A vanishing result for Igusa's p -adic zeta functions with character

Dirk Segers*

Abstract

Let K be a p-adic field and let f be a K-analytic function on an open and compact subset of K^{3}. Let R be the valuation ring of K and let χ be an arbitrary character of R^{\times}. Let $Z_{f, \chi}(s)$ be Igusa's p-adic zeta function. In this paper, we prove a vanishing result for candidate poles of $Z_{f, \chi}(s)$. This result implies that $Z_{f, \chi}(s)$ has no pole with real part less than -1 if f has no point of multiplicity 2 .

1 Introduction

(1.1) Let K be a p-adic field, i.e., an extension of \mathbb{Q}_{p} of finite degree. Let R be the valuation ring of K, P the maximal ideal of R, π a fixed uniformizing parameter for R and q the cardinality of the residue field R / P. For $z \in K$, let ord $z \in \mathbb{Z} \cup\{+\infty\}$ denote the valuation of $z,|z|=q^{-\operatorname{ord} z}$ the absolute value of z and $\operatorname{ac} z=z \pi^{-\operatorname{ord} z}$ the angular component of z.

Let χ be a character of R^{\times}, i.e., a homomorphism $\chi: R^{\times} \rightarrow \mathbb{C}^{\times}$with finite image. We formally put $\chi(0)=0$. Let e be the conductor of χ, i.e., the smallest $a \in \mathbb{Z}_{>0}$ such that χ is trivial on $1+P^{a}$.
(1.2) Let f be a K-analytic function on an open and compact subset X of K^{n} and put $x=\left(x_{1}, \ldots, x_{n}\right)$. Igusa's p-adic zeta function of f and χ is defined by

$$
Z_{f, \chi}(s)=\int_{X} \chi(\operatorname{ac} f(x))|f(x)|^{s}|d x|
$$

[^0]for $s \in \mathbb{C}, \operatorname{Re}(s)>0$, where $|d x|$ denotes the Haar measure on K^{n}, so normalized that R^{n} has measure 1. Igusa proved that it is a rational function of q^{-s}, so that it extends to a meromorphic function $Z_{f, \chi}(s)$ on \mathbb{C} which is also called Igusa's p-adic zeta function of f. If χ is the trivial character, we will also write $Z_{f}(s)$.
(1.3) Let $g: Y=Y_{t} \rightarrow X=Y_{0}$ be an embedded resolution of f which is a composition $g_{1} \circ \cdots \circ g_{t}$ of blowing-ups $g_{i}: Y_{i} \rightarrow Y_{i-1}$. Suppose that each g_{i} is a blowing-up along a K-analytic closed submanifold of codimension larger than one which has only normal crossings with the union of the exceptional varieties of $g_{1} \circ \cdots \circ g_{i-1}$. The exceptional variety of g_{i} and also the strict transforms of this variety are denoted by E_{i}. The multiplicities of $f \circ g$ and $g^{*} d x$ along E_{i} are respectively denoted by N_{i} and $\nu_{i}-1$. Note that such a resolution always exists by Hironaka's theorem [Hi].

If one has an embedded resolution of f, one can write down a set of candidate poles of $Z_{f, \chi}(s)$ which contains all poles of $Z_{f, \chi}(s)$. Candidate poles are associated to a component of the strict transform of $f^{-1}\{0\}$ or to an exceptional variety E_{i}. One associates candidate poles to an exceptional variety E_{i} if $\chi^{N_{i}}=1$, and in this case, these candidate poles are $-\nu_{i} / N_{i}+(2 k \pi \sqrt{-1}) /\left(N_{i} \log q\right)$, with $k \in \mathbb{Z}$. Most candidate poles are actually not poles. This would be elucidated if the monodromy conjecture [De] is true, see for example [Lo], [Ve] and [ACLM]. In order to prove that a candidate pole s_{0} of expected order 1 is not a pole, we have to prove that the residue of $Z_{f, \chi}(s)$ at s_{0} is zero. We recall a formula for this residue which we will use in this paper.

