Invariant Subspaces Of Toeplitz Operators And Uniform Algebras *

Takahiko Nakazi

Abstract

Let T_{ϕ} be a Toeplitz operator on the one variable Hardy space H^2 . We show that if T_{ϕ} has a nontrivial invariant subspace in the set of invariant subspaces of T_z then ϕ belongs to H^{∞} . In fact, we also study such a problem for the several variables Hardy space H^2 .

1 Introduction

Let X be a compact Hausdorff space, let C(X) be the algebra of complex-valued continuous functions on X, and let A be a uniform algebra on X. A probability measure m (on X) denotes a representing measure for some nonzero complex homomorphism. The abstract Hardy space $H^p = H^p(m)$, $1 \le p \le \infty$, determined by A is defined to be the closure of A in $L^p = L^p(m)$ when p is finite and to be the weak* closure of A in $L^\infty = L^\infty(m)$ when $p = \infty$.

Let P be the orthogonal projection from L^2 onto H^2 . For ϕ in L^{∞} , put

$$T_{\phi}f = P(\phi f) \quad (f \in H^2)$$

and then T_{ϕ} is called a Toeplitz operator. In this paper, we are interested in invariant subspaces of Toeplitz operators. Put $\mathcal{A} = \{T_{\phi} ; \phi \in H^{\infty}\}$ and $\mathcal{A}^* = \{T_{\phi}^* ; \phi \in H^{\infty}\}$. Lat T_{ϕ} denotes the set of all invariant subspaces of T_{ϕ} , Lat $\mathcal{A} = \bigcap \{\text{Lat } T_{\phi} ; \phi \in H^{\infty}\}$ and Lat $\mathcal{A}^* = \bigcap \{\text{Lat } T_{\phi}^* ; \phi \in H^{\infty}\}$. We don't know whether arbitrary T_{ϕ} has a nontrivial invariant subspace. When ϕ is in H^{∞} and H^{∞} has a nonconstant

Received by the editors March 2006.

Communicated by F. Bastin.

2000 Mathematics Subject Classification: Primary 47 B 35, 47 A 15, Secondary 46 J 15.

Key words and phrases: Toeplitz operator, invariant subspace, analytic symbol.

^{*}This research was partially supported by No.17540176

unimodular function q, T_{ϕ} has a nontrivial invariant subspace $M = qH^2$. Hence Lat $T_{\phi} \neq \{\langle 0 \rangle, H^2\}$.

Let K be the orthogonal complement of \bar{H}^2 in L^2 . Then $L^2 = H^2 \oplus \bar{K}$. $I(H^{\infty})$ denotes the set of all unimodular functions in H^{∞} . A function in $I(H^{\infty})$ is called an inner function. For a subset Y in L^{∞}, Y^{\perp} denotes $\{g \in L^1 : \int g\bar{f}dm = 0 \quad (f \in Y)\}$.

In this paper we study the following four natural questions:

Question 1. If Lat $T_{\phi} \supseteq \text{Lat } A$ then does T_{ϕ} belong to A?

Question 2. Suppose that H^{∞} is a weak* closed maximal algebra in L^{∞} . If Lat $T_{\phi} \subseteq$ Lat \mathcal{A} then is Lat $T_{\phi} = \{\langle 0 \rangle, H^2\}$?

Question 3. Is Lat $\mathcal{A}^* \cap$ Lat $\mathcal{A} = \{\langle 0 \rangle, H^2\}$?

Question 4. Can we describe Lat $T_{\phi} \cap$ Lat \mathcal{A} or equivalently Lat $T_{\phi} \cap$ Lat \mathcal{A}^* ?

In this paper, we will answer these four questions positively when A is the disc algebra. In fact, for Question 1 we can do it for more general uniform algebras. However for Question 2 we could not answer even for simple uniform algebras. Question 3 can be answered for almost all uniform algebras.

In this paper $H^p(D^n)$ denotes the Hardy space on the polydisc D^n and $H^p(\Omega)$ denotes the Hardy space on a finitely connected domain Ω . $L^p_a(D)$ denotes the Bergman space on D and put $N^2 = L^2(D) \ominus \{L^2_a(D) \oplus \bar{z}\bar{L}^2_a(D)\}$. H^p_0 denotes the set of $\{f \in H^p : \int f dm = 0\}$. $H^p(\Gamma)$ denotes the usual Hardy space on the dual group $\hat{\Gamma}$ where Γ is an ordered subgroup of the reals.

