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Abstract

In this paper the stability of the quadratic equation is considered on arbi-
trary groups. Since the quadratic equation is stable on Abelian groups, this
paper examines the stability of the quadratic equation on noncommutative
groups. It is shown that the quadratic equation is stable on n-Abelian groups
when n is a positive integer. The stability of the quadratic equation is also
established on the noncommutative group T (2,K), where K is an arbitrary
commutative field. It is proved that every group can be embedded into a
group in which the quadratic equation is stable.

1 Introduction

In 1940 to the audience of the Mathematics Club of the University of Wisconsin S.
M. Ulam presented a list of unsolved problems [20]. One of these problems can be
considered as the starting point of a new line of investigations: the stability problem.
The problem was posed as follows. If we replace a given functional equation by a
functional inequality, then under what conditions we can say that the solutions of
the inequality are close to the solutions of the equation. For example, given a group
G1, a metric group (G2, d) and a positive number ε, the Ulam question is: Does there
exist a δ > 0 such that if the map f : G1 → G2 satisfies d(f(xy), f(x)f(y)) < δ for
all x, y ∈ G1, then a homomorphism T : G1 → G2 exists with d(f(x), T (x)) < ε for
all x, y ∈ G1? In the case of a positive answer to this problem, we say that Cauchy
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functional equation f(xy) = f(x)f(y) is stable for the pair (G1, G2). The interested
reader should refer to [20] and [12] for an account on Ulam’s problem.

Hyers [11] proved the following result to give an affirmative answer to Ulam’s
problem. Let X, Y be Banach spaces and let f : X → Y be a mapping satisfying

||f(x+ y) − f(x) − f(y)|| ≤ ε

for all x, y in X. Then there exists a unique additive mapping A : X → Y satisfying

||f(x) −A(x)|| ≤ ε

for all x in X. This pioneer result of Hyers can be expressed in the following way:
Cauchy’s functional equation is stable for any pair of Banach spaces.

The quadratic functional equation

f(xy) + f(xy−1) = 2f(x) + 2f(y) (1.1)

where f is defined on a group G and takes its values from a vector space E, is an
important equation in the theory of functional equations and it plays an important
role in the characterization of inner product spaces [7]. The stability of the quadratic
functional equation (1.1) was first proved by Skof [19] for functions from a normed
space into a Banach space. Cholewa [2] demonstrated that Skof’s theorem is also
valid if the relevant domain is replaced by an Abelian group. Later, Fenyő [8]

improved the bound obtained and Cholewa from ε
2

to ε+‖f(0)‖
3

(cf. [3]).

Theorem 1.1. Let G be an Abelian group and let E be a Banach space. If a function

f : G→ E satisfies the inequality

‖f(x+ y) + f(x− y) − 2f(x) − 2f(y)‖ ≤ ε

for some ε ≥ 0 and for all x, y ∈ G, then there exists a unique quadratic function

q : G→ Esuch that

‖f(x) − q(x)‖ ≤
1

3
(ε+ ‖f(0)‖)

for all x ∈ G.

The above theorem can be expressed in the following way: The quadratic func-
tional equation is stable for the pair (G,E), where G is an Abelian group and E is
a Banach space [7].

Various works on stability of the quadratic functional equation can be found
in Skof [19], Cholewa [2], Fenyő [8], Ger [10], Czerwik [3], [4], [5], [6], Jung [13],
[14], Jung and Sahoo [15], and Rassias [18]. In all these works, the stability of the
quadratic equation or a more general quadratic equation was treated for the pair
(G,E) when G is an Abelian group.

In the present paper, we consider the stability of the functional equation (1.1)
for the pair (G,E) when G is an arbitrary group and E is a real Banach space. We
prove that if G is an n-Abelian group with n ∈ N, then the functional equation (1.1)
is stable. The Skof’s result [19] is a particular case of this result. Stability of the
quadratic equation is established on the group T (2, G). We also show that any group
can be embedded into a group G such that the functional equation (1.1) is stable
on G.
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2 Preliminary results

Definition 2.1. Let G be an arbitrary group and E a Banach space. We say that
a mapping f : G → E is a quasiquadratic mapping if there exists a nonnegative
number δ such that

‖f(xy) + f(xy−1) − 2f(x) − 2f(y)‖ ≤ δ (2.1)

for all x, y ∈ G.

Definition 2.2. Let G be an arbitrary group and E a Banach space. We say that
f : G→ E is a quadratic mapping if it satisfies the quadratic equation

f(xy) + f(xy−1) − 2f(x) − 2f(y) = 0 (2.2)

for all x, y ∈ G.

