| \exp \left(\frac{\varphi_{1}^{*}(2 h|\alpha|)}{2 h}-\frac{\varphi_{1}^{*}(k|\alpha|)}{k}+\frac{\varphi_{2}^{*}(2 h|\beta|)}{2 h}-\frac{\varphi_{2}^{*}(k|\beta|)}{k}\right) .
$$

Now we note that part b) of Lemma 2.1 provides

$$
\frac{1}{2 h} \varphi_{j}^{*}(2 a h) \leq \frac{1}{2 b h} \varphi_{j}^{*}(2 a b h)+\frac{1}{2 h}-a \leq \frac{1}{k} \varphi_{j}^{*}(a k)+\frac{1}{2 h}-a
$$

for every $j \in\{1,2\}$ and $a \geq a_{0} /(2 b h)$. So, setting $d:=a_{0} /(2 b h)$ and

$$
B(h, k, d):=\sup _{|\alpha| \leq d} \exp \left(\varphi_{1}^{*}(2 h|\alpha|) /(2 h)-\varphi_{1}^{*}(k|\alpha|) / k\right),
$$

we get

$$
\sum_{\substack{|\alpha \alpha \leq d\\| \beta \mid \geq d}} \sum_{j \in \mathbb{N}}\left\|u_{(\alpha, \beta), j}\right\| \leq A(h) B(h, k, d) e^{1 /(2 h)} \sum_{j \in \mathbb{N}}\left|v_{j}\right| \sum_{\substack{|\alpha| \leq d \\|\beta| \geq d}} e^{-|\beta|}<\infty
$$

and similarly $\sum_{|\alpha| \geq d} \sum_{|\beta| \leq d} \sum_{j \in \mathbb{N}}\left\|u_{(\alpha, \beta), j}\right\|<\infty$.
Hence the conclusion since we also have

$$
\sum_{\substack{|\alpha| \geq d \\|\beta| \geq d}}\left\|u_{(\alpha, \beta), j}\right\| \leq A(h) e^{1 / h} \sum_{j \in \mathbb{N}}\left|v_{j}\right| \sum_{\substack{|\alpha| \geq d \\|\beta| \geq d}} e^{-|\alpha|-|\beta|}<\infty .
$$

As the same proof establishes that if $h, k>0$ verify $2 b h<k$, then the canonical injection from $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)$ into $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), k}(H \times K)$ is a well defined quasinuclear map, we get the following result (cf. [5]).

Proposition 4.3. If $h, k>0$ verify $4 b^{2} h<k$, the canonical injections

$$
\begin{aligned}
& J: \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K) \rightarrow \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), k}(H \times K) \\
& J: \mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K) \rightarrow \mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), k}(H \times K)
\end{aligned}
$$

are well defined nuclear linear maps.

5 The spaces $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$

Definition. a) The notation $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}(H \times K)$ requires that H and K are compact subsets of \mathbb{R}^{r} and \mathbb{R}^{s} respectively. It is defined by

$$
\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}(H \times K):=\lim _{m \in \mathbb{N}} \mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), 1 / m}(H \times K) .
$$

b) The notation $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right)}(H \times K)$ requires that H and K are strictly regular compact subsets of \mathbb{R}^{r} and \mathbb{R}^{s} respectively. It is defined by

$$
\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right)}(H \times K):=\lim _{m \in \mathbb{N}} \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), 1 / m}(H \times K) .
$$

By the results of Paragraph 4, $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}(H \times K)$ and $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right)}(H \times K)$ are Fréchet nuclear spaces and, if H and K are strictly regular, $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}(H \times K)$ is a closed subspace of $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right)}(H \times K)$.

Definition. Under analogous restrictions on H and K, we also introduce the locally convex spaces

$$
\begin{aligned}
& \mathcal{D}_{\left\{\omega_{1}, \omega_{2}\right\}}(H \times K):=\lim _{m \in \mathbb{N}} \mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), m}(H \times K) \\
& \mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}(H \times K):=\underset{m \in \mathbb{N}}{ } \mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), m}(H \times K) .
\end{aligned}
$$

They are regular countable inductive limits and (DFN)-spaces; if H and K are strictly regular, $\mathcal{D}_{\left\{\omega_{1}, \omega_{2}\right\}}(H \times K)$ is a closed subspace of $\mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}(H \times K)$.

Definition. The notations $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ require that the sequences $\left(H_{n}\right)_{n \in \mathbb{N}}$ and $\left(K_{n}\right)_{n \in \mathbb{N}}$ are compact exhaustions of Ω_{1} and Ω_{2} respectively, by means of sequences of strictly regular compact sets such that $H_{n} \subset H_{n+1}^{\circ}$ and $K_{n} \subset K_{n+1}^{\circ}$ for every $n \in \mathbb{N}$. They are the locally convex spaces

$$
\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right):=\lim _{m \in \mathbb{N}} \mathcal{E}_{*}\left(H_{n} \times K_{n}\right) \quad \text { and } \quad \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right):=\lim _{m \in \mathbb{N}} \mathcal{D}_{*}\left(H_{n} \times K_{n}\right)
$$

So $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)$ is a Fréchet nuclear space and $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)$ is a strict countable inductive limit of Fréchet nuclear spaces, it is a (LFN)-space.

The space $\mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$ carries a complicated locally convex structure but certainly is complete and nuclear. In Proposition 6.4, we prove that it also is ultrabornological. The space $\mathcal{D}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$ is a strict countable inductive limit of (DFN)-spaces hence is a (DFN)-space.

6 Elementary properties

Acting as in the proof of ([7], Proposition 3.1) leads to the following result.
Proposition 6.1. For every $n \in \mathbb{N}$,

$$
\Lambda_{(n)}: \mathcal{E}_{*}\left(H_{n} \times K_{n}\right) \times \mathcal{E}_{*}\left(H_{n} \times K_{n}\right) \rightarrow \mathcal{E}_{*}\left(H_{n} \times K_{n}\right) ; \quad(f, g) \mapsto f g
$$

is a well defined continuous bilinear map. Therefore

$$
\Lambda_{*}: \mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right) \times \mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right) \rightarrow \mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right) ; \quad(f, g) \mapsto f g
$$

also is a well defined continuous bilinear map.
In [1], one finds that, for every $\varepsilon>0$, there are non-zero and positive functions $f \in \mathcal{D}_{\left(\omega_{1}\right)}\left(\mathbb{R}^{r}\right)$ and $g \in \mathcal{D}_{\left(\omega_{2}\right)}\left(\mathbb{R}^{s}\right)$ with support contained in the closed ball of center 0 and radius $\varepsilon / 2$.