2 Lat $\mathcal{A} \subseteq \text{Lat } T_{\phi}$

In this section we study Question 1. Theorem 1 shows that Question 1 can be answered positively for very general uniform algebras.

Lemma 1. Let M be a closed subspace of H^2 . $M \in \text{Lat } T_{\phi}$ if and only if $\phi M \subset M \oplus \bar{K}$.

Proof. By definition of a Toeplitz operator, this is clear.

Lemma 2. If ϕ is a function in L^{∞} and Lat $\mathcal{A} \subseteq \text{Lat } T_{\phi}$ then $\phi = \phi_0 + \bar{k}_0$ where $\phi_0 \in H^2$ and $\bar{k}_0 \in \cap \{\bar{q}\bar{K} : q \in I(H^{\infty})\}$.

Proof. Since $L^2 = H^2 \oplus \bar{K}$, there exist $h \in H^2$ and $k \in K$ such that $\phi = h + \bar{k}$.

Proof. Since $L^2 = H^2 \oplus \bar{K}$, there exist $h \in H^2$ and $k \in K$ such that $\phi = h + \bar{k}$. If $q \in I(H^{\infty})$ then $qH^2 \in \text{Lat } \mathcal{A}$ and so by Lemma 1 $\phi q = qh + q\bar{k} \in qH^2 + \bar{K}$. Since $T_{\phi}q \in qH^2$ and $qh \in qH^2$, $P(q\bar{k}) \in qH^2$. Hence $q\bar{k} = q\ell + \bar{t}$ where $\ell \in H^2$ and $\bar{t} \in \bar{K}$. Therefore $\bar{k} = \ell + q\bar{t}$ and $\ell = \bar{k} - q\bar{t} \in H^2 \cap \bar{K} = \langle 0 \rangle$. Hence $\ell = 0$ and $\bar{k} = q\bar{t}$. This implies that k belongs to $q\bar{K}$ for any $q \in I(H^{\infty})$.

Theorem 1. Suppose that $\cap \{\bar{q}\bar{K} ; q \in I(H^{\infty})\} = \langle 0 \rangle$. If ϕ is a function in L^{∞} and Lat $\mathcal{A} \subseteq \text{Lat } T_{\phi}$ then ϕ belongs to H^{∞} .

Proof. Lemmas 1 and 2 imply the theorem trivially.

Corollary 1. Suppose that $H^2 = H^2(\mathbf{T}^N)$. If ϕ is a function in L^{∞} and Lat $\mathcal{A} \subseteq \text{Lat } T_{\phi}$ then ϕ belongs to H^{∞} .

Proof. K is an invariant subspace under multiplications by the coordinates functions z_1, \dots, z_n . $\cap \{z_1^{\ell_1} \dots z_n^{\ell_n} K \; ; \; (\ell_1, \dots, \ell_n) \geq (0, \dots, 0)\}$ is a reducing subspace and so $\cap z_n^{\ell_1} \dots z_n^{\ell_n} K = \chi_E L^2$ for some characteristic function χ_E . Since $\chi_E L^2$ is orthogonal to \bar{H}^2 , $\chi_E = 0$ and so $\langle 0 \rangle = \cap \bar{z}_1^{\ell_1} \dots \bar{z}_n^{\ell_n} \bar{K} = \cap \{\bar{q}\bar{K} \; ; \; q \in I(H^{\infty})\}$.

Corollary 2. Suppose that $H^2 = H^2(\Omega)$. If ϕ is a function in L^{∞} and Lat $\mathcal{A} \subseteq \text{Lat } T_{\phi}$ then ϕ belongs to H^{∞} .

Proof. Let Z be the Ahlfors function for Ω then |Z|=1 on $\partial\Omega=X$ (see [3]). $\bigcap_{n \in \mathbb{Z}} \bar{Z}^n \bar{K}$ is invariant under the multiplications by Z and \bar{H}^{∞} . Since H^{∞} is a weak*

maximal subalgebra of L^{∞} , $\bigcap_{n=0}^{\infty} \bar{Z}^n \bar{K} = \chi_E L^2$. Since $\chi_E L^2$ is orthogonal to H^2 , $\chi_E = 0$ and so $\cap \{\bar{q}\bar{K} ; q \in I(H^{\infty})\} = \{0\}$.

