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Abstract

This paper deals with Moufang-Klingenberg planes M(A) defined over
a local alternative ring A of dual numbers. The definition of cross-ratio
is extended to M (A). Also, some properties of cross-ratios and 6-figures
that are well-known for Desarguesian planes are investigated in M(A); so we
obtain relations between algebraic properties of A and geometric properties of
M(A). In particular, we show that pairwise non-neighbour four points of the
line g are in harmonic position if and only if they are harmonic, and that µ is
Menelaus or Ceva 6-figure if and only if r (µ) = −1 or r (µ) = 1, respectively.

1 Introduction

One of the important problems of projective geometry is to find the relationships
between algebraic properties of the coordinatizing ring and the geometric properties
of the associated plane. For example, a projective plane is a Pappian plane, a
Desarguesian plane or a Moufang plane if and only if the coordinatizing ring is a
field, a division ring (skew field) or an alternative field (alternative division ring),
respectively [10, p. 154]. Besides, a geometric structure is a Moufang-Klingenberg
(MK) plane if and only if the coordinatizing ring is a local alternative ring [1,
Theorem 3.10 and Theorem 4.1].
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One of the objectives of this paper is to extend the definition of cross-ratio for
a certain class (which we will denote by M(A)) of MK-planes coordinatized by a
local alternative ring A := A (ε) = A + Aε (an alternative field A, ε /∈ A and
ε2 = 0) introduced by Blunck in [4] to the whole plane M(A). Some properties of
cross-ratios and 6-figures that are well-known for Desarguesian or Moufang planes
are investigated in M(A) and so some relations between algebraic properties of A
and geometric properties of M(A) are obtained, which is the other objective of
this paper. In our previous paper [6], we have shown that the collineation group of
M (A) acts transitively on 4-gons. This ensures the coordinatization of M(A) is
independent of the choice of the coordinatization base. Also, in [6], we have obtained
some important results related to 6-figures. We will give these results in the last
section and we will get some new results for 6-figures.

Section 2 includes some basic definitions and results from the literature.
In Section 3, the concept of cross-ratio which has a great importance as a projec-

tive invariant is mentioned. First, the definition of cross-ratio, which is given in [4]
for the points on g = [1, 0, 0], is extended to the whole plane M (A). Next, a simple
way for the calculation of the cross-ratio of points on the line l, according to type of
l, is given. Finally the relation between the harmonic position (which is a geometric
property) and the harmonicity (which is an algebraic property) is established: Any
four pairwise non-neighbour points on the line g are in harmonic position if and only
if they are harmonic.

In Section 4, the ratio of a 6-figure in M (A) is defined and it is given that a
property for the 6-figures which are called conjugate, descendant and codescendant
of a 6-figure in [5]. The paper is concluded by showing the ratio of any Menelaus
6-figure or any Ceva 6-figure is -1 or 1, respectively.

2 Preliminaries

Let M = (P,L,∈,∼) consist of an incidence structure (P,L,∈) (points, lines,
incidence) and an equivalence relation ‘∼’ (neighbour relation) on P and on L,
respectively. Then M is called a projective Klingenberg plane (PK-plane), if it
satisfies the following axioms:

(PK1) If P, Q are non-neighbour points, then there is a unique line PQ through
P and Q.

(PK2) If g, h are non-neighbour lines, then there is a unique point g ∩ h on
both g and h.

(PK3) There is a projective plane M
∗ = (P∗,L∗,∈) and an incidence structure

epimorphism Ψ : M → M
∗, such that the conditions

Ψ(P ) = Ψ(Q) ⇔ P ∼ Q, Ψ(g) = Ψ(h) ⇐⇒ g ∼ h

hold for all P, Q ∈ P, g, h ∈ L.
A point P ∈ P is called near a line g ∈ L iff there exists a line h ∼ g such that

P ∈ h.
Let h, k ∈ L, C ∈ P, C ≁ h, k. Then the well-defined bijection σ := σC (k, h) :

{

h → k
X → XC ∩ k

mapping h to k is called a perspectivity from h to k with center

C. A product of a finite number of perspectivities is called a projectivity.
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An incidence structure automorphism preserving and reflecting the neighbour
relation is called a collineation of M . The notion of a centre and an axis of a
collineation is as ordinary projective planes.

A PK-plane M = (P,L,∈,∼) is called Moufang-Klingenberg plane (MK-plane),
if it is (C, a)-transitive for all C ∈ P, a ∈ L with C ∈ a, i.e. if all possible elations
exist. For every MK-plane the canonical image M

∗ is a Moufang plane [4].
An alternative ring R is a not necessarily associative ring that satisfies the

alternative laws a (ab) = a2b, (ba) a = ba2, ∀a, b ∈ R. An alternative ring R with
identity element 1 is called local if the set I of its non-unit elements is an ideal.

We are now ready to give consecutively two lemmas related to alternative rings,
which are used implicitly in many calculations throughout this paper.