It is clear that the set of all quasiquadratic mappings from G to E is a real linear
space relative to the usual operations. Let us denote it by KQ(G;E). The subspace
of KQ(G,E) consisting of all quadratic functions will be denoted by Q(G;E).

In this sequel, we will write the arbitrary group G in multiplicative notation so
that 1 will denote the identity element of G.

Substituting 1 for x in (2.1), we get

‖f(y) + f(y−1) − 2f(1) − 2f(y)‖ ≤ δ.

Hence
‖f(y−1) − f(y)‖ ≤ c1 for all y ∈ G, (2.3)

where c1 = 2‖f(1)‖ + δ.
Replacing y by x in (2.1), we obtain

‖f(x2) + f(1) − 4f(x)‖ ≤ δ.

Therefore
‖f(x2) − 4f(x)‖ ≤ ‖f(1)‖ + δ for all x ∈ G. (2.4)

Again, substituting x2 for y in (2.1), we see that

‖f(x3) + f(x−1) − 2f(x) − 2f(x2)‖ ≤ δ.

Using (2.3), we have

‖f(x3) − f(x) − 2f(x2)‖ ≤ c1 + δ.

From the last inequality and (2.4) it follows that

‖f(x3) − 9f(x)‖ ≤ c1 + 2‖f(1)‖ + 3δ. (2.5)

Lemma 2.3. Let f ∈ KQ(G,E). Then for any integer m ≥ 1 there is a δm > 0
such that for each x ∈ G

‖f(xm) −m2f(x)‖ ≤ δm. (2.6)
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Proof. If we put δ1 = δ, δ2 = ‖f(1)‖ + δ and δ3 = 4(‖f(1)‖ + δ), then (2.6)
follows from (2.4) and (2.5) for m = 1, 2, 3. So for m = 1, 2, 3 the lemma is easily
established. Next we prove the lemma for m ≥ 4 by induction on m. Let m ≥ 4
and suppose (2.6) has been already established for m, and let us check it for m+ 1.
From (2.1), we have

‖f(xm+1) + f(xm−1) − 2f(xm) − 2f(x)‖ ≤ δ. (2.7)

Now from the induction hypothesis we have

‖f(xm−1) − (m− 1)2f(x)‖ ≤ δm−1,

and

‖f(xm) −m2f(x)‖ ≤ δm.

From (2.7) and (2.6) we obtain

‖f(xm+1) + (m− 1)2f(x) − 2m2f(x) − 2f(x)‖ ≤ δ + δm−1 + 2δm.

which is

‖f(xm+1) − (m+ 1)2f(x)‖ ≤ δ + δm−1 + 2δm.

So letting δm+1 = δ + δm−1 + 2δm we get (2.6). This completes the proof of the
lemma. �

Lemma 2.4. Suppose f ∈ KQ(G,E). Then for any k,m ∈ N with m ≥ 2 and any

x ∈ G, the following relation

∥∥∥∥∥
1

m2k
f(xmk

) − f(x)

∥∥∥∥∥ ≤ 2bm (2.8)

holds, where bm = 1
m2 δm.

Proof. The proof is by induction on k. If k = 1, then the assertion is clearly true
by Lemma 2.3. Let k > 1. From Lemma 2.3, we have

∥∥∥∥
1

m2
f(xm) − f(x)

∥∥∥∥ ≤ bm. (2.9)

Replacing x by xm in (2.9), we get

∥∥∥∥
1

m2
f(xm2

) − f(xm)

∥∥∥∥ ≤ bm. (2.10)

Hence, as above, we get
∥∥∥∥

1

m2

1

m2
f(xm2

) −
1

m2
f(xm)

∥∥∥∥ ≤ bm
1

m2
. (2.11)

Now from the last inequality and (2.9), we see that
∥∥∥ 1

m2·2 f(xm2
) − f(x)

∥∥∥ ≤ bm[1 + 1
m2 ].
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Substituting xm for x in the last inequality, we obtain
∥∥∥ 1

m2·2 f(xm3
) − f(xm)

∥∥∥ ≤ bm[1 + 1
m2 ].

Hence
∥∥∥ 1

m2·3 f(xm3
) − f(x)

∥∥∥ ≤ bm[1 + 1
m2 + 1

m2·2 ].