Corollary 3. Let A be a Dirichlet algebra (see [4]). If ϕ is a function in L^{∞} and Lat $\mathcal{A} \subseteq \operatorname{Lat} T_{\phi}$ then ϕ belongs to H^{∞} .

Proof. Since H^{∞} is a uniform algebra which has the annulus property ([2],[6]) on a totally disconnected space, by [2, Theorem 1] the set of quotients of inner functions is norm dense in the set of unimodular functions in L^{∞} . In this situation, $\bar{K} = \bar{H}_0^2$ and $Y = \cap \{\bar{q}\bar{K} : q \in I(H^{\infty})\} \subset \bar{H}^2$. $\bar{q}Y = Y$ for any q in $I(H^{\infty})$ and so $\bar{q}_1q_2Y \subseteq Y$ for any q_1, q_2 in $I(H^{\infty})$. Hence $\phi Y \subseteq Y$ for any unimodular function ϕ in L^{∞} . Hence $Y = \chi_E L^2$ for the characteristic function χ_E for some set E. Since $Y \subset \bar{H}^2$, Y must be $\{0\}$.

Proposition 1. Suppose that $H^2 = L_a^2(D)$, ϕ is a function in L^{∞} and Lat $\mathcal{A} \subseteq \text{Lat } T_{\phi}$. Then the following are valid.

- (1) ϕ belongs to $L_a^2(D) + N^2$.
- (2) If $\phi = f + \ell$ where $f \in H^{\infty}$ and $\ell \in N^2$ then Lat $T_{\ell} \supseteq \text{Lat } \mathcal{A}$.

Proof. (1) Since $zL_a^2 \in \text{Lat } T_\phi$ by hypothesis, $\mathscr{C} \in \text{Lat } T_\phi^* = \text{Lat } T_{\bar{\phi}}$ and so $\bar{\phi} = \bar{c} + \bar{k}$ where $c \in \mathscr{C}$ and $k \in zL_a^2(D) + N^2$. Hence $\phi \in L_a^2(D) + N^2$. (2) If $\phi = f + \ell$ and $M \in \text{Lat } \mathcal{A}$ then $\phi M \subset M + \bar{K}$. Hence $(f + \ell)g = fg + \ell g \in M + \bar{K}$ for any $g \in M$. Since $fg \in M$, $\ell g \in M + \bar{K}$ for any $g \in M$ and so $\ell M \subset M + \bar{K}$. Thus $M \in \text{Lat } T_\ell$.

A bounded operator B is called reflexive if whenever C is a bounded operator and Lat $B \subseteq \text{Lat } C$ then C belongs to the closed algebra (in weak operator topology) generated by B. When B is subnormal, it is known that B is reflexive [7]. Hence if f is a nonzero function in H^{∞} and Lat $T_{\phi} \supseteq \text{Lat } T_{f}$ then T_{ϕ} belongs to the closed

algebra generated by T_f . Hence T_{ϕ} belongs to \mathcal{A} . Usually Lat $\mathcal{A} \subset \text{Lat } T_f$ and so this does not answer Question 1. However if there exists a function f in H^{∞} such that Lat $T_f = \text{Lat } \mathcal{A}$ then the above result about subnormal operators answers Question 1. Hence when $H^2 = H^2(T)$, if Lat $T_{\phi} \supseteq \text{Lat } \mathcal{A}$ then T_{ϕ} belongs to \mathcal{A} because Lat $T_z = \text{Lat } \mathcal{A}$. Therefore Corollary 1 is not new for N = 1. Similarly Question 1 can be answered for $H^2 = L_a^2(D)$. Hence Proposition 1 is a very weak result.

3 Lat $T_{\phi} \subset _{\neq}$ Lat ${\mathcal A}$

In this section we study Question 2. Theorem 2 shows that Question 2 can be answered positively for the disc algebra. In fact, it gives a few results for more general uniform algebras about Question 2.