Let s_{0} be a candidate pole of $Z_{f, \chi}(s)$ of expected order 1 . Let $E_{r}, r \in\{1, \ldots, t\}$, be an exceptional variety with candidate pole s_{0} (and thus also with $\chi^{N_{r}}=1$). Let (V, z) be a compact chart on Y_{r} such that $z_{n}=0$ is an equation of E_{r} on V. Write

$$
f \circ g_{1} \circ \cdots \circ g_{r}=\alpha z_{n}^{N_{r}} \quad \text { and } \quad\left(g_{1} \circ \cdots \circ g_{r}\right)^{*} d x=\beta z_{n}^{\nu_{r}-1} d z
$$

on V, for K-analytic functions α and β on V. We have that $\bar{z}=\left(z_{1}, \ldots, z_{n-1}\right)$ determines coordinates on the closed submanifold $\bar{V}=V \cap E_{r}$ which is defined by $z_{n}=0$. Consider the volume form $d \bar{z}=d z_{1} \wedge \cdots \wedge d z_{n-1}$ on \bar{V}. We proved in [Se1, (2.6)] that the contribution of the strict transform of \bar{V} in Y to the residue of $Z_{f, \chi}(s)$ at s_{0} is equal to

$$
\left(\frac{q-1}{q N_{r} \log q}\right)\left[\int_{\bar{V}} \chi(\operatorname{ac} \alpha)|\alpha|^{s}|\beta||d \bar{z}|\right]_{s=s_{0}}^{\mathrm{mc}} .
$$

Here, $[\cdot]_{s=s_{0}}^{\mathrm{mc}}$ is the meromorphic continuation of the function between the brackets evaluated at $s=s_{0}$.
(1.4) Let f be a K-analytic function on an open and compact subset X of K^{3} and let χ be an arbitrary character of R^{\times}. We proved in [Se1] that the real part of a pole of $Z_{f, \chi}(s)$ is of the form $-1-1 / i$, with $i \in \mathbb{Z}_{>1}$, if it is less than -1 . Moreover, we proved that $Z_{f}(s)$ has no pole with real part less than -1 if f has no point of multiplicity 2. This result is also valid for $Z_{f, \chi}(s)$:
Theorem. We have that $Z_{f, \chi}(s)$ has no pole with real part less than -1 if f has no point of multiplicity 2 .

This follows immediately from [Se1, (4.2.2.4)], from the proof in [SV, (3.3.8)] adapted to this context and from the following vanishing result.
Proposition. Let $r \in\{1, \ldots, t\}$ and let $P \in Y_{r-1}$ be the centre of the blowingup g_{r}. Suppose that the expected order of a candidate pole s_{0} associated to E_{r} is one. Suppose that there exists a chart $\left(V, y=\left(y_{1}, y_{2}, y_{3}\right)\right)$ centred at P on which $f \circ g_{1} \circ \cdots \circ g_{r-1}$ is given by a power series with lowest degree part of the form $e y_{1}^{k} y_{2}^{l} y_{3}^{m}\left(y_{1}+y_{2}\right)^{n}$, with $e \in K^{\times}$and $k, l, m, n \in \mathbb{Z}_{\geq 0}$. Then the contribution of E_{r} to the residue of $Z_{f, \chi}(s)$ at s_{0} is zero.

We have already proved this proposition for the trivial character in [Se1, Section 3.2]. The other cases will be treated in Section 3 of this paper by using the formula for the residue in (1.3). Most vanishing results with character are up till now only for characters with conductor 1. In this paper, we treat characters with arbitrary conductor. If we would have restricted us to characters with conductor 1 , we would need well known results on character sums of characters $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$. To treat characters with arbitrary conductor, we need results on character sums of characters $\chi:\left(R / P^{e}\right)^{\times} \rightarrow \mathbb{C}^{\times}$. This is treated in Section 2 in a slightly more general context.

2 Character sums

(2.1) Let G, . be a finite group. Let \mathbb{C}^{\times}, . be the multiplicative group of the field of complex numbers. A character χ of G is a group homomorphism $\chi: G \rightarrow \mathbb{C}^{\times}$. Note that $\chi(x)$ is a $(|G|)$ th root of unity for every $x \in G$.

Let R be a discrete valuation ring, abbreviated DVR. Let P be the maximal ideal of R and suppose that the residue field R / P is isomorphic to \mathbb{F}_{q}. Let π be a fixed uniformizing parameter for R. A character χ of the group R^{\times}, is a group homomorphism $\chi: R^{\times} \rightarrow \mathbb{C}^{\times}$with finite image. The conductor $e_{\chi}=e$ of χ is the smallest $u \in \mathbb{Z}_{>0}$ such that χ is trivial on $1+P^{u}$.

Valuation rings of p-adic fields are the DVRs which are interesting for our purposes. