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Abstract

Let Tφ be a Toeplitz operator on the one variable Hardy space H2. We

show that if Tφ has a nontrivial invariant subspace in the set of invariant

subspaces of Tz then φ belongs to H∞. In fact, we also study such a problem

for the several variables Hardy space H2.

1 Introduction

Let X be a compact Hausdorff space, let C(X) be the algebra of complex-valued
continuous functions on X, and let A be a uniform algebra on X. A probability
measure m (on X) denotes a representing measure for some nonzero complex homo-
morphism. The abstract Hardy space Hp = Hp(m), 1 ≤ p ≤ ∞, determined by A
is defined to be the closure of A in Lp = Lp(m) when p is finite and to be the weak∗

closure of A in L∞ = L∞(m) when p = ∞.
Let P be the orthogonal projection from L2 onto H2. For φ in L∞, put

Tφf = P (φf) (f ∈ H2)

and then Tφ is called a Toeplitz operator. In this paper, we are interested in invariant
subspaces of Toeplitz operators. Put A = {Tφ ; φ ∈ H∞} and A∗ = {T ∗

φ ; φ ∈ H∞}.
Lat Tφ denotes the set of all invariant subspaces of Tφ, Lat A = ∩ {Lat Tφ ; φ ∈ H∞}
and Lat A∗ = ∩{Lat T ∗

φ ; φ ∈ H∞}. We don’t know whether arbitrary Tφ has
a nontrivial invariant subspace. When φ is in H∞ and H∞ has a nonconstant
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unimodular function q, Tφ has a nontrivial invariant subspace M = qH2. Hence Lat
Tφ 6= {〈0〉, H2}.

Let K be the orthogonal complement of H̄2 in L2. Then L2 = H2 ⊕ K̄. I(H∞)
denotes the set of all unimodular functions in H∞. A function in I(H∞) is called an

inner function. For a subset Y in L∞, Y ⊥ denotes {g ∈ L1 ;
∫

gf̄dm = 0 (f ∈ Y )}.

In this paper we study the following four natural questions :

Question 1. If Lat Tφ ⊇ Lat A then does Tφ belong to A ?
Question 2. Suppose that H∞ is a weak∗ closed maximal algebra in L∞. If

Lat Tφ⊂
6−

Lat A then is Lat Tφ = {〈0〉, H2} ?

Question 3. Is Lat A∗∩ Lat A = {〈0〉, H2} ?
Question 4. Can we describe Lat Tφ∩ Lat A or equivalently Lat Tφ∩ Lat A∗?

In this paper, we will answer these four questions positively when A is the disc
algebra. In fact, for Question 1 we can do it for more general uniform algebras.
However for Question 2 we could not answer even for simple uniform algebras.
Question 3 can be answered for almost all uniform algebras.

In this paper Hp(Dn) denotes the Hardy space on the polydisc Dn and Hp(Ω) de-
notes the Hardy space on a finitely connected domain Ω. Lp

a(D) denotes the Bergman
space on D and put N2 = L2(D) ⊖ {L2

a(D) ⊕ z̄L̄2

a(D)}. Hp
0 denotes the set of

{f ∈ Hp ;
∫

fdm = 0}. Hp(Γ) denotes the usual Hardy space on the dual group Γ̂

where Γ is an ordered subgroup of the reals.

2 Lat A ⊆ Lat Tφ

In this section we study Question 1. Theorem 1 shows that Question 1 can be
answered positively for very general uniform algebras.

Lemma 1. Let M be a closed subspace of H2. M ∈ Lat Tφ if and only if
φM ⊂ M ⊕ K̄.

Proof. By definition of a Toeplitz operator, this is clear.

Lemma 2. If φ is a function in L∞ and Lat A ⊆ Lat Tφ then φ = φ0 + k̄0

where φ0 ∈ H2 and k̄0 ∈ ∩{q̄K̄ ; q ∈ I(H∞)}.
Proof. Since L2 = H2 ⊕ K̄, there exist h ∈ H2 and k ∈ K such that φ = h + k̄.