Continuing in this manner, we obtain the formula
∥∥∥ 1

m2·k f(xmk

) − f(x)
∥∥∥ ≤ bm

[
1 + 1

m2 + 1
m2·2 + · · ·+ 1

m2·(k−1)

]
≤ 2bm,

and this completes the proof of the lemma. �

From (2.8) it follows that for any x ∈ G and any m ∈ N the set
{

1

m2k
f(xmk

) : k ∈ N

}

is bounded. Let us verify that the sequence

{
1

m2k f(xmk

)

}∞

k=1

has a limit. From (2.8)

it follows that for any x ∈ G and any m,n ∈ N

∥∥∥∥∥
1

m2k
f((xmn

)mk

) − f(xmn

)

∥∥∥∥∥ ≤ 2bm,

that is
∥∥∥∥∥

1

m2(n+k)
f(xmn+k

) −
1

m2n
f(xmn

)

∥∥∥∥∥ ≤ 2
bm
m2n

.

From the last inequality it follows that if n→ ∞, then
∥∥∥∥∥

1

m2(n+k)
f(xmn+k

) −
1

m2n
f(xmn

)

∥∥∥∥∥→ 0.

So, the sequence

{
1

m2k f(xmk

)

}∞

k=1

is a Cauchy sequence and has a limit, say ϕm(x).

It is clear that for any x ∈ G we have

‖ϕm(x) − f(x)‖ ≤ 2bm. (2.12)

Obviously, for any natural numberm, the function ϕm belongs to the spaceKQ(G;E).
Now let us verify that for any x ∈ G, the following relation

ϕm(xmn

) = m2nϕm(x) (2.13)

holds. Indeed

ϕm(xmn

) = lim
k→∞

1

m2k
f((xmn

)mk

) = lim
k→∞

m2n

m2(n+k)
f(xmn+k

)

= m2n lim
k→∞

1

m2k
f(xmk

) = m2nϕm(x).
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Lemma 2.5. Let f ∈ KQ(G,E) and ϕm(x) = 1
m2k f(xmk

). Then for any positive

integer m ≥ 2, the relation ϕ2 = ϕm holds.

Proof. The functions ϕ2, ϕm belong to the space KQ(G;E). Hence the mapping

g(x) = lim
k→∞

1

m2k
ϕ2(x

mk

)

is well defined and belongs to the space KQ(G;E). It is clear that

g(xmk

) = m2kg(x) and g(x2k

) = 22kg(x) (2.14)

for any x ∈ G and any k ∈ N. From (2.12) it follows that there are exist positive
numbers d1, d2 such that for any x ∈ G

‖ϕ2(x) − g(x)‖ ≤ d1 and ‖ϕm(x) − g(x)‖ ≤ d2. (2.15)

Replacing x by x2k

in (2.15), we get

‖ϕ2(x
2k

) − g(x2k

)‖ ≤ d1.

Now using (2.13) and (2.14), we have

2k‖ϕ2(x) − g(x)‖ ≤ d1,

which is

‖ϕ2(x) − g(x)‖ ≤
d1

2k
.

Hence ϕ2(x) = g(x). Similarly, we obtain ϕm(x) = g(x), and ϕ2 ≡ ϕm follows. This
completes the proof of the theorem. �

Let

f̂(x) = lim
k→∞

1

4k
f(x2k

). (2.16)

By Lemma 2.5, we have

f̂(xp) = ϕ2(x
p) = ϕp(x

p) = p2ϕp(x) = p2ϕ2(x) = p2f̂(x).

Thus
f̂(xp) = p2f(x) (2.17)

for any x ∈ G and for any p ∈ N.

Definition 2.6. By a pseudoquadratic mapping , defined on a group G, we mean a
quasiquadratic mapping f such that f(xn) = n2f(x) for any x ∈ G and any n ∈ N.

The set of all pseudoquadratic mappings will be denoted by PQ(G;E). We will
say that a pseudoquadratic mapping f is nontrivial if f /∈ Q(G;E). The space of
all bounded mappings f : G→ E will be denote by B(G;E).

Theorem 2.7. For any group G we have the following decomposition

KQ(G;E) = PQ(G;E) ⊕B(G;E).

Proof. It is clear thatB(G;E) is a subspace ofKQ(G;E) and PQ(G;E)∩B(G;E) =
{0}. Hence a subspace of KQ(G;E) generated by PQ(G;E) and B(G;E) is their
direct sum. Let us verify that KQ(G;E) ⊆ PQ(G;E) ⊕ B(G;E). Indeed, if f ∈
KQ(G;E), then we have f̂ ∈ PQ(G;E) and f − f̂ ∈ B(G;E). �
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3 Stability

Suppose that G is a group and E is a real Banach space.