So, using $f \otimes g$ and acting as in ([4], p. 61), one obtains that
a) for every non empty compact subset K of an open subset A of $\mathbb{R}^{r} \times \mathbb{R}^{s}$, there is a positive function in $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$, identically 1 on a neighbourhood of K and support contained in A;
b) for every finite open cover $\left\{A_{j}: j=1, \ldots, q\right\}$ of a compact subset K of $\Omega_{1} \times \Omega_{2}$, there are positive function $f_{j} \in \mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)$ such that $\operatorname{supp}\left(\varphi_{j}\right) \subset A_{j}$ and $\sum_{j=1}^{q} \varphi_{j} \equiv 1$ on a neighbourhood of K;
c) for every open cover $\left\{A_{j}: j \in \mathbb{N}\right\}$ of a non empty open subset A of $\mathbb{R}^{r} \times \mathbb{R}^{s}$, there is a $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$-partition of unity subordinate to the cover.

As a consequence, we note that every continuous linear map from the space $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ into a locally convex space has a support. In fact, a lot more can be said: acting as in [7] leads directly to the following results.

Proposition 6.2. The set $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ is a sequentially dense vector subspace of $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$.

Proposition 6.3. Let G be a locally convex space.
a) If A is a bounded subset of $L_{s}\left(\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right), G\right)$ and if there are compact subsets H of Ω_{1} and K of Ω_{2} such that $\operatorname{supp}(S) \subset H \times K$ for every $S \in A$, then every $S \in A$ has a unique continuous linear extension $T(S)$ from $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ into G and $\{T(S): S \in A\}$ is an equicontinuous subset of $L\left(\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right), G\right)$.
b) If the topology of G comes from a system of norms and if B is a simply bounded set of sequentially continuous linear maps from $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ into G, then there are compact subsets H of Ω_{1} and K of Ω_{2} such that, for every $T \in B$, the support of the restriction of T to $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ is contained in $H \times K$.
c) Every simply bounded set of sequentially continuous linear maps from the space $\mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$ into G is equicontinuous.

Theorem 6.4. The space $\mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$ is ultrabornological.

7 The spaces $\mathcal{E}_{*}(\Omega)$ and $\mathcal{D}_{*}(\Omega)$

In this paragraph, given a weight ω and a non void open subset Ω of \mathbb{R}^{n}, we make precise the definition of the spaces $\mathcal{E}_{(\omega)}(\Omega), \mathcal{E}_{\{\omega\}}(\Omega), \mathcal{D}_{(\omega)}(\Omega)$ and $\mathcal{D}_{\{\omega\}}(\Omega)$ by use of strictly regular compact subsets of Ω.

Definition. Given a weight ω, a strictly regular compact subset K of \mathbb{R}^{n} and a positive number h, the Banach space $\mathcal{E}_{(\omega), h}(K)$ is defined as follows: its elements are the \mathcal{C}^{∞}-functions f on K° such that, for every $\alpha \in \mathbb{N}_{0}^{n}$, $\mathrm{D}^{\alpha} f$ has a continuous extension on K and such that

$$
\|f\|_{K, h}:=\sup _{\alpha \in \mathbb{N}_{0}^{n}}\left\|\mathrm{D}^{\alpha} f\right\|_{K} \exp \left(-\varphi^{*}(h|\alpha|) / h\right)<\infty ;
$$

its norm is $\|\cdot\|_{K, h}$.
We then introduce the Fréchet space $\mathcal{E}_{(\omega)}(K):=\lim _{\longleftarrow} \longleftarrow \mathcal{E}_{(\omega), 1 / m}(K)$ and the countable inductive limit of Banach spaces $\mathcal{E}_{\{\omega\}}(K):=\lim _{\longrightarrow} \mathcal{E}_{(\omega), m}(K)$.

In a second step, we consider a non void open subset Ω of \mathbb{R}^{n} and a countable cover $\left(K_{n}\right)_{n \in \mathbb{N}}$ of Ω by means of strictly regular compact sets such that $K_{n} \subset K_{n+1}^{\circ}$ for every $n \in \mathbb{N}$ and set $\mathcal{E}_{(\omega)}(\Omega):=\lim _{\leftarrow} \mathcal{E}_{(\omega)}\left(K_{n}\right)$ and $\mathcal{E}_{\{\omega\}}(\Omega):=\lim _{\leftarrow} \mathcal{E}_{\{\omega\}}\left(K_{n}\right)$.

Moreover $\mathcal{D}_{(\omega)}(K)$ and $\mathcal{D}_{\{\omega\}}(K)$ denote respectively the subspaces of $\mathcal{E}_{(\omega)}(K)$ and $\mathcal{E}_{\{\omega\}}(K)$, the elements of which have a compact support contained in K. Finally we set $\mathcal{D}_{(\omega)}(\Omega):=\lim _{\longrightarrow} \mathcal{D}_{(\omega)}\left(K_{n}\right)$ and $\mathcal{D}_{\{\omega\}}(\Omega):=\lim _{\longrightarrow} \mathcal{E}_{\{\omega\}}\left(K_{n}\right)$.

From now on, let us agree on the following use of the notations: if the notation $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ [resp. $\left.\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)\right]$ appears in a statement as well as $\mathcal{E}_{*}\left(\Omega_{1}\right), \mathcal{E}_{*}\left(\Omega_{2}\right)$, $\mathcal{D}_{*}\left(\Omega_{1}\right)$ or $\mathcal{D}_{*}\left(\Omega_{2}\right)$, it means that two statements are valid:
a) one with $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)$ [resp. $\left.\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right)}\left(\Omega_{1} \times \Omega_{2}\right)\right]$; in this case, the notations become $\mathcal{E}_{\left(\omega_{1}\right)}\left(\Omega_{1}\right), \mathcal{E}_{\left(\omega_{2}\right)}\left(\Omega_{2}\right), \mathcal{D}_{\left(\omega_{1}\right)}\left(\Omega_{1}\right)$ and $\mathcal{D}_{\left(\omega_{2}\right)}\left(\Omega_{2}\right)$ respectively;
b) one with $\mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$ [resp. $\mathcal{D}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right)$]; in this case, the notations become $\mathcal{E}_{\left\{\omega_{1}\right\}}\left(\Omega_{1}\right), \mathcal{E}_{\left\{\omega_{2}\right\}}\left(\Omega_{2}\right), \mathcal{D}_{\left\{\omega_{1}\right\}}\left(\Omega_{1}\right)$ and $\mathcal{D}_{\left\{\omega_{2}\right\}}\left(\Omega_{2}\right)$ respectively.

Proposition 7.1. The bilinear map

$$
\lambda_{*}: \mathcal{E}_{*}\left(\Omega_{1}\right) \times \mathcal{E}_{*}\left(\Omega_{2}\right) \rightarrow \mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right) ; \quad(f, g) \mapsto f \otimes g
$$

and the canonical injection from $\mathcal{E}_{*}\left(\Omega_{1}\right) \otimes_{\pi} \mathcal{E}_{*}\left(\Omega_{2}\right)$ into $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ are continuous.

8 The space $\mathcal{E}^{(p!q!)}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$

Definition. By $\mathcal{E}^{(p!q!)}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$, we designate the space of the \mathcal{C}^{∞}-functions f on $\mathbb{R}^{s} \times \mathbb{R}^{s}$ such that, for every $h>0$ and compact subsets H of \mathbb{R}^{r} and K of \mathbb{R}^{s},

$$
|f|_{H \times K, h}:=\sup _{(\alpha, \beta) \in \mathbb{N}_{0}^{r_{0}} \times \mathbb{N}_{0}^{s}} \frac{\left\|\mathrm{D}^{(\alpha, \beta)} f\right\|_{H \times K}}{h^{|\alpha|+|\beta|} \alpha!\beta!}<\infty
$$

endowed with the system $\left\{|\cdot|_{H \times K, h}: H \Subset \mathbb{R}^{r}, K \Subset \mathbb{R}^{s}, h>0\right\}$ of semi-norms. It clearly is a Fréchet space.

We also denote by $\mathcal{H}\left(\mathbb{C}^{n}\right)$ the Fréchet space of the holomorphic functions on \mathbb{C}^{n} endowed with the topology of uniform convergence on the compact sets. Classical holomorphy arguments easily provide that the restriction map

$$
\Gamma: \mathcal{H}\left(\mathbb{C}^{r+s}\right) \rightarrow \mathcal{E}^{(p!q!)}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right) ;\left.\quad f \mapsto f\right|_{\mathbb{R}^{r} \times \mathbb{R}^{s}}
$$

is a well defined isomorphism.

Proposition 8.1. The restriction map

$$
R_{\Omega_{1} \times \Omega_{2}}: \mathcal{E}^{(p!q!)}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right) \rightarrow \mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right) ;\left.\quad f \mapsto f\right|_{\Omega_{1} \times \Omega_{2}}
$$

is well defined, continuous and linear.
In fact, for every $h>0$, there is $B>1$ such that

$$
\left\|R_{\Omega_{1} \times \Omega_{2}} f\right\|_{H \times K, h} \leq e^{2 B / h}|f|_{H \times K, h /(4 B)}
$$

for every $f \in \mathcal{E}^{(p!!!!}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ and strictly regular compact subsets H of Ω_{1} and K of Ω_{2}.

Proof. Let us establish first the second part of the statement.
Given $h>0$, we choose $B>1$ such that the inequalities (3) hold for $\varphi^{*}=\varphi_{1}^{*}$ and every $\alpha \in \mathbb{N}_{0}^{r}$ as well as for $\varphi^{*}=\varphi_{2}^{*}$ and every $\beta \in \mathbb{N}_{0}^{s}$.

Then we note that, for every $f \in \mathcal{E}^{(p!q!)}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ and strictly compact subsets H of \mathbb{R}^{r} and K of \mathbb{R}^{s}, we have

$$
\begin{aligned}
\left\|\mathrm{D}^{(\alpha, \beta)} f\right\|_{H \times K} & \leq|f|_{H \times K, h /(4 B)}(h /(4 B))^{|\alpha|+|\beta|} \alpha!\beta! \\
& \leq|f|_{H \times K, h /(4 B)} e^{2 B / h} \exp \left(\varphi_{1}^{*}(h|\alpha|) / h+\varphi_{2}^{*}(h|\beta|) / h\right)
\end{aligned}
$$

hence the announced inequality and the fact that $\left.R\right|_{\Omega_{1} \times \Omega_{2}}$ is a well defined linear map.

At this point, the case $*=\left(\omega_{1}, \omega_{2}\right)$ is clear.
In the case $*=\left\{\omega_{1}, \omega_{2}\right\}$, we note that, for every $n \in \mathbb{N}$, the inequality we just established implies the continuity of the linear map $\left.\left(R_{\Omega_{1} \times \Omega_{2}} \cdot\right)\right|_{H_{n} \times K_{n}}$ from $\mathcal{E}^{(p!q!)}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ into $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), 1}\left(H_{n} \times K_{n}\right)$ hence into $\mathcal{E}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(H_{n} \times K_{n}\right)$. The conclusion then follows at once.

9 Approximation

Notation. For every $m \in \mathbb{N}$, the function ψ_{m} is defined on $\mathbb{R}^{r} \times \mathbb{R}^{s}$ by

$$
\psi_{m}(u, v):=m^{r+s} \pi^{-(r+s) / 2} e^{-m^{2}|u|^{2}} e^{-m^{2}|v|^{2}}, \quad \forall(u, v) \in \mathbb{R}^{r} \times \mathbb{R}^{s} .
$$

Proposition 9.1. For every $m \in \mathbb{N}$ and $f \in \mathcal{D}_{*}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$, the function $f \star \psi_{m}$ has a holomorphic extension on \mathbb{C}^{r+s} hence belongs to $\mathcal{E}^{(p!q!)}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Proposition 9.2. For every $f \in \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right),\left(R_{\Omega_{1} \times \Omega_{2}}\left(f \star \psi_{m}\right)\right)_{m \in \mathbb{N}}$ is a sequence in $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ converging to f.

Proof. There is $n \in \mathbb{N}$ such that $f \in \mathcal{D}_{*}\left(H_{n} \times K_{n}\right)$. So, in the case $*=$ $\left(\omega_{1}, \omega_{2}\right)$, f belongs to $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), 1 / m}\left(H_{n} \times K_{n}\right)$ for every $m \in \mathbb{N}$ and, in the case $*=$ $\left\{\omega_{1}, \omega_{2}\right\}$, there is $m \in \mathbb{N}$ such that f belongs to $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), m}\left(H_{n} \times K_{n}\right)$.

Let f belong to $\mathcal{D}_{\left(\omega_{1}, \omega_{2}\right), h}\left(H_{n} \times K_{n}\right)$ for some $h>0$. For every $m \in \mathbb{N}$, we just proved that $f \star \psi_{m}$ belongs to $\mathcal{E}^{(p!q!)}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ hence, by Proposition 8.1, that its restriction to $H_{n} \times K_{n}$ belongs to $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}\left(H_{n} \times K_{n}\right)$. We are going to prove that the sequence $\left(\left.\left(f \star \psi_{m}\right)\right|_{H_{n} \times K_{n}}\right)_{m \in \mathbb{N}}$ converges to f in $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), b h}\left(H_{n} \times K_{n}\right)$, which allows to conclude at once.

Let $\varepsilon>0$ be given.
We first choose $C>0$ for which the inequalities (4) hold and then fix $q \in \mathbb{N}$ such that $2^{-q} e^{2 / h+2 C}\|f\|_{H_{n} \times K_{n}, h} \leq \varepsilon / 2$.

Now we evaluate $\left\|\mathrm{D}^{(\alpha, \beta)}\left(f \star \psi_{m}\right)-\mathrm{D}^{(\alpha, \beta)} f\right\|_{H_{n} \times K_{n}}$.
If $|\alpha|+|\beta| \geq q$, we write down the convolution product and easily get

$$
\begin{aligned}
& \left\|\mathrm{D}^{(\alpha, \beta)}\left(f \star \psi_{m}\right)-\mathrm{D}^{(\alpha, \beta)} f\right\|_{H_{n} \times K_{n}} \\
& \left.\quad \leq 2\|f\|_{H_{n} \times K_{n}, h} 2^{-|\alpha|-|\beta|} \exp \left(|\alpha|+\varphi_{1}^{*}(h|\alpha|) / h+|\beta|+\varphi_{2}^{*}(h|\beta|) / h\right)\right) .
\end{aligned}
$$

So the inequalities (4) and the choice of q provide

$$
\left\|\mathrm{D}^{(\alpha, \beta)}\left(f \star \psi_{m}\right)-\mathrm{D}^{(\alpha, \beta)} f\right\|_{H_{n} \times K_{n}} \leq \varepsilon \exp \left(\varphi_{1}^{*}(b h|\alpha|) /(b h)+\varphi_{2}^{*}(b h|\beta|) /(b h)\right) .
$$

If $|\alpha|+|\beta|<q$, we note that $\left\{\mathrm{D}^{(\alpha, \beta)} f:|\alpha|+|\beta|<q\right\}$ is a finite set of continuous functions on $\mathbb{R}^{r} \times \mathbb{R}^{s}$ with compact supports hence is a uniformly equicontinuous set. Therefore there is $\delta>0$ such that

$$
\frac{\left|\mathrm{D}^{(\alpha, \beta)} f(x-u, y-v)-\mathrm{D}^{(\alpha, \beta)} f(x, y)\right|}{\exp \left(\varphi_{1}^{*}(b h|\alpha|) /(b h)+\varphi_{2}^{*}(b h|\beta|) /(b h)\right)} \leq \frac{\varepsilon}{2}
$$

for every $(x, y),(u, v) \in \mathbb{R}^{r} \times \mathbb{R}^{s}$ and $(\alpha, \beta) \in \mathbb{N}_{0}^{r} \times \mathbb{N}_{0}^{s}$ such that $|(u, v)| \leq \delta$ and $|\alpha|+|\beta|<q$. Now we set

$$
M:=2 \sup _{|\gamma|+|\delta|<q} \frac{\left\|\mathrm{D}^{(\gamma, \delta)} f\right\|_{\mathbb{R}^{r} \times \mathbb{R}^{s}}}{\exp \left(\varphi_{1}^{*}(b h|\gamma|) /(b h)+\varphi_{2}^{*}(b h|\delta|) /(b h)\right)}
$$

and fix $m_{0} \in \mathbb{N}$ such that $M \int_{|(u, v)| \geq \delta} \psi_{m} d u d v \leq \varepsilon / 2$ for every $m \geq m_{0}$. Therefore by writing down the convolution product and by splitting the integral on $\{(u, v):|(u, v)| \leq \delta\}$ and $\{(u, v):|(u, v)| \geq \delta\}$, we easily obtain

$$
\frac{\left\|\mathrm{D}^{(\alpha, \beta)}\left(f \star \psi_{m}\right)-\mathrm{D}^{(\alpha, \beta)} f\right\|_{H_{n} \times K_{n}}}{\left.\exp \left(\varphi_{1}^{*}(b h|\alpha|) /(b h)+\varphi_{2}^{*}(b h|\beta|) / b h\right)\right)} \leq \varepsilon, \quad \forall m \geq m_{0}
$$

Hence the conclusion by putting these two informations together.

Proposition 9.3. For every $f \in \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$, there is a sequence of polynomials on \mathbb{R}^{r+s} converging to f in $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$.

Therefore the set of the restrictions to $\Omega_{1} \times \Omega_{2}$ of the polynomials on $\mathbb{R}^{r} \times \mathbb{R}^{s}$ is a dense vector subspace of $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$.

Proof. The first statement can be established as Proposition 5.3 of [7] The second is then a direct consequence of Proposition 6.2.

Proposition 9.4. The vector space $\mathcal{D}_{*}\left(\Omega_{1}\right) \otimes \mathcal{D}_{*}\left(\Omega_{2}\right)$ is a dense vector subspace of $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$.

Therefore $\mathcal{E}_{*}\left(\Omega_{1}\right) \otimes \mathcal{E}_{*}\left(\Omega_{2}\right)$ is a dense vector subspace of $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$.
Proof. The first statement can be established as Proposition 7.1 of [7] The second is then a direct consequence of Proposition 6.2.

10 Denseness of $\mathcal{D}_{*}(H) \otimes \mathcal{D}_{*}(K)$ in $\mathcal{D}_{*}(H \times K)$

Notation. Given $b \in \mathbb{R}^{n}$ and a function f on $\mathbb{R}^{n}, \tau_{b} f$ designates the function defined on \mathbb{R}^{n} by $\left(\tau_{b} f\right)(\cdot)=f(\cdot-b)$.

Proposition 10.1. For every $b \in \mathbb{R}^{n}$, the map τ_{b} is a well defined continuous linear map from $\mathcal{E}_{*}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ into itself.

Moreover we have $\lim _{b \rightarrow 0} \tau_{b} f=f$ for every $f \in \mathcal{E}_{*}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.
Proof. The first part of the statement is immediate.
Now for any strictly regular compact subsets H of \mathbb{R}^{r} and K of \mathbb{R}^{s}, we first choose strictly regular compact subsets H^{\prime} of \mathbb{R}^{r} and K^{\prime} of \mathbb{R}^{s} such that $H \subset H^{\prime \circ}$ and $K \subset K^{\prime \circ}$. We next choose a positive number $\delta<d\left(H \times K,\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right) \backslash\left(H^{\prime \circ} \times K^{\prime \circ}\right)\right)$). So for every $b=\left(b_{1}, b_{2}\right) \in \mathbb{R}^{r} \times \mathbb{R}^{s}$ such that $|b| \leq \delta$ and $(x, y) \in H \times K,\left(x-b_{1}, y-b_{2}\right)$ belongs to $H^{\prime} \times K^{\prime}$.

In the case $*=\left(\omega_{1}, \omega_{2}\right),\left.f\right|_{H^{\prime} \times K^{\prime}}$ belongs to $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), 1 / m}\left(H^{\prime} \times K^{\prime}\right)$ for every $m \in \mathbb{N}$; in the case $*=\left\{\omega_{1}, \omega_{2}\right\},\left.f\right|_{H^{\prime} \times K^{\prime}}$ belongs to $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), m}\left(H^{\prime} \times K^{\prime}\right)$ for some $m \in \mathbb{N}$.

We are going to prove that, if $\left.f\right|_{H^{\prime} \times K^{\prime}}$ belongs to $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}\left(H^{\prime} \times K^{\prime}\right)$ for some $h>0$, then, for every $\varepsilon>0$, there is $\eta>0$ such that $\left\|\tau_{b} f-f\right\|_{H \times K, b h} \leq \varepsilon$ for every $b \in \mathbb{R}^{r} \times \mathbb{R}^{s}$ such that $|b| \leq \eta$. The conclusion then follows at once.

Clearly the functions $\left.f\right|_{H \times K}$ and $\left.\left(\tau_{b} f\right)\right|_{H \times K}$ belong to $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}(H \times K)$. We first choose $C>0$ for which the inequalities (4) hold and then fix $q \in \mathbb{N}$ such that $2^{-q} e^{2 C+2 / h}\|f\|_{H^{\prime} \times K^{\prime}, h} \leq \varepsilon / 2$.