Lemma 1. ([12, Theorem 3.1]) The subring generated by any two elements of an
alternative ring is associative.

Lemma 2. ([11, p. 160]) The identities

x (y (xz)) = (xyx) z

((yx) z) x = y (xzx)

(xy) (zx) = x (yz) x

which are known as Moufang identities are satisfied in every alternative ring.

Now we give the definition of an n-gon, which is meaningful when n ≥ 3: An
n-tuple of pairwise non-neighbour points is called an (ordered) n-gon if no three of
its elements are on neighbour lines [6].

We summarize some basic concepts about the coordinatization of MK-planes
from [2].

Let R be a local alternative ring. Then M(R) = (P,L,∈,∼) is the incidence
structure with neighbour relation defined as follows:

P = {(x, y, 1)| x, y ∈ R}∪{(1, y, z)| y ∈ R, z ∈ I}∪{(w, 1, z)| w, z ∈ I},

L = {[m, 1, p] | m, p ∈ R}∪{[1, n, p] | p ∈ R, n ∈ I}∪{[q, n, 1] | q, n ∈ I},

[m, 1, p] = {(x, xm + p, 1)|x ∈ R} ∪ {(1, zp + m, z)| z ∈ I} ,

[1, n, p] = {(yn + p, y, 1)| y ∈ R} ∪ {(zp + n, 1, z)| z ∈ I} ,

[q, n, 1] = {(1, y, yn + q)| y ∈ R} ∪ {(w, 1, wq + n)|w ∈ I} .

P = (x1, x2, x3) ∼ (y1, y2, y3) = Q ⇐⇒ xi − yi ∈ I (i = 1, 2, 3)), ∀P, Q ∈ P;

g = [x1, x2, x3] ∼ [y1, y2, y3] = h ⇔ xi − yi ∈ I (i = 1, 2, 3)), ∀g, h ∈ L.

Baker et al. [1] use (O = (0, 0, 1) , U = (1, 0, 0) , V = (0, 1, 0) , E = (1, 1, 1)) as a
coordinatization 4-gon. We stick to this notation throughout this paper. For more
detailed information about the coordinatization see [1] and [2].

Now it is time to give the following theorem from [1].
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Theorem 3. M(R) is an MK-plane, and each MK-plane is isomorphic to some
M(R).

Let A be an alternative field and ε 6∈ A. Consider A := A (ε) = A + Aε with
componentwise addition and multiplication as follows:

(a1 + a2ε) (b1 + b2ε) = a1b1 + (a1b2 + a2b1) ε, (ai, bi ∈ A, i = 1, 2)

Then A is a local alternative ring with ideal I = Aε of non-units. The set of formal
inverses of the non-units of A is denoted as I−1. Calculations with the elements of
I−1 are defined as follows [3]:

(aε)−1 + t := (aε)−1 := t + (aε)−1, q (aε)−1 := (aq−1ε)
−1

, (aε)−1 q := (q−1aε)
−1

,
(

(aε)−1
)

−1
= aε where (aε)−1 ∈ I−1, t ∈ A, q ∈ A \ I. (Other terms are not

defined.). For more information about A and its relation to MK-planes, the reader is
referred to the papers of Blunck [3] and [4]. In [4], the centre Z (A) is defined to be the
(commutative, associative) subring of A which is commuting and associating with all
elements of A. It is Z (A) := Z (ε) = Z+Zε where Z = {z ∈ A| za = az, ∀a ∈ A}
is the centre of A. If A is not associative, then A is a Cayley division algebra over
its centre Z see [11] or [13]. Throughout we assume char A 6= 2 and also we restrict
ourselves to the MK-plane M (A).

Throughout this paper we denote the conjugacy relation by ≡ (a ≡ b :⇔ ∃ unit
c, a = c−1bc). It is known that ≡ is an equivalence relation on every alternative field
A [8]. Moreover, ≡ is an equivalence relation also on A ([3], behind Theorem 1).

3 Cross-ratios in M (A)

Ferrar [8] gives the following algebraic definition of the cross-ratio for the points on
the line [0, 0] in Moufang planes coordinated by the alternative field A.

(A, B; C, D) = (a, b; c, d) :=<
(

(a − d)−1 (b − d)
) (

(b − c)−1 (a − c)
)

>

where A = (a, 0), B = (b, 0), C = (c, 0), D = (d, 0). Here, < x > denotes the
conjugacy class of x in A, i.e. < x >= {y−1xy | y ∈ A}. In the definition of the
cross-ratio, if any one of the points A, B, C, D is ∞, the factors involving ∞ are
cancelled.