Definition 3.1. The quadratic equation (2.2) is said to be stable for the pair (G;E)
if for any f : G→ E satisfying functional inequality

‖ f(xy) + f(xy−1) − 2f(x) − 2f(y) ‖ ≤ a ∀x, y ∈ G

(for some a ≥ 0), there is a solution q of functional equation (2.2) such that the
function f(x) − q(x) belongs to the space B(G;E).

Theorem 3.2. The functional equation (2.2) is stable for the pair (G;E) if and

only if PQ(G;E) = Q(G;E).

Proof. It is clear that Q(G;E) ⊆ PQ(G;E).
Now suppose that there is f ∈ PQ(G;E) \ Q(G;E). Let us show that the

equation (2.2) is not stable. Indeed, if there is q ∈ Q(G;E) such that for some
positive number a

‖ f(x) − q(x) ‖ ≤ a,

then,

‖ f(x) − q(x) ‖ = 1
4n‖ f(x2n

) − q(x2n

)‖ ≤ a
4n

and we see that f(x) = q(x). Thus we come to a contradiction with the assumption
about f . So if equation( 2.2) is stable, then PQ(G;E) = Q(G;E).

Now suppose that PQ(G;E) = Q(G;E). Let us show that the equation (2.2) is
stable. By Theorem 2.7 for any group G we have the decomposition

KQ(G;E) = PQ(G) ⊕ B(G;E).

Hence, in our case we get

KQ(G;E) = Q(G;E) ⊕B(G;E).

It follows that for any f satisfying the functional inequality

‖ f(xy) + f(xy−1) − 2f(x) − 2f(y) ‖ ≤ a ∀x, y ∈ G

(for some a ≥ 0), there is a solution q of functional equation (2.2) such that the
function f(x)− q(x) belongs to the space B(G;E). So, the equation (2.2) is stable.
This completes the proof of the theorem. �

Theorem 3.3. Let E1, E2 be a Banach spaces over reals. Then the equation (2.2)
is stable for the pair (G;E1) if and only if it is stable for the pair (G;E2).

Proof. Let E be a Banach space and R be the set of reals. Let the equation (2.2) is
stable for the pair (G;E). Suppose that (2.2) is not stable for the pair (G,R), then
there is a nontrivial pseudoquadratic function f on G. So, for some a ≥ 0 we have

‖ f(xy) + f(xy−1) − 2f(x) − 2f(y) ‖ ≤ a ∀x, y ∈ G.
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Now let e ∈ E and ‖e‖ = 1. Consider the function ϕ : G→ E given by the formula
ϕ(x) = f(x) ·e. It is clear that ϕ is a nontrivial pseudoquadratic E–valued function,
and we obtain a contradiction.

Now suppose that the equation (2.2) is stable for the pair (G,R), that is,
PQ(G; R) = Q(G,R). Denote by E∗ the space of linear bounded functionals on
E endowed by functional norm topology. Let us verify that for any ϕ ∈ PQ(G;E)
and any λ ∈ E∗ the function ψ = λ ◦ ϕ belongs to the space PQ(G,R). In-
deed, if a a nonnegative number such that for any x, y ∈ G we have inequality
‖ϕ(xy) + ϕ(xy−1) − 2ϕ(x) − 2ϕ(y)‖ ≤ a, then

|ψ(xy) + ψ(xy−1) − 2ψ(x) − 2ψ(y)|
= |λ(ϕ(xy)) + λ(ϕ(xy−1)) − 2λ(ϕ(x)) − 2λ(ϕ(y))|
= |λ(ϕ(xy)) + λ(ϕ(xy−1)) − λ(2ϕ(x)) − λ(2ϕ(y))|
= |λ(ϕ(xy) + ϕ(xy−1) − 2ϕ(x) − 2ϕ(y))|
≤ ‖λ‖ a.

Obviously λ(ϕ(xn)) = n2λ(ϕ(x)) for any x ∈ G and for any n ∈ N. Hence the
function λ ◦ ϕ belongs to the space PQ(G,R). Let f : G → E be a nontrivial
pseudoquadratic mapping. Then there are x, y ∈ G such that f(xy) + f(xy−1) −
2f(x) − 2f(y) 6= 0. Hahn–Banach Theorem implies that there is a ℓ ∈ E∗ such
that ℓ(f(xy) + f(xy−1) − 2f(x) − 2f(y)) 6= 0, and we see that ℓ ◦ f is a nontriv-
ial pseudoquadratic real–valued function on G. This contradiction establishes the
theorem. �

Due to the last theorem we may simply say that the equation (2.2) is stable or
not stable on a group G. In what follows, the spaces PQ(G,R) and Q(G,R) will be
denoted by PQ(G) and Q(G), respectively.