If q ∈ I(H∞) then qH2 ∈ Lat A and so by Lemma 1 φq = qh + qk̄ ∈ qH2 + K̄.
Since Tφq ∈ qH2 and qh ∈ qH2, P (qk̄) ∈ qH2. Hence qk̄ = qℓ + t̄ where ℓ ∈ H2

and t̄ ∈ K̄. Therefore k̄ = ℓ + qt and ℓ = k̄ − qt ∈ H2 ∩ K̄ = 〈0〉. Hence ℓ = 0 and
k̄ = qt. This implies that k belongs to q̄K̄ for any q ∈ I(H∞).
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Theorem 1. Suppose that ∩{q̄K̄ ; q ∈ I(H∞)} = 〈0〉. If φ is a function in L∞

and Lat A ⊆ Lat Tφ then φ belongs to H∞.
Proof. Lemmas 1 and 2 imply the theorem trivially.

Corollary 1. Suppose that H2 = H2(TN ). If φ is a function in L∞ and
Lat A ⊆ Lat Tφ then φ belongs to H∞.

Proof. K is an invariant subspace under multiplications by the coordinates func-
tions z1, · · · , zn. ∩ {zℓ1

1 · · · zℓn
n K ; (ℓ1, · · · , ℓn) ≥ (0, · · · , 0)} is a reducing subspace

and so ∩ zℓ1
n · · · zℓn

n K = χEL2 for some characteristic function χE . Since χEL2 is
orthogonal to H̄2, χE = 0 and so 〈0〉 = ∩z̄ℓ1

1 · · · z̄ℓn
n K̄ = ∩{q̄K̄ ; q ∈ I(H∞)}.

Corollary 2. Suppose that H2 = H2(Ω). If φ is a function in L∞ and
Lat A ⊆ Lat Tφ then φ belongs to H∞.

Proof. Let Z be the Ahlfors function for Ω then | Z |= 1 on ∂Ω = X (see [3]).
∞
⋂

n=0

Z̄nK̄ is invariant under the multiplications by Z and H̄∞. Since H∞ is a weak∗

maximal subalgebra of L∞,
∞
⋂

n=0

Z̄nK̄ = χEL2. Since χEL2 is orthogonal to H2,

χE = 0 and so ∩{q̄K̄ ; q ∈ I(H∞)} = {0}.

Corollary 3. Let A be a Dirichlet algebra (see [4]). If φ is a function in L∞

and Lat A ⊆ Lat Tφ then φ belongs to H∞.
Proof. Since H∞ is a uniform algebra which has the annulus property ([2],[6])

on a totally disconnected space, by [2, Theorem 1] the set of quotients of inner
functions is norm dense in the set of unimodular functions in L∞. In this situation,
K̄ = H̄2

0
and Y = ∩{q̄K̄ ; q ∈ I(H∞)} ⊂ H̄2. q̄Y = Y for any q in I(H∞) and so

q̄1q2Y ⊆ Y for any q1, q2 in I(H∞). Hence φY ⊆ Y for any unimodular function φ
in L∞. Hence Y = χEL2 for the characteristic function χE for some set E. Since
Y ⊂ H̄2, Y must be {0}.

Proposition 1. Suppose that H2 = L2

a(D), φ is a function in L∞ and Lat A ⊆
Lat Tφ. Then the following are valid.

(1) φ belongs to L2

a(D) + N2.
(2) If φ = f + ℓ where f ∈ H∞ and ℓ ∈ N2 then Lat Tℓ ⊇ Lat A.
Proof. (1) Since zL2

a ∈ Lat Tφ by hypothesis, 6C ∈ Lat T ∗
φ = Lat Tφ̄ and so

φ̄ = c̄ + k̄ where c ∈ 6C and k ∈ zL2

a(D) + N2. Hence φ ∈ L2

a(D) + N2. (2) If
φ = f + ℓ and M ∈ Lat A then φM ⊂ M + K̄. Hence (f + ℓ)g = fg + ℓg ∈ M + K̄
for any g ∈ M . Since fg ∈ M, ℓg ∈ M + K̄ for any g ∈ M and so ℓM ⊂ M + K̄.
Thus M ∈ Lat Tℓ.