On one hand, for every $(x, y) \in H \times K, b=\left(b_{1}, b_{2}\right) \in \mathbb{R}^{r} \times \mathbb{R}^{s}$ and $(\alpha, \beta) \in \mathbb{N}_{0}^{r} \times \mathbb{N}_{0}^{s}$ such that $|b| \leq \delta$ and $|\alpha|+|\beta| \geq q$, the inequality (4) directly leads to

$$
\begin{aligned}
& \left|\mathrm{D}^{(\alpha, \beta)} f(x, y)-\mathrm{D}^{(\alpha, \beta)} f\left(x-b_{1}, y-b_{2}\right)\right| \\
& \quad \leq 2 e^{2 C+2 / h} 2^{-q}\|f\|_{H^{\prime} \times K^{\prime}, h} \exp \left(\varphi_{1}^{*}(b h|\alpha|) /(b h)+\varphi_{2}^{*}(b h|\beta|) /(b h)\right) .
\end{aligned}
$$

On the other hand, $\left\{\mathrm{D}^{(\alpha, \beta)} f:|\alpha|+|\beta|<q\right\}$ is a finite set of continuous functions on the compact set $H^{\prime} \times K^{\prime}$. Therefore there is $\eta>0$ such that

$$
\sup _{|\alpha|+|\beta|<q} \sup _{(x, y) \in H \times K} \frac{\left|\mathrm{D}^{\alpha, \beta)} f(x, y)-\mathrm{D}^{(\alpha, \beta)} f\left(x-b_{1}, y-b_{2}\right)\right|}{\exp \left(\varphi_{1}^{*}(b h|\alpha|) /(b h)+\varphi_{2}^{*}(b h|\beta|) /(b h)\right)} \leq \varepsilon
$$

for every $b=\left(b_{1}, b_{2}\right) \in \mathbb{R}^{r} \times \mathbb{R}^{s}$ such that $|b| \leq \eta$.
These two informations put together provide the conclusion.
Definition. A subset B of \mathbb{R}^{n} has the local displacement property if every $x \in B$ has a neighbourhood W such that, for every $\varepsilon>0$, there is $a \in \mathbb{R}^{n}$ such that $|a| \leq \varepsilon$ and $a+(B \cap W) \subset B^{\circ}$.

If B_{1}, \ldots, B_{q} are closed balls in \mathbb{R}^{n} in finite number and such that $B_{j} \cap B_{k} \neq \emptyset$ implies that $B_{j}^{\circ} \cap B_{k}^{\circ} \neq \emptyset$, one can check that their union has the local displacement property. Moreover if the compact subsets H of \mathbb{R}^{r} and K of \mathbb{R}^{s} have the local displacement property, it is clear that $H \times K$ also has this property.

Therefore, from now on, we agree that the covers $\left(H_{n}\right)_{n \in \mathbb{N}}$ of Ω_{1} and $\left(K_{n}\right)_{n \in \mathbb{N}}$ of Ω_{2} consist of strictly regular compact sets having the local displacement property and such that $H_{n} \subset H_{n+1}^{\circ}$ and $K_{n} \subset K_{n+1}^{\circ}$ for every $n \in \mathbb{N}$.

An argument analogous to the one of the proof of ([7], Proposition 8.1) then establishes the following result.

Proposition 10.2. If the compact subsets H of \mathbb{R}^{r} and K of \mathbb{R}^{s} have the local displacement property, then the vector space $\mathcal{D}_{*}(H) \otimes \mathcal{D}_{*}(K)$ is a dense subspace of $\mathcal{D}_{*}(H \times K)$.

11 Structure of the elements of $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$

If f belongs to $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$, it is clear that, for every $y \in \Omega_{2}, f(., y)$ belongs to $\mathcal{E}_{*}\left(\Omega_{1}\right)$. Let us investigate this property.

Proposition 11.1. For every $f \in \mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$, the function

$$
g: \Omega_{2} \rightarrow \mathcal{E}_{*}\left(\Omega_{1}\right) ; \quad y \mapsto f(., y)
$$

is \mathcal{C}^{∞} and such that $\left[D^{\beta} f(y)\right]()=.D^{(0, \beta)} f(., y)$ for every $\beta \in \mathbb{N}_{0}^{s}$ and $y \in \Omega_{2}$.
Proof. For every $\beta \in \mathbb{N}_{0}^{s}$, since $\mathrm{D}^{(0, \beta)} f$ belongs to $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$, Proposition 10.1 provides the continuity of the function $g_{\beta}: \Omega_{2} \rightarrow \mathcal{E}_{*}\left(\Omega_{1}\right)$ defined by $g_{\beta}(y)=$ $\mathrm{D}^{(0, \beta)} f(., y)$. Therefore to conclude, it is enough to establish the formula in the case $|\beta|=1$. Let us do this for $\beta=(1,0, \ldots, 0)$. So we only have to prove that

$$
\lim _{k \rightarrow 0}\left(g\left(c+k e_{1}\right)-g(c)\right) / h=g_{\beta}(c) \text { in } \mathcal{E}_{*}\left(\Omega_{1}\right), \quad \forall c \in \Omega_{2} .
$$

Given $c \in \Omega_{2}$, we have $c \in K_{n}^{\circ}$ for n large enough. For such an integer n, $\left.f\right|_{H_{n} \times K_{n}}$ belongs to $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), 1 / m}\left(H_{n} \times K_{n}\right)$ for every $m \in \mathbb{N}$ if $*=\left(\omega_{1}, \omega_{2}\right)$ and to $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), m}\left(H_{n} \times K_{n}\right)$ for some $m \in \mathbb{N}$ if $*=\left\{\omega_{1}, \omega_{2}\right\}$.

If c belongs to K_{n}° and f to $\mathcal{E}_{\left(\omega_{1}, \omega_{2}\right), h}\left(H_{n} \times K_{n}\right)$ for some $h>0$, we are going to prove that, for every $\varepsilon>0$, there is $\delta>0$ such that

$$
\left\|\left(g\left(c+k e_{1}\right)-g(c)\right) / k-g_{\beta}(c)\right\|_{H_{n}, b h} \leq \varepsilon
$$

if $0<|k| \leq \delta$. The conclusion then follows at once.