Let n be an integer. A group G is said to be an n-Abelian group if (xy)n = xnyn

for every x and y in G (see Levi [16], Baer [1], Li [17] and Gallian and Reid [9]).

Theorem 3.4. Let n ∈ N and G be an n-Abelian group. The equation

f(xy) + f(xy−1) − 2f(x) − 2f(y) = 0

is stable on group G.

Proof. Let G be an n-Abelian group. Let f ∈ PQ(G) and δ > 0 be such that for
any x, y ∈ G the inequality

|f(xy) + f(xy) − 2f(x) − 2f(y)| ≤ δ (3.1)

holds. Let u, v be arbitrary elements of G and n ∈ N such that (uv)n = unvn. From
the latter relation, we get

(uv)nk

= unk

vnk

(3.2)

for any k ∈ N. Let us proof this by induction on k. If k = 1 the relation (3.2) is true.
Suppose that (3.2) is true for k. Then we have (uv)nk+1

= ((uv)nk

)n = (unk

vnk

)n =
unk+1

vnk+1
. Thus, for any k ∈ N, we have

n2k|f(uv) + f(uv−1) − 2f(u) − 2f(v)|

= |f((uv)nk

) + f((uv−1)nk

) − 2f(unk

) − 2f(vnk

)|

= |f((unk

vnk

) + f((unk

(v−1)nk

) − 2f(unk

) − 2f(vnk

)| ≤ δ.
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Hence

|f(uv) + f(uv−1) − 2f(u) − 2f(v)| ≤
1

n2k
δ.

Therefore, it follows that f(uv)+ f(uv−1)− 2f(u)− 2f(v) = 0 and the proof is now
complete. �

It is well known that if n = 2, then an n-Abelian group is an Abelian group.
Thus we get the result obtained by Skof in [19] as a corollary.

Corollary 3.5. The quadratic functional equation

f(xy) + f(xy−1) − 2f(x) − 2f(y) = 0

is stable on any Abelian group.

Let K be an arbitrary commutative field. Let K∗ be the set nonzero elements
of K with operation of multiplication. Denote by G the group T (2, K) consisting of
matrices of the form

[
α t
0 β

]

; α, β ∈ K∗; t ∈ K.

Denote by T , E, D subgroups of G = T (2, K) consisting of matrices
[

1 t
0 1

]

;

[
±1 0
0 ±1

]

;

[
a 0
0 b

]

;

where a, b ∈ K∗, t ∈ K, respectively. It is clear that T ⊳G and we have the following
semidirect products, G = D · T . Subgroup C of G generated by T and E is a
semidirect product C = E · T . In the remaining of this section, we investigate the
stability of the quadratic equation on the group T (2, K).

Let f ∈ PQ(G) and f
∣∣∣
D
≡ 0. Then for some positive number ∆ and any x, y ∈ G

we have
|f(xy) + f(xy−1) − 2f(x) − 2f(y)| ≤ ∆. (3.3)

Let

u =

[
1 t
0 1

]

, v =

[
a 0
0 b

]

, w =

[
1 b

c
t

0 1

]

.

From the equality
[

1 t
0 1

]

·

[
a 0
0 b

]

=

[
a 0
0 b

]

·

[
1 b

a
t

0 1

]

(3.4)

we get
uv = vw, vw−1 = u−1v. (3.5)

From (3.3), we have

|f(uv) + f(uv−1) − 2f(u) − 2f(v)| ≤ ∆,

|f(vw) + f(vw−1) − 2f(v) − 2f(w)| ≤ ∆.
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Taking into account (3.5) and (2.3) it follows from the last two relations that there
is a positive number ∆1 such that

|f(u)− f(w)| ≤ ∆1.

That is
∣∣∣∣∣f

([
1 t
0 1

])

− f

([
1 b

a
t

0 1

])∣∣∣∣∣ ≤ ∆1

for any t ∈ K and a, b ∈ K∗. Therefore f is bounded on T . But for any n ∈ N and
x ∈ T we have f(xn) = n2f(x). It follows f

∣∣∣
T
≡ 0. Therefore f

∣∣∣
D∪T

≡ 0.

Let x = a−1u, y = av, a ∈ D, u, v ∈ T . Then from (3.3), we have

|f(a−1uav) + f(a−1uv−1a−1) − 2f(a−1u) − 2f(av)| ≤ ∆.

Denoting a−1ua by ua, we obtain

|f(uav) + f(a−1uv−1a−1) − 2f(a−1u) − 2f(av)| ≤ ∆.