A bounded operator B is called reflexive if whenever C is a bounded operator
and Lat B ⊆ Lat C then C belongs to the closed algebra (in weak operator topology)
generated by B. When B is subnormal, it is known that B is reflexive [7]. Hence if
f is a nonzero function in H∞ and Lat Tφ ⊇ Lat Tf then Tφ belongs to the closed
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algebra generated by Tf . Hence Tφ belongs to A. Usually Lat A⊂
6−

Lat Tf and so this

does not answer Question 1. However if there exists a function f in H∞ such that
Lat Tf = Lat A then the above result about subnormal operators answers Question
1. Hence when H2 = H2(T ), if Lat Tφ ⊇ Lat A then Tφ belongs to A because
Lat Tz = Lat A. Therefore Corollary 1 is not new for N = 1. Similarly Question 1
can be answered for H2 = L2

a(D). Hence Proposition 1 is a very weak result.

3 Lat Tφ ⊂
6−

Lat A

In this section we study Question 2. Theorem 2 shows that Question 2 can be
answered positively for the disc algebra. In fact, it gives a few results for more
general uniform algebras about Question 2.

Lemma 3. Let Q be a function in I(H∞). Then K̄ =
∞
∑

n=0

⊕ (K̄ ⊖ Q̄K̄)Q̄n ⊕

∞
⋂

n=0

Q̄nK̄.

Proof. Since |Q| = 1 a.e. and Q̄K̄ ⊂ K̄, Q̄ is an isometry on K̄. Hence this is
well known and called a Wold decomposition.

Theorem 2. Suppose that Lat Tφ⊂
6−

Lat A. If M ∈ Lat Tφ and ∩ {Q̄nK̄ ; Q ∈

I} = {0} for some subset I in I(H∞) then there exists a nonconstant Q in I such
that M ∩ (H2 ⊖ QH2) 6= 〈0〉 or φM ⊆ M .

Proof. If M ∈ Lat Tφ then by Lemma 1 there exist f ∈ M, g ∈ M and k ∈ K
such that φf = g + k̄. If φM 6⊆ M then we may assume that k 6= 0. For any fixed

Q ∈ I, by Lemma 3 K̄ =

{

∞
∑

n=0

⊕ (K̄ ⊖ Q̄K̄)Q̄n

}

⊕
∞
⋂

n=0

Q̄nK̄ and so

k̄ =
∞
∑

n=0

knQ̄
n + k∞

where kn ∈ K̄ ⊖ Q̄K̄ (n = 0, 1, 2, · · · ) and k∞ ∈
∞
⋂

n=0

Q̄nK̄. Then Qk̄ = Qk0 +

∞
∑

n=1

knQ̄
n−1 + Qk∞ and by Lemma 1 Qk̄ belongs to M + K̄ because φf = g + k̄ and

QM ⊂ M .
Suppose that there does not exist a nonconstant function Q in I such that

M ∩ (H2 ⊖ QH2) 6= 〈0〉. Then we will get a contradiction. By what was proved
above, Qk0 belongs to M ∩ (H2 ⊖ QH2) = {0}. Hence k0 ≡ 0. Next we consider
Q2k̄ and then k1 ≡ 0 follows. Proceeding similarly we can show that k̄ = k∞. By
hypothesis, this implies that k̄ ≡ 0 because Q is arbitrary in I. This contradiction
implies that there exists Q ∈ I such that M ∩ (H2 ⊖ QH2) 6= 〈0〉.
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Corollary 4. Suppose that H2 = H2(TN), φ is a function in L∞ and Lat Tφ ⊂
6−

Lat

A. If M ∈ Lat Tφ and M 6= 〈0〉 then M contains a nonzero function which is
(N − 1)-variable. Hence if N = 1 then M = H2.

Proof. It is known that if φM ⊆ M then φ ∈ H∞. Hence we may assume that
φM 6⊆ M . Put I = {z1, · · · , zN} then I satisfies the condition of Theorem 2. By
Theorem 2, there exists zj such that 1 ≤ j ≤ N and (H2 ⊖ zjH

2)∩M 6= {0}. Since
H2⊖zjH

2 = H2(z′j , T
N−1) where z = (zj , z

′
j), M contains a nonzero (N−1)-variable

function.

Corollary 5. Suppose that H2 = H2(Ω), Lat Tφ⊂
6−

Lat A and Z is the Alfors

function for Ω (see [3]). If M ∈ Lat Tφ and M 6= 〈0〉 then M ∩ (H2 ⊖ ZH2) 6= 〈0〉.
Proof. Put I = {Z} then I satisfies the condition of Theorem 2. It is known

that if φM ⊆ M then φ ∈ H∞. Hence we may assume that φM 6⊆ M .