Lemma 3. Let Q be a function in $I(H^{\infty})$. Then $\bar{K} = \sum_{n=0}^{\infty} \oplus (\bar{K} \ominus \bar{Q}\bar{K})\bar{Q}^n \oplus \bigcap_{n=0}^{\infty} \bar{Q}^n \bar{K}$.

Proof. Since |Q|=1 a.e. and $\bar{Q}\bar{K}\subset\bar{K},\bar{Q}$ is an isometry on \bar{K} . Hence this is well known and called a Wold decomposition.

Theorem 2. Suppose that Lat $T_{\phi} \subset \text{Lat } \mathcal{A}$. If $M \in \text{Lat } T_{\phi} \text{ and } \cap \{\bar{Q}^n \bar{K} ; Q \in \mathcal{I}\} = \{0\}$ for some subset \mathcal{I} in $I(H^{\infty})$ then there exists a nonconstant Q in \mathcal{I} such that $M \cap (H^2 \ominus QH^2) \neq \langle 0 \rangle$ or $\phi M \subset M$.

Proof. If $M \in \text{Lat } T_{\phi}$ then by Lemma 1 there exist $f \in M$, $g \in M$ and $k \in K$ such that $\phi f = g + \bar{k}$. If $\phi M \not\subseteq M$ then we may assume that $k \neq 0$. For any fixed $Q \in \mathcal{I}$, by Lemma 3 $\bar{K} = \left\{ \sum_{n=0}^{\infty} \oplus (\bar{K} \ominus \bar{Q}\bar{K})\bar{Q}^n \right\} \oplus \bigcap_{n=0}^{\infty} \bar{Q}^n \bar{K}$ and so

$$\bar{k} = \sum_{n=0}^{\infty} k_n \bar{Q}^n + k_{\infty}$$

where $k_n \in \bar{K} \ominus \bar{Q}\bar{K}$ $(n = 0, 1, 2, \cdots)$ and $k_{\infty} \in \bigcap_{n=0}^{\infty} \bar{Q}^n \bar{K}$. Then $Q\bar{k} = Qk_0 + \sum_{n=0}^{\infty} \bar{Q}^n \bar{K}$.

 $\sum_{n=1}^{\infty} k_n \bar{Q}^{n-1} + Qk_{\infty} \text{ and by Lemma 1 } Q\bar{k} \text{ belongs to } M + \bar{K} \text{ because } \phi f = g + \bar{k} \text{ and } QM \subset M.$

Suppose that there does not exist a nonconstant function Q in \mathcal{I} such that $M \cap (H^2 \ominus QH^2) \neq \langle 0 \rangle$. Then we will get a contradiction. By what was proved above, Qk_0 belongs to $M \cap (H^2 \ominus QH^2) = \{0\}$. Hence $k_0 \equiv 0$. Next we consider $Q^2\bar{k}$ and then $k_1 \equiv 0$ follows. Proceeding similarly we can show that $\bar{k} = k_{\infty}$. By hypothesis, this implies that $\bar{k} \equiv 0$ because Q is arbitrary in \mathcal{I} . This contradiction implies that there exists $Q \in I$ such that $M \cap (H^2 \ominus QH^2) \neq \langle 0 \rangle$.

Corollary 4. Suppose that $H^2 = H^2(\mathbf{T}^N)$, ϕ is a function in L^{∞} and Lat $T_{\phi} \subseteq \text{Lat } \mathcal{A}$. If $M \in \text{Lat } T_{\phi}$ and $M \neq \langle 0 \rangle$ then M contains a nonzero function which is (N-1)-variable. Hence if N=1 then $M=H^2$.

Proof. It is known that if $\phi M \subseteq M$ then $\phi \in H^{\infty}$. Hence we may assume that $\phi M \not\subseteq M$. Put $\mathcal{I} = \{z_1, \cdots, z_N\}$ then \mathcal{I} satisfies the condition of Theorem 2. By Theorem 2, there exists z_j such that $1 \leq j \leq N$ and $(H^2 \ominus z_j H^2) \cap M \neq \{0\}$. Since $H^2 \ominus z_j H^2 = H^2(z'_j, T^{N-1})$ where $z = (z_j, z'_j)$, M contains a nonzero (N-1)-variable function.