Up to considering the real and imaginary parts of f separately, we may assume f real valued. As c belongs to K_{n}°, there is $\eta>0$ such that $c+t k e_{1}$ belongs to K_{n}° for every $t \in[0,1]$ if $|k| \leq \eta$. Let us consider $k \in \mathbb{R}$ such that $0<|k| \leq \eta$. For every $x \in \Omega_{1}$ and $\alpha \in \mathbb{N}_{0}^{r}$, the limited Taylor formula provides $\left.\theta(k, x, \alpha) \in\right] 0,1[$ such that

$$
\mathrm{D}^{(\alpha, 0)} f\left(x, c+k e_{1}\right)-\mathrm{D}^{(\alpha, 0)} f(x, c)=k \mathrm{D}^{(\alpha, \beta)} f\left(x, c+\theta(k, x, \alpha) k e_{1}\right)
$$

Let a_{0} be a positive number such that the inequalities (1) hold for every $a \geq$ $a_{0} /(b h)$ and let $q \geq a_{0} /(b h)$ be an integer such that

$$
2^{-q}\|f\|_{H_{n} \times K_{n}, h} \exp \left(1 / h+\varphi_{2}^{*}(h) / h\right) \leq \varepsilon / 2 .
$$

As $\left\{\mathrm{D}^{(\alpha, \beta)} f:|\alpha| \leq q\right\}$ is a finite set of continuous functions on the compact set $H_{n} \times K_{n}$, we can also choose $\left.\delta \in\right] 0, \eta[$ such that

$$
\left|\mathrm{D}^{(\alpha, \beta)} f(x, y)-\mathrm{D}^{(\alpha, \beta)} f\left(x, y^{\prime}\right)\right| \leq \varepsilon \exp \left(\varphi_{1}^{*}(b h|\alpha|) /(b h)\right)
$$

for every $x \in H_{n} ; y, y^{\prime} \in K_{n}$ and $\alpha \in \mathbb{N}_{0}^{r}$ such that $\left|y-y^{\prime}\right| \leq \delta$ and $|\alpha| \leq q$.
So for $k \in \mathbb{R}$ such that $0<|k| \leq \delta$, we arrive directly at

$$
\begin{aligned}
& \left\|\left(g\left(c+k e_{1}\right)-g(c)\right) / k-g_{\beta}(c)\right\|_{H_{n}, b h} \\
& \quad \leq \sup \left\{\varepsilon, 2 \sup _{|\alpha|>q}\left\|\mathrm{D}^{(\alpha, \beta)} f\right\|_{H_{n} \times K_{n}} \exp \left(-\varphi_{1}^{*}(b h|\alpha|) /(b h)\right)\right\}
\end{aligned}
$$

with

$$
\begin{aligned}
& \sup _{|\alpha|>q}\left\|\mathrm{D}^{(\alpha, \beta)} f\right\|_{H_{n} \times K_{n}} \exp \left(-\varphi_{1}^{*}(b h|\alpha|) /(b h)\right) \\
& \quad \leq\|f\|_{H_{n} \times K_{n}, h} \sup _{|\alpha|>q} \exp \left(\varphi_{1}^{*}(h|\alpha|) / h-\varphi_{1}^{*}(b h|\alpha|) /(b h)+\varphi_{2}^{*}(h|\beta|) / h\right) \\
& \quad \leq 2^{-q}\|f\|_{H_{n} \times K_{n}, h} \exp \left(1 / h+\varphi_{2}^{*}(h) / h\right)
\end{aligned}
$$

[to obtain the last inequality, we use the inequalities (1)].
Hence the conclusion.
Then one can proceed as in [7] and get the following properties.
Proposition 11.2. a) For every $f \in \mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ and $S \in \mathcal{E}_{*}\left(\Omega_{1}\right)^{\prime}$, the function $\langle S, f(., y)\rangle$ belongs to $\mathcal{E}_{*}\left(\Omega_{2}\right)$ and verifies

$$
D^{\beta}\langle S, f(., y)\rangle=\left\langle S, D^{(0, \beta)} f(., y)\right\rangle, \quad \forall \beta \in \mathbb{N}_{0}^{s}, y \in \Omega_{2} .
$$

b) The bilinear map $\Delta_{*}: \mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right) \times \mathcal{E}_{*}\left(\Omega_{1}\right)^{\prime} \rightarrow \mathcal{E}_{*}\left(\Omega_{2}\right)$ defined by $\Delta_{*}(f, S)=$ $\langle S, f(., y)\rangle$ is well defined and hypocontinuous.

Permuting the roles of Ω_{1} and Ω_{2} as well as those of ω_{1} and ω_{2} leads to analogous results and in particular to a hypocontinuous bilinear map ${ }_{*} \Delta$.

Proposition 11.3. For every $f \in \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$, the function

$$
g_{\beta}: \Omega_{2} \rightarrow \mathcal{D}_{*}\left(\Omega_{1}\right) ; \quad y \mapsto f(., y)
$$

is \mathcal{C}^{∞} and such that $\left[D^{\beta} g(y)\right]()=.D^{(0, \beta)} f(., y)$ for every $\beta \in \mathbb{N}_{0}^{s}$ and $y \in \Omega_{2}$.

Proposition 11.4. a) For every $f \in \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ and $S \in \mathcal{D}_{*}\left(\Omega_{1}\right)^{\prime}$, the function $\langle S, f(., y)\rangle$ belongs to $\mathcal{D}_{*}\left(\Omega_{2}\right)$ and verifies

$$
D^{\beta}\langle S, f(., y)\rangle=\left\langle S, D^{(0, \beta)} f(., y)\right\rangle, \quad \forall \beta \in \mathbb{N}_{0}^{s}, y \in \Omega_{2} .
$$

b) The bilinear map $\Gamma_{*}: \mathcal{D}_{*}\left(\Omega_{1}, \Omega_{2}\right) \times \mathcal{D}_{*}\left(\Omega_{1}\right)^{\prime} \rightarrow \mathcal{D}_{*}\left(\Omega_{2}\right)$ defined by $\Gamma_{*}(f, S)=$ $\langle S, f(., y)\rangle$ is well defined and hypocontinuous.

Permuting the roles of Ω_{1} and Ω_{2} as well as those of ω_{1} and ω_{2} leads to analogous results and in particular to a hypocontinuous bilinear map ${ }_{*} \Gamma$.

12 The tensor product \otimes on the duals

Definition. Given $S \in \mathcal{D}_{*}\left(\Omega_{1}\right)^{\prime}$ and $T \in \mathcal{D}_{*}\left(\Omega_{2}\right)^{\prime}$, we know that
a) $\langle S, f(., y)\rangle$ belongs to $\mathcal{D}_{*}\left(\Omega_{1}\right)$ for every $f \in \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ and $y \in \Omega_{2}$,
b) $S \otimes T: \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right) \rightarrow \mathbb{C}$ defined by

$$
\langle S \otimes T, f\rangle=\left\langle T, \Gamma_{*}(f, S)\right\rangle=\langle T,\langle S, f(., y)\rangle\rangle, \quad \forall f \in \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)
$$

is a continuous linear functional.
a') $\langle T, f(x,)$.$\rangle belongs to \mathcal{D}_{*}\left(\Omega_{2}\right)$ for every $f \in \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ and $x \in \Omega_{1}$,
b') $T \otimes S: \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right) \rightarrow \mathbb{C}$ defined by

$$
\langle T \otimes S, f\rangle=\left\langle{ }_{*} \Gamma(f, T)\right\rangle=\langle S,\langle T, f(x, .)\rangle\rangle, \quad \forall f \in \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)
$$

is a continuous linear functional.
Since we have $\left\langle S \otimes T, f_{1} \otimes f_{2}\right\rangle=\left\langle S, f_{1}\right\rangle\left\langle T, f_{2}\right\rangle=\left\langle T \otimes S, f_{1} \otimes f_{2}\right\rangle$ for every $f \in$ $\mathcal{D}_{*}\left(\Omega_{1}\right)$ and $g \in \mathcal{D}_{*}\left(\Omega_{2}\right)$, Proposition 9.4 implies that these two continuous linear functionals coincide. We call $S \otimes T=T \otimes S$ the tensor product of S and T. In fact the restriction of $S \otimes T=T \otimes S$ to $\mathcal{D}_{*}\left(\Omega_{1}\right) \otimes \mathcal{D}_{*}\left(\Omega_{2}\right)$ coincides with the tensor product of S and T considered as a continuous linear functional on $\mathcal{D}_{*}\left(\Omega_{1}\right) \otimes_{\varepsilon} \mathcal{D}_{*}\left(\Omega_{2}\right)$.