Let A = (0, a, 1), B = (0, b, 1), C = (0, c, 1), D = (0, d, 1), Z = (0, 1, z) ∈ g :=
OV = [1, 0, 0] be pairwise non-neighbour points (Notice that, z ∈ I). The cross-ratio
for the points is defined as follows (see [4]):

(A, B; C, D) : = (a, b; c, d) =<
(

(a − d)−1 (b − d)
) (

(b − c)−1 (a − c)
)

>

(Z, B; C, D) : =
(

z−1, b; c, d
)

=<
(

(1 − dz)−1 (b − d)
) (

(b − c)−1 (1 − cz)
)

>

(A, Z; C, D) : =
(

a, z−1; c, d
)

=<
(

(a − d)−1 (1 − dz)
) (

(1 − cz)−1 (a − c)
)

>

(A, B; Z, D) : =
(

a, b; z−1, d
)

=<
(

(a − d)−1 (b − d)
) (

(1 − zb)−1 (1 − za)
)

>

(A, B; C, Z) : =
(

a, b; c, z−1
)

=<
(

(1 − za)−1 (1 − zb)
) (

(b − c)−1 (a − c)
)

>

Calculations with the elements of I−1 have been given in Section 2.
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In [3, Theorem 2], it is shown that the transformations

tu (x) = x + u; u ∈ A

ru (x) = xu; u ∈ A \ I

i (x) = x−1

lu (x) = ux =
(

ir−1
u i

)

(x) ; u ∈ A \ I

which are defined on the line g preserve cross-ratios. In [2, Corollary (iii)], it is also
shown that the group generated by these transformations, which is denoted by Λ,
equals to the group of projectivities of a line in M(A).

The following lemma gives another statement of the definition of the cross-ratio.

Lemma 4. ([3]) Let A = (0, a, 1), B = (0, b, 1), C = (0, c, 1), D = (0, d, 1) ∈ g be
pairwise non-neighbour points. Then

(A, B; C, D) =<
(

(a − b)−1 − (a − d)−1
) (

(a − b)−1 − (a − c)−1
)

−1
> .

The next theorem, analogous to Theorem 2 in [8] for Moufang planes, tells an
important result about cross-ratio in A.

Theorem 5. ([3]) Every cross-ratio consists only of elements of A\({0, 1} + I).
Conversely, the conjugacy class of any such element appears as a cross-ratio; Given
three pairwise non-neighbour points A, B, C and an element r ∈ A \ ({0, 1} + I),
then there is a (unique if r ∈ Z (ε)) point D ≁ A, B, C with (A, B; C, D) =< r >.

For any x ∈ A, < x >−1 and 1− < x > are defined by obvious way as < x−1 >
and < 1 − x > respectively. In this situation, we can give the following results
(which were discovered by Möbius for the real projective plane [9, p. 152]) which
are implicitly given in [3, Corollary 1 and Lemma 8]:

(A, B; C, D) = (B, A; D, C) = (C, D; A, B) = (D, C; B, A) =< w > (1)

(B, A; C, D) = (A, B; D, C) = (D, C; A, B) = (C, D; B, A) =< w >−1

(A, C; B, D) = (B, D; A, C) = (C, A; D, B) = (D, B; C, A) = 1− < w >

(B, C; A, D) = (A, D; B, C) = (D, A; C, B) = (C, B; D, A) = 1− < w >−1

(C, A; B, D) = (D, B; A, C) = (A, C; D, B) = (B, D; C, A) =< 1 − w >−1

(C, B; A, D) = (D, A; B, C) = (A, D; C, B) = (B, C; D, A) =< 1 − w−1 >−1

where w ∈ (A, B; C, D). Hence, there exist at most six different values of the cross-
ratio depending on the order of the points.

Now, we can extend the definition of the cross-ratio to the whole plane M(A)
by the following definition.

Definition 6. Let {O, U, V, E} be the basis of M(A). Then

(a) If l = [m, 1, p] and A, B, C, D are pairwise non-neighbour points of l, then

(i) If l ≁ U , then m /∈ I. In this case, the cross-ratio (A, B; C, D) :=
(σ (A) , σ (B) ; σ (C) , σ (D)) where σ = σU (g, l).
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(ii) If l ∼ U , then m ∈ I. In this case, the cross-ratio (A, B; C, D) :=
(σ (A) , σ (B) ; σ (C) , σ (D)) where σ = σ(1,1,0) (g, l).

(b) If l = [1, n, p], then the cross-ratio (A, B; C, D) := (σ (A) , σ (B) ; σ (C) , σ (D))
where σ = σU (g, l).

(c) If l = [q, n, 1], then the cross-ratio (A, B; C, D) := (σ (A) , σ (B) ; σ (C) , σ (D))
where σ = σ(1,0,1) (g, l).

Thus we have the following lemma.

Lemma 7. Let σ be the perspectivity in Definition 6. Then,

(a) Let l = [m, 1, p] and A = (a, am + p, 1) ≁ UV , K = (1, m + kp, k) ∼ UV be
the points of l,

(i) If m /∈ I then σ (A) = (0, am + p, 1), σ (K) = (0, 1, m−1k),

(ii) If m ∈ I then σ (A) = (0, a (m − 1) + p, 1) and

σ (K) =
(

0, 1, (m − 1)−1 k
)

.