Letting v = 1 and simplifying we see that

|f(ua) + f(a−2ua−1

) − 2f(a−1u) − 2f(a)| ≤ ∆.

Since f
∣∣∣
T
≡ 0, f(a) = 0 and from last inequality, we have

|f(ua) + f(a−2ua−1

) − 2f(a−1u)| ≤ ∆.

Further, since ua ∈ D ∪ T , f(ua) = 0. Hence we obtain

|f(a−2ua−1

) − 2f(a−1u)| ≤ ∆

for all a ∈ D and u ∈ T . Replacing a−1 by a, we have

|f(a2ua) − 2f(au)| ≤ ∆ (3.6)

for all a ∈ D and u ∈ T . Next letting x = a2ua and y = u in (3.3), we have

|f(a2uau) + f(a2uau−1) − 2f(a2ua) − 2f(u)| ≤ ∆.

Since (au)2 = a2uau, the last inequality yields

|f((au)2) + f(a2uau−1) − 2f(a2ua) − 2f(u)| ≤ ∆.

Since f ∈ PQ(G), f(x2) = 4f(x) and from the last inequality, we have

|4f(au) + f(a2uau−1) − 2f(a2ua) − 2f(u)| ≤ ∆. (3.7)

From (3.6) and (3.7) we get

|4f(au) + f(a2uau−1) − 4f(au) − 2f(u)| ≤ 3∆.

Since u ∈ T and f
∣∣∣
T
≡ 0, f(u) = 0. Therefore the last inequality yields

|f(a2uau−1)| ≤ 3∆. (3.8)
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Lemma 3.6. Let f ∈ PQ(G) and f
∣∣∣
D

≡ 0. Suppose for some positive number ∆

the inequality (3.3) holds for all x, y ∈ G. Then f is bounded on the set

M1 =

{[
a2 t
0 b2

] ∣∣∣∣∣ a, b ∈ K∗, t ∈ K and a2 6= b2
}

.

Proof. Let us show that any element g from the set M1 is representable in the form
g = c2ucu−1 for some c ∈ D and u ∈ T .

Let g =

[
a2 t
0 b2

]

be an arbitrary element from M1, and let c =

[
a 0
0 b

]

,

and u =

[
1 τ
0 1

]

. We have ucu−1 =

[
1 b

a
τ

0 1

]

·

[
1 −τ
0 1

]

=

[
1 ( b

a
− 1)τ

0 1

]

So

c2ucu−1 =

[
a2 0
0 b2

]

·

[
1 ( b

a
− 1)τ

0 1

]

=

[
a2 a(b− a)τ
0 b2

]

. Hence we see that if

τ = t
a(b−a)

, then g = c2ucu−1. Now from (3.8) it follows that for any g ∈M1 we have

|f(g)| ≤ 3∆ (3.9)

and the proof of the lemma is now complete. �

Lemma 3.7. Let f ∈ PQ(G) and f
∣∣∣
D

≡ 0. Suppose for some positive number ∆

the inequality (3.3) holds for all x, y ∈ G. Let

M2 =

{[
α2 t
0 α2

] ∣∣∣∣∣ α ∈ K∗, t ∈ K

}

.

Then f
∣∣∣
M2

≡ 0.

Proof. Let us show that f is bounded on the set M2. Any element g from M2 is

representable in the form g = au, where a ∈ D and u ∈ T . Let b =

[
β2 τ
0 1

]

,

where β2 6= 1. Then for any v ∈ G we have

|f(gv) + f(gv−1) − 2f(g) − 2f(v)| ≤ ∆,

|f(aub) + f(aub−1) − 2f(au) − 2f(b)| ≤ ∆,

|f(abub) + f(ab−1ub−1

) − 2f(au) − 2f(b)| ≤ ∆, (3.10)

The diagonal elements of the matrices b, abub, ab−1ub−1
are different. Hence from (3.9),

we have
|f(b)| ≤ 3∆, |f(abub)| ≤ 3∆, |f(ab−1ub−1

)| ≤ 3∆.

From (3.10) we get
|f(au)| ≤ 5∆, (3.11)

and we see that f is bounded on M2. It is clear that M2 is a subgroup of G, hence
from (3.11) it follows that f

∣∣∣
M2

≡ 0 . �
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Theorem 3.8. Quadratic equation is stable on T (2, K), where K is an arbitrary

commutative field.