Proposition 2. If Tφ is subnormal and Lat Tφ ⊆ Lat A then Tφ commutes with
A and so Tφf = P (φ0f) (f ∈ H∞) for some φ0 in H2. If A is a uniform algebra
which approximates in modulus on X then φ belongs to H2 ∩ L∞.

Proof. If Tφ is subnormal and Lat Tφ ⊆ Lat A then it is known [7] that A is
contained in the closed algebra generated by Tφ. Hence Tφ commutes with A. Let
φ0 = Tφ1 then Tφf = TφTf1 = TfTφ1 = P (φ0f) for f ∈ H∞. Since ‖φ0f‖2 ≤
‖Tφ‖‖f‖2 (f ∈ H∞),

∣

∣

∣

∣

∫

X
φ0f ḡdm

∣

∣

∣

∣

≤ ‖φ‖∞‖f‖2‖g‖2 (f, g ∈ H∞).

Hence
∣

∣

∣

∣

∫

X
φ0 | f |2 dm

∣

∣

∣

∣

≤ ‖φ‖∞‖f 2‖1.

Since A approximates in modulus on X, φ0 belongs to H2 ∩ L∞. It is easy to see
that φ = φ0.

Corollary 6. Suppose that H2 = H2(TN) or H2 = H2(Ω). If Tφ is subnormal
then Lat Tφ ⊂

6−
Lat A or φ belongs to H∞.

Proof. A uniform algebra A approximates in modulus on X, that is , for every
positive continuous function g on X and ε > 0, there is an f in A with |g − |f || <
ε if the set of unimodular elements of A separates points of X (see [6, Lemma
4.12]). Since the coordinate functions z1, · · · , zn separate TN , the polydisc algebra
approximates in modulus on TN . If Tφ is subnormal on H2(TN) and Lat Tφ ⊆ Lat A
then by Proposition 2 φ belongs to H2(TN) ∩ L∞ = H∞(TN). If A = H∞(Ω) then
by [3, Lemma 4.8] I(H∞(Ω)) separates X = the maximal ideal space of L∞(∂D).
Hence Corollary 6 for H2 = H2(Ω) follows from Proposition 2.

Proposition 3. If Lat Tφ ⊆ Lat A, then Lat T ∗
φ ∩ Lat Tφ ⊂ Lat A∗ ∩ Lat A.

Proof. If M ∈ Lat T ∗
φ then M⊥ ∈ Lat Tφ and so M⊥ ∈ Lat A because Lat

Tφ ⊆ Lat A. Hence M ∈ Lat A∗ and so Lat T ∗
φ ⊆ Lat A∗.
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By Proposition 3, when Let A∗ ∩ Lat A = {〈0〉, H2}, if Lat Tφ⊂
6−

Lat A then

Tφ does not have a nontrivial reducing subspace. Hence if Tφ is normal then
Lat Tφ 6⊂ Lat A. Therefore it is important to know that Lat A∗∩Lat A = {〈0〉, H2},
that is, A is irreducible.

4 Lat A∗∩ Lat A

In this section we study Question 3. Theorem 3 shows that Question 3 can be
answered positively for usual uniform algebras. Recall A∗ = {T ∗

φ ; φ ∈ H∞}.

Theorem 3. If M ∈ Lat A∗∩ Lat A then M ⊂ χEL2 ⊂ M + K̄ where
E = ∪{supp f ; f ∈ M}. Hence if E = X then M = H2.

Proof. If φ ∈ L∞ then by the Stone-Weierstrass theorem for any ε > 0 there exist

f1, · · · , fn and g1, · · · , gn in H∞ such that ‖ φ −
n

∑

j=1

fj ḡj ‖∞< ε. Since Tfj ḡj
M ⊂ M

for j = 1, · · · , n, TφM ⊂ M . By Lemma 1 φM ⊂ M ⊕ K̄. Thus χEL2 ⊂ M ⊕ K̄.
If E = X then L2 = M ⊕ K̄ and so M = H2.