(b) Let l = [1, n, p] and A = (an + p, a, 1) ≁ V , K = (kp + n, 1, k) ∼ V be the
points of l. Then σ (A) = (0, a, 1), σ (K) = (0, 1, k).

(c) Let l = [q, n, 1] and A = (1, a, q + an) ≁ V , K = (k, 1, kq + n) ∼ V be the

points of l. Then σ (A) =
(

0,− [1 − (q + an)]−1 a, 1
)

, σ (K) = (0, 1, k (q − 1)+

n).

Proof. We give a detailed proof for only case (i) since the method for the others is
the same. Immediately,

σ (A) = AU ∩ g

= (a, am + p, 1) (1, 0, 0) ∩ [1, 0, 0]

= [0, 1, am + p] ∩ [1, 0, 0]

= (0, am + p, 1)

and

σ (K) = KU ∩ g

= (1, m + kp, k) (1, 0, 0) ∩ [1, 0, 0]

=
[

0, m−1k, 1
]

∩ [1, 0, 0]

=
(

0, 1, m−1k
)

�

This lemma enables us to make easily some calculations in the proof of the next
theorem.

The following theorem we will prove, states a simple way for the calculation of
the cross-ratio of the points on a line l in M(A).
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Theorem 8. According to types of lines, the cross-ratio of the points on the line l
can be calculated as follows:

If A, B, C, D and S are the pairwise non-neighbour points

(a) of the line l = [m, 1, p] where A = (a, am + p, 1), B = (b, bm + p, 1), C =
(c, cm + p, 1), D = (d, dm + p, 1) are not near the line UV and S = (1, m +
sp, s) ∼ UV ,

(b) of the line l = [1, n, p] where A = (an + p, a, 1), B = (bn + p, b, 1), C =
(cn + p, c, 1), D = (dn + p, d, 1) are not neighbour to V and S = (n+sp, 1, s) ∼
V ,

(c) of the line l = [q, n, 1] where A = (1, a, q + an), B = (1, b, q + bn), C =
(1, c, q + cn), D = (1, d, q + dn) are not near to V and S = (s, 1, sq + n) ∼ V ,

then

(A, B; C, D) = (a, b; c, d)

(S, B; C, D) =
(

s−1, b; c, d
)

(A, S; C, D) =
(

a, s−1; c, d
)

(A, B; S, D) =
(

a, b; s−1, d
)

(A, B; C, S) =
(

a, b; c, s−1
)

Proof. We separate the proof into three cases as given in the statement of the the-
orem.

Case (a). There are two cases where m ∈ I and m /∈ I.
(a.1). If m ∈ I, then under the perspectivity σ(1,1,0) (g, [m, 1, p]), the points

A, B, C, D and S transform to A′ = (0, a (m − 1) + p, 1), B′ = (0, b (m − 1)+ p, 1),

C ′ = (0, c (m − 1) + p, 1), D′ = (0, d (m − 1) + p, 1) and S ′ =
(

0, 1, (m − 1)−1 s
)

,
respectively. Therefore, with γ = r(m−1)−1 ◦ t−p ∈ Λ, we get

(A, B; C, D) = (A′, B′; C ′, D′)

= (a (m − 1) + p, b (m − 1) + p; c (m − 1) + p, d (m − 1) + p)

= (γ(a (m − 1) + p), γ(b (m − 1) + p); γ(c (m − 1) + p), γ(d (m − 1) + p))

= (a, b; c, d)

and

(S, B; C, D) = (S ′, B′; C ′, D′)

= (s−1 (m − 1) , b (m − 1) + p; c (m − 1) + p, c (m − 1) + p)

= (γ(s−1 (m − 1)), γ(b (m − 1) + p); γ(c (m − 1) + p), γ(c (m − 1) + p))

= (s−1, b; c, d)
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and similarly

(A, S; C, D) = (a, s−1; c, d)

(A, B; S, D) = (a, b; s−1, d)

(A, B; C, S) = (a, b; c, s−1).

(a.2). If m /∈ I, then under the perspectivity σU (g, [m, 1, p]), the points
A, B, C, D and S transform to A′ = (0, am + p, 1), B′ = (0, bm + p, 1), C ′ =
(0, cm + p, 1), D′ = (0, dm + p, 1) and S ′ = (0, 1, m−1s) respectively. Therefore,
with γ = rm−1 ◦ t−p ∈ Λ, we have

(A, B; C, D) = (A′, B′; C ′, D′) = (am + p, bm + p; cm + p, dm + p)

= (γ(am + p), γ(bm + p); γ(cm + p), γ(dm + p))

= (a, b; c, d)

and

(S, B; C, D) = (S ′, B′; C ′, D′) =
(

s−1m, bm + p; cm + p, dm + p
)

=
(

γ(s−1m), γ(bm + p); γ(cm + p), γ(dm + p)
)

= (s−1, b; c, d)

also similarly

(A, S; C, D) = (a, s−1; c, d)

(A, B; S, D) = (a, b; s−1, d)

(A, B; C, S) = (a, b; c, s−1).