Proof. Let ϕ ∈ PQ(G) and ψ = ϕ
∣∣∣
D
. The subgroup D is an Abelian group. By

Theorem 3.4 we have ψ ∈ Q(D). Hence a function ψ̂ defined by the rule ψ̂(x) =

ψ(π(x)), where π : G→ D an epimorphism such that π : g =

[
a t
0 b

]

→

[
a 0
0 b

]

,

is a quadratic function on G such that ψ̂
∣∣∣
D

= ϕ
∣∣∣
D
. Now consider function f(x) =

ϕ(x) − ψ̂(x). It is clear that f
∣∣∣
D

≡ 0. By Lemmas 3.6 and 3.7 we get that there

exists a positive δ such that for any g belonging to the set

M =

{[
a2 t
0 b2

] ∣∣∣∣∣ a, b ∈ K∗, t ∈ K

}

we have the following estimation |f(g)| ≤ δ. Now if x an arbitrary element from
G, then x2 ∈ M and we have |f(x)| = 1

4
|f(x2)| ≤ 1

4
δ. Therefore the function f is

bounded on G. Hence, f ≡ 0. and we see that ϕ = ψ̂ ∈ Q(G). �

4 Embedding

Let G be an arbitrary group, f ∈ PQ(G), and for any x, y ∈ G the following relation

|f(xy) + f(xy−1) − 2f(x) − 2f(y)| ≤ δ (4.1)

holds. Let b, c, u, v be elements of G, and let x = bu and y = cv. Below we will use
notation ab for element b−1ab; ∀a, b ∈ G. Then from (4.1), we get

|f(bucv) + f(buv−1c−1) − 2f(bu) − 2f(cv)|

= |f(bcucv) + f(bc−1(uv−1)c−1
) − 2f(bu) − 2f(cv)| ≤ δ.

Thus

|f(bcucv) + f(bc−1(uv−1)c−1
) − 2f(bu) − 2f(cv)| ≤ δ (4.2)

and if b = c, we get

|f(c2ucv) + f((uv−1)c−1
) − 2f(cu) − 2f(cv)| ≤ δ. (4.3)

If b = c and u = v, then from (4.2) it follows that

|f(c2ucu) + f((uu−1)c−1
) − 2f(cu) − 2f(cu)| ≤ δ. (4.4)

Hence

|f(c2ucu) − 4f(cu)| ≤ δ.

If c2 = 1, then the inequality implies that

|f(ucu) − 4f(cu)| ≤ δ. (4.5)
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If we put b = c, c2 = 1 and u = 1, then from (4.2), we get

|f(v) + f((v−1)c−1
) − 2f(cv)| ≤ δ (4.6)

which is
|f(v) + f(vc) − 2f(cv)| ≤ δ. (4.7)

From (4.5) and (4.7), we have

|f(ucu) − 2f(u) − 2f(uc)| ≤ 3δ. (4.8)

Substituting c2 = 1, v = 1, in (4.3), we see that

|f(uc) + f(uc) − 2f(cu)| ≤ δ

which is
|f(uc) − f(cu)| ≤ 1

2
δ. (4.9)

From (4.9) and (4.7) it follows that

|f(uc) − f(u)| ≤ 2δ.

Since the last inequality holds for any u ∈ G, we get

|f((un)c) − f(un)| ≤ 2δ, ∀n ∈ N.

Hence

n2|f(uc) − f(u)| ≤ 2δ, ∀n ∈ N.

and we see that the last relation is possible only if

f(uc) = f(u). (4.10)

From (4.9) and (4.10), we get

|f(cu) − f(u)| ≤ 1
2
δ. (4.11)

From (4.5), (4.7) and (4.10), we get

|f(ucu) − 4f(u)| ≤ 3δ. (4.12)

Indeed

|f(ucu) − 4f(u)| = |f(ucu) − 4f(cu) − 2f(u) − 2f(uc) + 4f(cu)|
≤ |f(ucu) − 4f(cu)| + 2|f(u) + f(uc) − 2f(cu)|
≤ 3δ.
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Lemma 4.1. Let G be an arbitrary group, f ∈ PQ(G) and u, c ∈ G. Suppose that

ucu = uuc. Then

f(ucu) = 4f(u). (4.13)

Proof. For any n ∈ N, we have

n2|f(ucu) − 4f(u)| = |f((ucu)n) − 4f(un)| = |f((un)cun) − 4f(un)| ≤ δ.

Therefore

|f(ucu) − 4f(u)| ≤ 1
n2 δ.

Hence

f(ucu) = 4f(u).