Corollary 5. Suppose that $H^2 = H^2(\Omega)$, Lat $T_{\phi} \subset$ Lat \mathcal{A} and Z is the Alfors function for Ω (see [3]). If $M \in$ Lat T_{ϕ} and $M \neq \langle 0 \rangle$ then $M \cap (H^2 \ominus ZH^2) \neq \langle 0 \rangle$. Proof. Put $\mathcal{I} = \{Z\}$ then \mathcal{I} satisfies the condition of Theorem 2. It is known that if $\phi M \subseteq M$ then $\phi \in H^{\infty}$. Hence we may assume that $\phi M \not\subseteq M$.

Proposition 2. If T_{ϕ} is subnormal and Lat $T_{\phi} \subseteq \text{Lat } \mathcal{A}$ then T_{ϕ} commutes with \mathcal{A} and so $T_{\phi}f = P(\phi_0 f)$ $(f \in H^{\infty})$ for some ϕ_0 in H^2 . If A is a uniform algebra which approximates in modulus on X then ϕ belongs to $H^2 \cap L^{\infty}$.

Proof. If T_{ϕ} is subnormal and Lat $T_{\phi} \subseteq \text{Lat } \mathcal{A}$ then it is known [7] that \mathcal{A} is contained in the closed algebra generated by T_{ϕ} . Hence T_{ϕ} commutes with \mathcal{A} . Let $\phi_0 = T_{\phi}1$ then $T_{\phi}f = T_{\phi}T_f1 = T_fT_{\phi}1 = P(\phi_0 f)$ for $f \in H^{\infty}$. Since $\|\phi_0 f\|_2 \leq \|T_{\phi}\|\|f\|_2$ $(f \in H^{\infty})$,

$$\left| \int_X \phi_0 f \bar{g} dm \right| \le \|\phi\|_{\infty} \|f\|_2 \|g\|_2 \quad (f, g \in H^{\infty}).$$

Hence

$$\left| \int_{X} \phi_0 \mid f \mid^2 dm \right| \le \|\phi\|_{\infty} \|f^2\|_{1}.$$

Since A approximates in modulus on X, ϕ_0 belongs to $H^2 \cap L^{\infty}$. It is easy to see that $\phi = \phi_0$.

Corollary 6. Suppose that $H^2 = H^2(\mathbf{T}^N)$ or $H^2 = H^2(\Omega)$. If T_{ϕ} is subnormal then Lat $T_{\phi} \subset \text{Lat } \mathcal{A}$ or ϕ belongs to H^{∞} .

Proof. A uniform algebra A approximates in modulus on X, that is , for every positive continuous function g on X and $\varepsilon > 0$, there is an f in A with $|g - |f|| < \varepsilon$ if the set of unimodular elements of A separates points of X (see [6, Lemma 4.12]). Since the coordinate functions z_1, \dots, z_n separate T^N , the polydisc algebra approximates in modulus on T^N . If T_ϕ is subnormal on $H^2(T^N)$ and Lat $T_\phi \subseteq \text{Lat } \mathcal{A}$ then by Proposition 2 ϕ belongs to $H^2(T^N) \cap L^\infty = H^\infty(T^N)$. If $A = H^\infty(\Omega)$ then by [3, Lemma 4.8] $I(H^\infty(\Omega))$ separates $X = \text{the maximal ideal space of } L^\infty(\partial D)$. Hence Corollary 6 for $H^2 = H^2(\Omega)$ follows from Proposition 2.

Proposition 3. If Lat $T_{\phi} \subseteq Lat \ \mathcal{A}$, then Lat $T_{\phi}^* \cap Lat \ T_{\phi} \subset Lat \ \mathcal{A}^* \cap Lat \ \mathcal{A}$. Proof. If $M \in Lat \ T_{\phi}^*$ then $M^{\perp} \in Lat \ T_{\phi}$ and so $M^{\perp} \in Lat \ \mathcal{A}$ because Lat $T_{\phi} \subseteq Lat \ \mathcal{A}$. Hence $M \in Lat \ \mathcal{A}^*$ and so Lat $T_{\phi}^* \subseteq Lat \ \mathcal{A}^*$.