Case (b). Let A = (an + p, a, 1), B = (bn + p, b, 1), C = (cn + p, c, 1),
D = (dn + p, d, 1) and S = (n + sp, 1, s) be pairwise non-neighbour points of [1, n, p].
Then under the perspectivity σU (g, [1, n, p]), the points A, B, C, D and S transform
to A′ = (0, a, 1), B′ = (0, b, 1), C ′ = (0, c, 1), D′ = (0, d, 1) and S ′ = (1, 0, s) ,
respectively. Therefore,

(A, B; C, D) = (A′, B′; C ′, D′) = (a, b; c, d)

(S, B; C, D) = (S ′, B′; C ′, D′) = (s−1, b; c, d)

and similarly

(A, S; C, D) = (a, s−1; c, d)

(A, B; S, D) = (a, b; s−1, d)

(A, B; C, S) = (a, b; c, s−1).

Case (c). Let A = (1, a, q + an), B = (1, b, q + bn), C = (1, c, q + cn),
D = (1, d, q + dn) and S = (s, 1, sq + n) be pairwise non-neighbour points
of [q, n, 1] where A, B, C, D ≁ V , S ∼ V . Then under the perspectivity
σ(1,0,1)(g, [q, n, 1]), the points A, B, C, D and S transform to A′ = (0,−(1 −
(q + an))−1a, 1), B′ = (0,−(1 − (q + bn))−1b, 1), C ′ = (0,−(1 − (q + cn))−1c, 1),
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D′ = (0,−(1−(q+dn))−1d, 1) and S ′ = (0, 1, s (q − 1) + n) , respectively. Therefore,
with γ = i ◦ r(1−q)−1 ◦ tn ◦ i ◦ l−1 ∈ Λ, we have

(A, B; C, D) = (A′, B′; C ′, D′)

= (− (1 − (q + an))−1 a,− (1 − (q + bn))−1 b;

− (1 − (q + cn))−1 c,− (1 − (q + dn))−1 d)

= (γ(− (1 − (q + an))−1 a), γ(− (1 − (q + bn))−1 b);

γ(− (1 − (q + cn))−1 c), γ(− (1 − (q + dn))−1 d))

= (a, b; c, d)

and

(S, B; C, D) = (S ′, B′; C ′, D′)

= ((s (q − 1) + n)−1 ,− (1 − (q + bn))−1 b;

− (1 − (q + cn))−1 c,− (1 − (q + dn))−1 d)

= (γ((s (q − 1) + n)−1), γ(− (1 − (q + bn))−1 b);

γ(− (1 − (q + cn))−1 c), γ(− (1 − (q + dn))−1 d))

= (s−1, b; c, d)

and similarly

(A, S; C, D)) = (a, s−1; c, d)

(A, B; S, D) = (a, b; s−1, d)

(A, B; C, S) = (a, b; c, s−1). �

As a result of this theorem, one can easily compute the cross-ratio of any four
pairwise non-neighbour collinear points because of the following facts:

(i) By the results of Case (a), the cross-ratio of the points on the line [m, 1, p] can
be calculated by using the first coordinates of the points not near line UV and
the last coordinate’s inverse of the point near UV .

(ii) By the results of Case (b), the cross-ratio of the points on the line [1, n, p] can
be calculated by using the second coordinates of the points not neighbour V
and the last coordinate’s inverse of the point neighbour V .

(iii) By the results of Case (c), the cross-ratio of the points on the line [q, n, 1] can
be calculated by using the first coordinate’s inverse of the point neighbour V
and the second coordinates of the points not neighbour V .

Theorem 9. In M(A), perspectivities preserve cross-ratios.

Proof. Let A, B, C, D be pairwise non-neighbour points of a line l in M(A), σM (g, l)
be the perspectivity given in Definition 6 i.e.

(A, B; C, D) = (σM (A) , σM (B) ; σM (C) , σM (D))
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and σN (g, l) be a perpectivity such that N ≁ M , N ≁ l, N ≁ g. It is sufficient to
show that σN (g, l) preserves cross-ratio. Since σ = σMσ−1

N is a projectivity of g, it
preserves cross-ratio [3]. Thus

(σN (A) , σN (B) ; σN (C) , σN (D)) = (σM (A) , σM (B) ; σM (C) , σM (D))

= (A, B; C, D) �

Now we can state the following corollary as a result of this theorem.

Corollary 10. Cross-ratios are preserved by projectivities.

Now we give a definition in M(A), well known from the case of Moufang planes
[8].