This completes the proof of the lemma. �

Let A and B be arbitrary groups. For each b ∈ B denote by A(b) a group that
is isomorphic to A under isomorphism a→ a(b). Denote by H = A(B) =

∏
b∈B A(b)

the direct product of groups A(b). It is clear that if a1(b1)a2(b2) · · ·ak(bk) is an
element of H , then for any b ∈ B, the mapping

b∗ : a1(b1)a2(b2) · · ·ak(bk) → a1(b1b)a2(b2b) · · ·ak(bkb)

is an automorphism of H and b → b∗ is an embedding of B into AutH . Thus, we
can form a semidirect product G = B ·H . This group is called the wreath product

of the groups A and B, and will be denoted by G = A ≀ B. We will identify the
group A with subgroup A(1) of H , where 1 ∈ B. Hence, we can assume that A is a
subgroup of H .

Let us denote, by C, the group of order 2 with the generator c. Consider the
group A ≀ C.

Lemma 4.2. Let A be an arbitrary group and C be a group of order 2 with the

generator c. Further, let H = A(C). If for some a1, b1 ∈ A we have

|f(a1b1) + f(a1b
−1
1 ) − 2f(a1) − 2f(b1)| = δ > 0

then for some x, y ∈ H we have

|f(xy) + f(xy−1) − 2f(x) − 2f(y)| = 4δ.

Proof. Let u = a1b1. Then we have ucu = uuc. Using the relation (4.13) we get

f(a1a
c
1b1b

c
1) + f(a1a

c
1(b

−1
1 )cb−1

1 ) − 2f(a1a
c
1) − 2f(b1b

c
1)

= f(a1b1a
c
1b

c
1) + f(a1b

−1
1 ac

1(b
−1
1 )c) − 2f(a1a

c
1) − 2f(b1b

c
1)

= 4f(a1b1) + 4f(a1b
−1
1 ) − 4 · 2f(a1) − 4 · 2f(b1)

= 4δ

and the proof is now complete. �
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Theorem 4.3. Any group A can be embedded into a group G such that the equa-

tion (2.2) is stable on G.

Proof. Let Ci, for i ∈ N, be a group of order 2. Consider the chain of groups defined
as follows:

A1 = A, A2 = A1 ≀ C1, A3 = A2 ≀ C2, . . . , Ak+1 = Ak ≀ Ck, . . .

Define a chain of embeddings

A1 = A → A2 = A1 ≀ C1 → A3 = A2 ≀ C2 → · · · → Ak+1 = Ak ≀ Ck → . . . (4.14)

by identifying Ak with Ak(1) a subgroup of Ak+1. Let G be the direct limit of the
chain (4.14). Then we have G = ∪k∈NAk and

A1 ⊂ A2 ⊂ · · · ⊂ Ak ⊂ Ak+1 ⊂ . . . . . . ⊂ G.

Let f ∈ PQ(G), and let for k ∈ N

δk = sup
{
f(uv) + f(uv−1) − 2f(u) − 2f(v) : u, v ∈ Ak

}
.

Let us verify that δk = 0 for any k. Suppose that δ1 > 0. Then for some a1, b1 ∈ A1,
we have

|f(a1b1) + f(a1b
−1
1 ) − 2f(a1) − 2f(b1)| = δ > 0.

Then Lemma 4.2 implies that, for some a2, b2 ∈ A2, we have

|f(a2b2) + f(a2b
−1
2 ) − 2f(a2) − 2f(b2)| = 4δ.

Again by Lemma 4.2 we can find a3, b3 ∈ A3 such that

|f(a3b3) + f(a3b
−1
3 ) − 2f(a3) − 2f(b3)| = 42 δ.

Continuing this process we see that one can choose ak, bk ∈ Ak such that

|f(akbk) + f(akb
−1
k ) − 2f(ak) − 2f(bk)| = 4k−1δ → ∞ as k → ∞.

This contradicts the assumption that f ∈ PQ(G). So we see that δ1 = 0. Similarly
we can verify that δ2 = δ3 = · · · = δk = · · · = 0. Therefore we have f ∈ Q(G) and
the proof is complete. �
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[8] I. Fenyő, On an inequality of P. W. Cholewa, In: General Inequalities 5 (ed.
W. Walter), Birkhauser, Basel, 1987, pp. 277-280.

[9] J. A. Gallian and M. Reid, Abelian Forcing sets, Amer. Math. Monthly, 100

(1993), 580-582.

[10] R. Ger, Functional inequalities stemming from stability questions , In: General
Inequalities 6 (ed. W. Walter), Birkhauser, Basel, 1992, pp. 227–240.

[11] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad.
Sci. U.S.A. 27 (1941), 222–224.

[12] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in
Several Variables, Birkhäuser, Boston, 1998.
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