By Proposition 3, when Let $\mathcal{A}^* \cap \text{Lat } \mathcal{A} = \{\langle 0 \rangle, H^2 \}$, if Lat $T_{\phi} \subset \text{Lat } \mathcal{A}$ then T_{ϕ} does not have a nontrivial reducing subspace. Hence if T_{ϕ} is normal then Lat $T_{\phi} \not\subset \text{Lat } \mathcal{A}$. Therefore it is important to know that Lat $\mathcal{A}^* \cap \text{Lat } \mathcal{A} = \{\langle 0 \rangle, H^2 \}$, that is, \mathcal{A} is irreducible.

4 Lat $A^* \cap$ Lat A

In this section we study Question 3. Theorem 3 shows that Question 3 can be answered positively for usual uniform algebras. Recall $\mathcal{A}^* = \{T_{\phi}^* ; \phi \in H^{\infty}\}.$

Theorem 3. If $M \in \text{Lat } \mathcal{A}^* \cap \text{Lat } \mathcal{A} \text{ then } M \subset \chi_E L^2 \subset M + \overline{K} \text{ where } E = \bigcup \{ \sup f \ ; \ f \in M \}. \text{ Hence if } E = X \text{ then } M = H^2.$

Proof. If $\phi \in L^{\infty}$ then by the Stone-Weierstrass theorem for any $\varepsilon > 0$ there exist f_1, \dots, f_n and g_1, \dots, g_n in H^{∞} such that $\| \phi - \sum_{j=1}^n f_j \bar{g}_j \|_{\infty} < \varepsilon$. Since $T_{f_j \bar{g}_j} M \subset M$ for $j = 1, \dots, n$, $T_{\phi} M \subset M$. By Lemma 1 $\phi M \subset M \oplus \bar{K}$. Thus $\chi_E L^2 \subset M \oplus \bar{K}$. If E = X then $L^2 = M \oplus \bar{K}$ and so $M = H^2$.

Corollary 7. Suppose that there does not exist a nonzero function in H^2 such that $m(\{x \in X ; f(x) = 0\}) \neq 0$. If $M \in \text{Lat } \mathcal{A}^* \cap \text{Lat } \mathcal{A}$ then $M = \langle 0 \rangle$ or H^2 .

5 Lat $T_{\phi} \cap$ Lat \mathcal{A}

In this section we study Question 4. We don't know whether Lat $T_{\phi} \neq \{\langle 0 \rangle, H^2 \}$. However we show that Lat $T_{\phi} \cap \text{Lat } \mathcal{A} = \{\langle 0 \rangle, H^2 \}$ if $\phi \notin H^{\infty}$ and $H^2 = H^2(\mathbf{T})$. For any M in Lat T_{ϕ} , put

$$K_M = \{k \in K \; ; \; \bar{k} = \phi f - g \text{ for some } f \text{ and } g \in M\},$$

then $K_M \subseteq K$ and $\phi M \subset M + \bar{K}_M$ (see Lemma 1).

Theorem 4. If $M \in \text{Lat } T_{\phi} \cap \text{ Lat } \mathcal{A} \text{ then } K_M \times (H^2 \ominus M) \subseteq (H^{\infty})^{\perp} \text{ and } T_k^*(H^{\infty}) \subseteq M \text{ for any } k \text{ in } K_M.$

Proof. By the remark above, if $M \in \text{Lat } T_{\phi} \cap \text{Lat } A$ then $\phi M \subset M + \bar{K}_M$. If $k \in K_M$ then by its definition there exist f and g such that $\phi f = g + \bar{k}$. For any $\ell \in H^{\infty}$, $\phi f \ell = g \ell + \bar{k} \ell \in M + \bar{K}_M$ and so $P(\bar{k}\ell) \in M$. Since

$$\bar{k}\ell = P(\bar{k}\ell) + (I - P)(\bar{k}\ell) \in M + \bar{K}_M,$$

if $s \in H^2 \ominus M$ then $\langle \bar{k}\ell, s \rangle = \langle P(\bar{k}\ell), s \rangle = 0$. Hence ks belongs to $(H^{\infty})^{\perp}$ and so $K_M \times (H^2 \ominus M) \subseteq (H^{\infty})^{\perp}$. The above proof implies that $T_k^*(H^{\infty}) \subseteq M$.

Corollary 8. Suppose that $H^2 = H^2(\Omega)$, $\mathscr{C} \setminus \Omega$ has n components and $\phi \notin H^{\infty}$. If $M \in \text{Lat } T_{\phi} \cap \text{Lat } \mathcal{A}$ then $\dim(H^2 \ominus M) \leq n$.