Definition 11. In M(A), any pairwise non-neighbour four points A, B, C, D ∈ l
are called as harmonic if (A, B; C, D) =< −1 > and we let h (A, B, C, D) represent
the statement: A, B, C, D are harmonic. Let l be any line in M (A). Then
the pairwise non-neighbour points A, B, C, D of the line l are called to be in
harmonic position if there exists 4-gon (P1, P2, Q1, Q2) such that P1P2∩Q1Q2 = A,
P1Q2∩P2Q1 = B, P1Q1∩l = C, P2Q2∩l = D (see Figure 1). We let H (A, B, C, D)
represent the statement: A, B, C, D are in harmonic position.

A C B D

Q1
Q2

P1

P2

Figure 1

Now, we give two lemmas and a theorem which are necessary for the proof of
Theorem 16.

Lemma 12. In M(A) if f1, f2 are elations with center P and f1 (Q) = f2 (Q) 6= Q
for some points Q ≁ P then f1|PQ = f2|PQ.

Proof. Suppose that f1 is an elation with center P , axis l1 and that f1 : Q, R → A, B
where R ∈ PQ. Suppose also that f2 is an elation with center P , axis l2 and that
f2 : Q, R → A, C. Let d := PQ then P, Q, R, A, B, C ∈ d. Let T1 and T2 be the
points of l1 and l2, respectively such that T1 ≁ P ≁ T2 and S := T1T2 ∩ d. Then
there exists an elation h with center S, axis d, such that h (T1) = T2. Therefore
h (l1) = l2 and h−1 is an elation with center S, axis d. It is easily verified that
j = h ◦ f1 ◦h−1 is an elation with center P , axis l2 and it maps Q → A, R → B.One
can easily show that an elation is completely determined by its center, its axis and
the image of one point which is not neighbour to the axis. Therefore we have j = f2

which means B = C. �
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Lemma 13. In M (A) if H (A, B, C, D) then there exist a line l and an elation f
with center A, axis l, such that f : C, B → B, D.

Proof. Since H (A, B, C, D), we have A ≁ B and therefore there exists a unique
line d = AB and there is a 4-gon (P1, P2, Q1, Q2) such that P1P2 ∩ Q1Q2 = A,
P1Q2 ∩P2Q1 = B, P1Q1 ∩ l = C and P2Q2 ∩ l = D (see Figure 1). Let l = P1P2 and
f be an elation with center A, axis l such that f : C → B. Then we have f (CP1) =
f (C) f (P1) = BP1 and therefore f (Q1) = f (Q1Q2 ∩ CP1) = f (Q1Q2)∩f (CP1) =
Q1Q2 ∩ BP1 = Q2 and finally we have f (B) = f (d ∩ P2Q1) = f (d) ∩ f (P2Q1) =
d ∩ P2Q2 = D. �

Theorem 14. In M(A) if H (A, B, C, D) and H (A, B, C, D′) then D = D′.

Proof. If H (A, B, C, D) and H (A, B, C, D′) then, by Lemma 13, there exist a line
l and an elation f1 with center A, axis l such that f1 : C, B → B, D and also there
exist a line d and an elation f2 with center A, axis d such that f2 : C, B → B, D′.
Then, by Lemma 12, f1|AB = f2|AB and therefore we have f1 (B) = f2 (B) i.e.
D = D′. �

Corollary 15. If A, B, C are pairwise non-neighbour points of g and D is con-
structed from A, B, C, P1, P2 where P1, P2 ≁ g and P1 ≁ P2 via the configuration
in the Figure 1, the point D is uniquely determined by A, B, C. That is, the point
D is independent of the choice of P1 and P2.

Now we give a theorem for the points of the line g. This theorem will be valid
for any line l if we can, in future, show that the collineations which are given in [6]
and were used in showing the transitivity on 4-gons, can preserve the cross-ratio.

Theorem 16. In M(A), H (A, B, C, D) if and only if h (A, B, C, D) where A, B,
C, D ∈ g.

Proof. Suppose that the points A, B, C, D ∈ g are in harmonic position and also
first none of them is near to V . Then we will show that (A, B; C, D) =< −1 >. Let
A = (0, a, 1), B = (0, b, 1), C = (0, c, 1), D = (0, d, 1). Without loss of generality,
by Corollary 15, we may assume that P1 = U = (1, 0, 0) and P2 = (1, a, 1). Then

BP2 = [a − b, 1, b], BP2 ∩ CP1 = G =
(

(c − b) (a − b)−1 , c, 1
)

and

BP1 ∩ AG = F =
(

(b − a)
(

(c − a)−1
(

(c − b) (a − b)−1
))

, b, 1
)

=
(

(b − a)
(

(c − a)−1
(

(c − a + a − b) (a − b)−1
))

, b, 1
)

=
(

−1 + (b − a) (c − a)−1 , b, 1
)

Since P2D = [a − d, 1, d] and F ∈ P2D, we have

(

(b − a)
(

(c − a)−1
(

(c − b) (a − b)−1
)))

(a − d) + d = b

⇒ (b − a)
(

(c − a)−1
(

(c − b) (a − b)−1
))