Corollary 7. Suppose that there does not exist a nonzero function in H2 such
that m({x ∈ X ; f(x) = 0}) 6= 0. If M ∈ Lat A∗∩ Lat A then M = 〈0〉 or H2.

5 Lat Tφ∩ Lat A

In this section we study Question 4. We don’t know whether Lat Tφ 6= {〈0〉, H2}.
However we show that Lat Tφ ∩ Lat A = {〈0〉, H2} if φ /∈ H∞ and H2 = H2(T).
For any M in Lat Tφ, put

KM = {k ∈ K ; k̄ = φf − g for some fand g ∈ M},

then KM ⊆ K and φM ⊂ M + K̄M (see Lemma 1).

Theorem 4. If M ∈ Lat Tφ ∩ Lat A then KM × (H2 ⊖ M) ⊆ (H∞)⊥ and
T ∗

k (H∞) ⊆ M for any k in KM .
Proof. By the remark above, if M ∈ Lat Tφ ∩ Lat A then φM ⊂ M + K̄M . If

k ∈ KM then by its definition there exist f and g such that φf = g + k̄. For any
ℓ ∈ H∞, φfℓ = gℓ + k̄ℓ ∈ M + K̄M and so P (k̄ℓ) ∈ M . Since

k̄ℓ = P (k̄ℓ) + (I − P )(k̄ℓ) ∈ M + K̄M ,

if s ∈ H2 ⊖ M then 〈k̄ℓ, s〉 = 〈P (k̄ℓ), s〉 = 0. Hence ks belongs to (H∞)⊥ and so
KM × (H2 ⊖ M) ⊆ (H∞)⊥. The above proof implies that T ∗

k (H∞) ⊆ M .

Corollary 8. Suppose that H2 = H2(Ω), 6C\Ω has n components and φ /∈ H∞.
If M ∈ Lat Tφ ∩ Lat A then dim(H2 ⊖ M) ≤ n.
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Proof. By Theorem 4

KM × (H2 ⊖ M) ⊆ (H∞)⊥ ∩ (H̄∞)⊥ = (H∞ + H̄∞)⊥ ∩ L1

and dim(H∞ + H̄∞)⊥ ∩ L1 = n because 6C\Ω has n components. If KM = 〈0〉 then
φM ⊂ M . It is known [4] that L∞ is generated by φ and H∞ in the weak∗ topology.
Hence M ∈ Lat A ∩ Lat A∗ = {〈0〉, H2} by Corollary 7 and so M = H2. It is clear
that if KM 6= 〈0〉 then dim(H2 ⊖ M) ≤ n.

Corollary 9. If H2 = H2(T) and φ /∈ H∞ then Lat Tφ ∩ Lat A = {〈0〉, H2}.
Proof. When Ω is the open unit disc, H2(Ω) = H2(T) and so by Corollary 8

Lat Tφ ∩ Lat A = {〈0〉, H2}.

Corollary 10. Let A be a Dirichlet algebra. If φ /∈ H∞ then Lat Tφ ∩ Lat A =
{〈0〉, H2}.

Proof. It is known that (H̄∞)⊥ ∩ (H∞)⊥ = 〈0〉. The corollary is a result of
Theorem 4.

In general, it seems to be difficult to describe Lat Tφ∩Lat A. When H2 = H2(Ω)
and φ̄ ∈ H∞, Lat Tφ ∩ Lat A = {〈0〉, H2} by Corollary 8. In fact, if M ∈ Lat Tφ ∩
Lat A then φ̄(H2 ⊖ M) ⊆ H2 ⊖ M . Since dim(H2 ⊖ M) < ∞ by Corollary 8,
M must be equal to H2. When H2 = H2(T 2) and φ = z̄, Lat Tφ ∩ Lat A =
{〈0〉, qH2(w, T ); q = q(w) is a one variable inner function} where z and w are the
independent variables on T 2. In fact, if M ∈ Lat Tφ∩Lat A then T ∗

z M1 is orthogonal
to M where M1 = M ⊖zM . Since T ∗

z M1 ⊂ M, T ∗
z M1 = 〈0〉 and so M1 ⊂ H2(w, T ).

Corollary 10 shows that Lat A∗ ∩ Lat A = {〈0〉, H2} if A is a Dirichlet algebra.
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