Proof. By Theorem 4

$$K_M \times (H^2 \ominus M) \subseteq (H^\infty)^\perp \cap (\bar{H}^\infty)^\perp = (H^\infty + \bar{H}^\infty)^\perp \cap L^1$$

and $\dim(H^{\infty} + \bar{H}^{\infty})^{\perp} \cap L^{1} = n$ because $\mathbb{C}\backslash\Omega$ has n components. If $K_{M} = \langle 0 \rangle$ then $\phi M \subset M$. It is known [4] that L^{∞} is generated by ϕ and H^{∞} in the weak* topology. Hence $M \in \text{Lat } \mathcal{A} \cap \text{Lat } \mathcal{A}^{*} = \{\langle 0 \rangle, H^{2}\}$ by Corollary 7 and so $M = H^{2}$. It is clear that if $K_{M} \neq \langle 0 \rangle$ then $\dim(H^{2} \ominus M) \leq n$.

Corollary 9. If $H^2 = H^2(\mathbf{T})$ and $\phi \notin H^{\infty}$ then Lat $T_{\phi} \cap \text{Lat } \mathcal{A} = \{\langle 0 \rangle, H^2 \}$. Proof. When Ω is the open unit disc, $H^2(\Omega) = H^2(\mathbf{T})$ and so by Corollary 8 Lat $T_{\phi} \cap \text{Lat } \mathcal{A} = \{\langle 0 \rangle, H^2 \}$.

Corollary 10. Let A be a Dirichlet algebra. If $\phi \notin H^{\infty}$ then Lat $T_{\phi} \cap \text{Lat } \mathcal{A} = \{\langle 0 \rangle, H^2 \}$.

Proof. It is known that $(\bar{H}^{\infty})^{\perp} \cap (H^{\infty})^{\perp} = \langle 0 \rangle$. The corollary is a result of Theorem 4.

In general, it seems to be difficult to describe Lat $T_{\phi} \cap \text{Lat } \mathcal{A}$. When $H^2 = H^2(\Omega)$ and $\bar{\phi} \in H^{\infty}$, Lat $T_{\phi} \cap \text{Lat } \mathcal{A} = \{\langle 0 \rangle, H^2 \}$ by Corollary 8. In fact, if $M \in \text{Lat } T_{\phi} \cap \text{Lat } \mathcal{A}$ then $\bar{\phi}(H^2 \ominus M) \subseteq H^2 \ominus M$. Since $\dim(H^2 \ominus M) < \infty$ by Corollary 8, M must be equal to H^2 . When $H^2 = H^2(T^2)$ and $\phi = \bar{z}$, Lat $T_{\phi} \cap \text{Lat } \mathcal{A} = \{\langle 0 \rangle, qH^2(w,T); q = q(w) \text{ is a one variable inner function}\}$ where z and w are the independent variables on T^2 . In fact, if $M \in \text{Lat } T_{\phi} \cap \text{Lat } \mathcal{A}$ then $T_z^* M_1$ is orthogonal to M where $M_1 = M \ominus zM$. Since $T_z^* M_1 \subset M$, $T_z^* M_1 = \langle 0 \rangle$ and so $M_1 \subset H^2(w,T)$. Corollary 10 shows that Lat $\mathcal{A}^* \cap \text{Lat } \mathcal{A} = \{\langle 0 \rangle, H^2 \}$ if A is a Dirichlet algebra.

References

[1] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, 1972

- [2] R. G. Douglas and W. Rudin, Approximation by inner functions, Pacific J.M. 31(1969), 313-320
- [3] S. Fisher, Function Theory On Planar Domains, John Wiley and Son, New York, 1983
- [4] T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J.. 1969
- [5] T. W. Gamelin, J.B.Garnett, L.A.Rubel, and A.L.Shields, On badly approximable functions, J.Approx.Theory 17(1976), 280-296
- [6] I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math.Soc. 105(1962), 415-435
- [7] R. F. Olin and J.E.Thomson, Algebras of subnormal operators, J.Funct.Anal. 37(1980), 271-301

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060-0810, Japan nakazi@math.sci.hokudai.ac.jp