= (b − d) (a − d)−1

⇒ (c − a)−1
(

(c − b) (a − b)−1
)

= (b − a)−1
(

(b − d) (a − d)−1
)
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⇒ (c − a)−1
(

(c − a + a − b) (a − b)−1
)

= (b − a)−1
(

(b − a + a − d) (a − d)−1
)

⇒ (c − a)−1
(

(c − a) (a − b)−1 + 1
)

= (b − a)−1
(

(b − a) (a − d)−1 + 1
)

⇒ (a − b)−1 + (c − a)−1 = (a − d)−1 + (b − a)−1

⇒ (a − b)−1 − (a − c)−1 = (a − d)−1 − (a − b)−1

⇒ (a − b)−1 − (a − c)−1 = −
(

(a − b)−1 − (a − d)−1
)

⇒
(

(a − b)−1 − (a − d)−1
) (

(a − b)−1 − (a − c)−1
)

−1
= −1

and the last equality (by Lemma 4) means that h (A, B, C, D).

If P2F ∩ g ∼ V then D = (0, 1, z) and

P2F = [1,−z, 1 + az]

where z =
(

−2 (a − b)−1 − (c − a)−1
)

∈ I. In this case by the definition of the
cross-ratio, we get

(A, B; C, D) = (a, b; c, z−1)

= <
(

(1 − za)−1 (1 − zb)
) (

(b − c)−1 (a − c)
)

>

= < ((1 + za) (1 − zb))
(

(b − c)−1 (a − c)
)

>

= < (1 + z(a − b))
(

(b − c)−1 (a − c)
)

>

= < (1 + z(a − b))
(

(b − c)−1 (a − c)
)

>

and then by substituting z in the last equality we obtain

=<
(

1 +
(

−2 (a − b)−1 − (c − a)−1
)

(a − b)
) (

(b − c)−1 (a − c)
)

>

=< −
(

1 + (c − a)−1 (a − b)
) (

(b − c)−1 (a − c)
)

>

=< −
(

1 + (c − a)−1 ((a − c) + (c − b))
) (

(b − c)−1 (a − c)
)

>

=< −
(

(c − a)−1 (c − b)
) (

(b − c)−1 (a − c)
)

>

=< −
(

(c − a)−1 (b − c)
) (

(b − c)−1 (c − a)
)

>

=< −1 >

This means that h(A, B, C, D) even if D is near to V . If any one of the points A,
B, C is near to V then the proof of this part follows from (1).

Conversely, let h(A, B, C, D). Existence of the point D′ such that H(A, B, C, D′)
is obvious from Definition 11. Then H(A, B, C, D′) implies h(A, B, C, D′) (from the
first part of the theorem). So, we have h(A, B, C, D′) and h(A, B, C, D). Finally,
by Theorem 5, we have D = D′ which gives H(A, B, C, D). �

In the next section we will have a look at 6-figures in M(A) in view of the results
of [5] and [7].
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4 6-figures in M (A)

In the final section, some properties of 6-figures that are well-known for Desarguesian
planes or Moufang plane are investigated in M (A). We start with the definition of
a 6-figure.

A 6-figure is a sequence of six non-neighbour points (ABC, A1B1C1) such that
(A, B, C) is a 3-gon, and A1 ∈ BC, B1 ∈ CA, C1 ∈ AB. The points A, B, C,
A1, B1, C1 are called vertices of this 6-figure. The 6-figures (ABC, A1B1C1) and
(DGF, D1G1F1) are equivalent if there exists a collineation of M(A) which trans-
forms A, B, C, A1, B1, C1 to D, G, F, D1, G1, F1 respectively.

Now, we recall following two theorems from [6], which are very important for
this section and are analogous to the theorems given in [5] for Desarguesian planes
and in [7] for Moufang planes.

Theorem 17. ([6, Theorem 4]) Let µ = (ABC, A1B1C1) be a 6-figure in M (A).
Then, there is an m ∈ A\I such that µ is equivalent to (UV O, (0, 1, 1)(1, 0, 1)(1, m, 0))
where U = (1, 0, 0),V = (0, 1, 0),O = (0, 0, 1) are elements of the coordinatization
basis of M (A).

Theorem 18. ([6, Theorem 5]) The 6-figures (ABC, A1B1C1), (BCA, B1C1A1),
(CAB, C1A1B1) are equivalent.

Now we can obtain results related to ratios of 6-figures, which are analogous to
results given in [5] for Desarguesian planes and in [7] for Moufang planes. So we
give the definition of ratio of a 6-figure. But first we need another definition and a
lemma.

Let µ = (ABC, A1B1C1) be a 6-figure in M (A). Let Ac = BC ∩ B1C1, Bc =
CA ∩ C1A1, Cc = AB ∩ A1B1. The 6-figure (ACB, AcCcBc) is called the first
codescendant of µ, written µc. µ is called a first coancestor of µc (see Figure 2).