It is clear that if S and T have compact support, then $S \otimes T$ also has a compact support.

Proposition 12.1. The map

$$
\chi_{*}: \mathcal{E}_{*}\left(\Omega_{1}\right)^{\prime} \times \mathcal{E}_{*}\left(\Omega_{2}\right)^{\prime} \rightarrow \mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)^{\prime} ; \quad(S, T) \mapsto S \otimes T
$$

is well defined, hypocontinuous and bilinear.
In the case $*=\left(\omega_{1}, \omega_{2}\right)$, χ_{*} is continuous.
Proof. Clearly χ_{*} is a well defined bilinear map.
As $\mathcal{E}_{*}\left(\Omega_{1}\right)^{\prime}$ and $\mathcal{E}_{*}\left(\Omega_{2}\right)^{\prime}$ are ultrabornological spaces, χ_{*} is hypocontinuous if it is separately continuous (cf. [6], III.5.2). Given $S \in \mathcal{E}_{*}\left(\Omega_{1}\right)^{\prime}$, the continuity of $\chi_{*}(S,$. can be established as in the proof of ([7],Proposition 11.1). As the same proof implies the continuity of $\chi_{*}(., T)$ for every $T \in \mathcal{E}_{*}\left(\Omega_{2}\right)$, we conclude at once.

To obtain the improvement of the case $*=\left(\omega_{1}, \omega_{2}\right)$, it suffices to note that $\mathcal{E}_{*}\left(\Omega_{1}\right)^{\prime}$ and $\mathcal{E}_{*}\left(\Omega_{2}\right)^{\prime}$ are strong duals of Fréchet nuclear spaces.

Proposition 12.2. The map

$$
\chi_{*}: \mathcal{D}_{*}\left(\Omega_{1}\right)^{\prime} \times \mathcal{D}_{*}\left(\Omega_{2}\right)^{\prime} \rightarrow \mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)^{\prime} ; \quad(S, T) \mapsto S \otimes T
$$

is well defined, hypocontinuous and bilinear.
In the case $*=\left\{\omega_{1}, \omega_{2}\right\}, \chi_{*}$ is continuous.
Proof. For the general case, one can proceed as in the proof of Proposition 12.1. The improvement in the case $*=\left\{\omega_{1}, \omega_{2}\right\}$ is immediate if one notes that $\mathcal{D}_{*}\left(\Omega_{1}\right)^{\prime}$ and $\mathcal{D}_{*}\left(\Omega_{2}\right)^{\prime}$ are Fréchet spaces.

13 Tensor properties and kernel theorems

Proceeding as in ([7], Paragraph 12) provides the following results. In d), given two locally convex spaces E and $F, E \otimes_{i} F$ designates their tensor product endowed with the inductive topology (cf. [2]) and of course $E \widehat{\otimes}_{i} F$ its completion.

Theorem 13.1. a) The canonical algebraic isomorphism from $\mathcal{E}_{*}\left(\Omega_{1}\right) \otimes \mathcal{E}_{*}\left(\Omega_{2}\right)$ as a subspace of $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ onto $\mathcal{E}_{*}\left(\Omega_{1}\right) \otimes_{\epsilon} \mathcal{E}_{*}\left(\Omega_{2}\right)$ is continuous.
b) The spaces $\mathcal{E}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\mathcal{E}_{*}\left(\Omega_{1}\right) \widehat{\otimes}_{\pi} \mathcal{E}_{*}\left(\Omega_{2}\right)$ coincide.
c) If the compact subsets H of \mathbb{R}^{r} and K of \mathbb{R}^{s} have the local displacement property, then the spaces $\mathcal{D}_{*}(H \times K)$ and $\mathcal{D}_{*}(H) \widehat{\otimes}_{\pi} \mathcal{D}_{*}(K)$ coincide.
d) The spaces $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\mathcal{D}_{*}\left(\Omega_{1}\right) \widehat{\otimes}_{i} \mathcal{D}_{*}\left(\Omega_{2}\right)$ coincide.

Definition. A $*$-kernel on $\Omega_{1} \times \Omega_{2}$ is an element of $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)^{\prime}$.
Given a $*$-kernel N on $\Omega_{1} \times \Omega_{2}$,

$$
B_{N}: \mathcal{D}_{*}\left(\Omega_{1}\right) \times \mathcal{D}_{*}\left(\Omega_{2}\right) \rightarrow \mathbb{C} ; \quad(f, g) \mapsto N(f \otimes g)
$$

clearly is a bilinear functional. By Theorem 13.1.d), B_{N} is separately continuous, the functional $\mathcal{N}(f):=B_{N}(f,$.$) belongs to \mathcal{D}_{*}\left(\Omega_{2}\right)^{\prime}$ for every $f \in \mathcal{D}_{*}\left(\Omega_{1}\right)$ and the map \mathcal{N} to $L\left(\mathcal{D}_{*}\left(\Omega_{1}\right), \mathcal{D}_{*}\left(\Omega_{2}\right)^{\prime}\right)$. Similarly if g belongs to $\mathcal{D}_{*}\left(\Omega_{2}\right)$, then $B_{N}(., g)$ belongs to $\mathcal{D}_{*}\left(\Omega_{1}\right)^{\prime}$; in fact, $B_{N}(., g)={ }^{t} \mathcal{N}(g)$ where ${ }^{t} \mathcal{N}$ is the transpose of \mathcal{N}.

Conversely the Theorem 13.1.d) also provides the following kernel theorems.
Theorem 13.2. a) If T is a continuous linear map from $\mathcal{D}_{*}\left(\Omega_{1}\right)$ into $\mathcal{D}_{*}\left(\Omega_{2}\right)^{\prime}$, then there is $a *$-kernel N on $\Omega_{1} \times \Omega_{2}$ such that $\mathcal{N}=T$.
b) If S is a continuous linear map from $\mathcal{D}_{*}\left(\Omega_{2}\right)$ into $\mathcal{D}_{*}\left(\Omega_{1}\right)^{\prime}$, then there is a *-kernel N on $\Omega_{1} \times \Omega_{2}$ such that ${ }^{t} \mathcal{N}=S$.