A
C

B

B1

Ac

Bc

Cc

A1

Figure 2

Lemma 19. If µ = (ABC, A1B1C1) = (UV O, (0, 1, 1)(1, 0, 1)(1, m, 0)) , then

(A, B; C1, C
c) = (B, C; A1, A

c) = (C, A; B1, B
c) =< −m > .
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Proof. The points Ac, Bc and Cc are respectively (0,−m, 1), (−m−1, 0, 1) and
(1,−1, 0). In this case the proof follows from Theorem 8. �

We are now ready to state the definition of the ratio of a 6-figure. The conjugacy
class − (A, B; C1, C

c) is called the ratio of the 6-figure µ = (ABC, A1B1C1) and
denoted by r (µ), that is, r (µ) =< m >.

Now we give other definitions from [5] to introduce the remaining results of this
section.

Let µ = (ABC, A1B1C1) be a 6-figure in M(A). By Theorem 5, there exist
unique points A2 ∈ BC, B2 ∈ CA, C2 ∈ AB such that h(A, B, C1, C2), h(B, C, A1, A2),
h(C, A, B1, B2). The 6-figure (ABC, A2B2C2) is called the conjugate of µ, having
symbol −µ. Likewise µ is the conjugate of −µ.

Let Cd ∈ AB be the point such that C, Cd and AA1 ∩ BB1 are collinear. Let
Ad ∈ BC and Bd ∈ CA be the points such that A, Ad and BB1 ∩CC1 are collinear
and B, Bd and AA1 ∩CC1 are collinear. The 6-figure (ACB, AdCdBd) is called the
first descendant of µ, written µd. µ is called a first ancestor of µd (see Figure 3).

AC

B

B1 Bd

Ad

Cd

A1

C1

Figure 3

Using the definitions of −µ, µc and µd the following lemma is obtained.

Lemma 20. For any 6-figure µ we have

(a) (−µ)d = µd

(b)
(

µd
)c

= (µc)c = (UV O, (0,−m−1, 1)(−m, 0, 1)(1,−m2, 0))

where m ∈ A \ I.

Proof. By Theorem 17, we may assume that µ = (UV O, (0, 1, 1)(1, 0, 1)(1, m, 0))
where m ∈ A \ I. Then we get

−µ = (UV O, (0,−1, 1)(−1, 0, 1)(1,−m, 0)) ,

µd =
(

UOV, (0, m, 1)(1, 1, 0)(m−1, 0, 1)
)

,

µc =
(

UOV, (0,−m, 1)(1,−1, 0)(−m−1, 0, 1)
)

.

(a) It is clear that (−µ)d = µd = (UOV, (0, m, 1)(1, 1, 0)(m−1, 0, 1)).
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(b) We obtain that the first codescendant of µd i.e.
(

µd
)c

is equal to the first

codescendant of µc i.e. (µc)c. That is
(

µd
)c

= (µc)c =
(

UV O, (0,−m−1, 1)(−m, 0, 1)(1,−m2, 0)
)

. �

(ABC, A1B1C1) is called a Menelaus 6-figure if A1, B1 and C1 are collinear (see
Figure 4); and (ABC, A1B1C1) is called a Ceva 6-figure if AA1, BB1 and CC1 are
concurrent (see Figure 5).

A
C

B

B1

A1

C1

Figure 4

AC

B

B1

A1 C1

Figure 5

The following theorem is the analogue of the theorem given in [7] for Moufang
planes.

Theorem 21. µ is a Menelaus or Ceva 6-figure if and only if r (µ) = −1 or r (µ) =
1, respectively.

Proof. By Theorem 17, we may assume that µ = (UV O, (0, 1, 1)(1, 0, 1)(1, m, 0))
where m ∈ A\ I. If µ is Menelaus then the points (0, 1, 1), (1, 0, 1) and (1, m, 0) are
collinear, which means m = −1. Conversely, if r (µ) = −1 for µ = (UV O, (0, 1, 1)
(1, 0, 1)(1, m, 0)) then m = −1. In this situation, the collinearity of (0, 1, 1), (1, 0, 1)
and (1,−1, 0) is obvious. If µ is Ceva then the lines [0, 1, 1], [1, 0, 1] and [m, 1, 0] are
concurrent, which means m = 1. Conversely, if r (µ) = 1 for µ = (UV O, (0, 1, 1)
(1, 0, 1)(1, m, 0)) then m = 1. In this situation, the concurrence of [0, 1, 1], [1, 0, 1]
and [1, 1, 0] is clear. �
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Remark. There exist more open problems related to 6-figures. In [5] Cater gave
a list of problems on the relations between geometric properties of Desarguesian
planes and algebraic properties of their coordinatizing rings. In [7], Ciftci could
carry over most of the results which are valid on Desarguesian planes to Moufang
planes. In this paper we restrict ourselves to the results of [7]. So, more interesting
and nice results can be obtained if one handles the other problems from Cater’s list
for Desarguesian, Moufang or MK-planes.
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