Proceeding as in ([7], Paragraph 13) leads to the following results.
Theorem 13.3. a) The following spaces coincide

$$
\mathcal{D}_{\left\{\omega_{1}, \omega_{2}\right\}}\left(\Omega_{1} \times \Omega_{2}\right) \text { and } \mathcal{D}_{\left\{\omega_{1}\right\}}\left(\Omega_{1}\right) \widehat{\otimes}_{\pi} \mathcal{D}_{\left\{\omega_{2}\right\}}\left(\Omega_{2}\right) .
$$

b) The spaces $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)^{\prime}$, $\mathcal{B}_{b}\left(\mathcal{D}_{*}\left(\Omega_{1}\right), \mathcal{D}_{*}\left(\Omega_{2}\right)\right)$ and $L_{b}\left(\mathcal{D}_{*}\left(\Omega_{1}\right), \mathcal{D}_{*}\left(\Omega_{2}\right)^{\prime}\right)$ coincide.
c) The set of the finite rank elements with compact support is a dense vector subspace of $L_{b}\left(\mathcal{D}_{*}\left(\Omega_{1}\right), \mathcal{D}_{*}\left(\Omega_{2}\right)\right)$.
d) The spaces $\mathcal{D}_{*}\left(\Omega_{1} \times \Omega_{2}\right)^{\prime}$ and $\mathcal{D}_{*}\left(\Omega_{1}\right)^{\prime} \widehat{\otimes}_{\varepsilon} \mathcal{D}_{*}\left(\Omega_{2}\right)^{\prime}$ coincide.

A way to state the classical kernel theorem of Schwartz (cf. [8]) is given by the equality $\mathcal{D}\left(\Omega_{1} \times \Omega_{2}\right)^{\prime}=\mathcal{D}\left(\Omega_{1}\right)^{\prime} \widehat{\otimes}_{\mathcal{E}} \mathcal{D}\left(\Omega_{2}\right)^{\prime}$. Therefore the part d) also appears as a refinement of the kernel theorem.

14 Case $\omega_{1}=\omega_{2}$

Proposition 14.1. Let the compact subsets H of \mathbb{R}^{r} and K of \mathbb{R}^{s} be strictly regular and set $L=H \times K$. Then, for every $h>0$, the spaces $\mathcal{E}_{(\omega), h}(L)$ and $\mathcal{E}_{(\omega, \omega), h}(H \times K)$ coincide.

Proof. On one hand, every $f \in \mathcal{E}_{(\omega, \omega), h}(H \times K)$ verifies

$$
\begin{aligned}
\left\|\mathrm{D}^{(\alpha, \beta)} f\right\|_{L} & \leq\|f\|_{H \times K, h} \exp \left(\varphi^{*}(h|\alpha|) / h+\varphi^{*}(h|\beta|) / h\right) \\
& \leq\|f\|_{H \times K, h} \exp \left(\varphi^{*}(h|(\alpha, \beta)|) / h\right)
\end{aligned}
$$

for every $(\alpha, \beta) \in \mathbb{N}_{0}^{r+s}$.
On the other hand, if f belongs to $\mathcal{E}_{\omega, h}(L)$, then, for every $(\alpha, \beta) \in \mathbb{N}_{0}^{r} \times \mathbb{N}_{0}^{s}$, we successively have

$$
\begin{aligned}
\left\|\mathrm{D}^{(\alpha, \beta)} f\right\|_{H \times K} & \leq\|f\|_{L} \exp (\varphi(h(|(\alpha, \beta)|)) / h) \\
& \leq\|f\|_{L, h} \exp \left(\varphi^{*}(2 h|\alpha|) /(2 h)+\varphi^{*}(2 h|\beta|) /(2 h)\right) .
\end{aligned}
$$

Hence the conclusion.
Therefore we have the following properties.
Proposition 14.2. If the compact subsets H of \mathbb{R}^{r} and K of \mathbb{R}^{s} are strictly regular and if we set $L=H \times K$,
a) the spaces $\mathcal{E}_{(\omega)}(L)$ and $\mathcal{E}_{(\omega, \omega)}(H \times K)$ coincide.
b) the spaces $\mathcal{E}_{\{\omega\}}(L)$ and $\mathcal{E}_{\{\omega, \omega\}}(H \times K)$ coincide.
c) the spaces $\mathcal{D}_{(\omega)}(L)$ and $\mathcal{D}_{(\omega, \omega)}(H \times K)$ coincide.
d) the spaces $\mathcal{D}_{\{\omega\}}(L)$ and $\mathcal{D}_{\{\omega, \omega\}}(H \times K)$ coincide.

If we set $\Omega=\Omega_{1} \times \Omega_{2}$,
a) the spaces $\mathcal{E}_{(\omega)}(\Omega)$ and $\mathcal{E}_{(\omega, \omega)}\left(\Omega_{1} \times \Omega_{2}\right)$ coincide.
b) the spaces $\mathcal{E}_{\{\omega\}}(\Omega)$ and $\mathcal{D}_{\{\omega, \omega\}}\left(\Omega_{1} \times \Omega_{2}\right)$ coincide.
c) the spaces $\mathcal{D}_{(\omega)}(\Omega)$ and $\mathcal{D}_{(\omega, \omega)}\left(\Omega_{1} \times \Omega_{2}\right)$ coincide.
d) the spaces $\mathcal{D}_{\{\omega\}}(\Omega)$ and $\mathcal{D}_{\{\omega, \omega\}}\left(\Omega_{1} \times \Omega_{2}\right)$ coincide.

References

[1] Braun R. W., Meise R., Taylor B. A., Ultradifferentiable functions and Fourier analysis, Results in Math. 17(1990), 206-237.
[2] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Memoirs Amer. Math. Soc. 16(1955).
[3] Jarchow H., Locally convex spaces, B. G. Teubner Mathematische Leitfäden (1981).
[4] Komatsu H., Ultradistributions, I: Structure theorems and a characterization, J. Fac. Sc. Tokyo, Ser. I A, 20(1973), 25-105.
[5] Pietsch A., Nukleare lokalkonvexe Ra̋ume, Akademie-Verlag (1969).
[6] Schaefer H. H., Topological vector spaces, Springer Graduate Texts in Mathematics 3(1971).
[7] Schmets J., Valdivia M., About some non quasi-analytic classes, preprint 30 pp .
[8] Schwartz L., Théorie des distributions à valeurs vectorielles, Ann. Inst. Fourier 7(1957), 1-141 \& 8(1958),1-209.
[9] Whitney H., Functions differentiable on the boundaries of regions, Annals of Math. 35(1934), 482-485.
[10] Whitney H., Analytic extension of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36(1934), 63-98.

Institut de Mathématique
Université de Liège
Sart Tilman Bât. B 37
B-4000 LIEGE 1
BELGIUM
j.schmets@ulg.ac.be
Facultad de Matemáticas
Universidad de Valencia
Dr. Moliner 50
E-46100 BURJASOT (Valencia)
SPAIN

[^0]: *Partially supported by MEC and FEDER Project MTM2005-08210.
 Received by the editors August 2007.
 Communicated by F. Bastin.
 1991 Mathematics Subject Classification : 46A11, 46A32, 46E10, 46F05.
 Key words and phrases : ultradifferentiable functions, Beurling type, Roumieu type, nuclearity, tensor product, kernel theorem.

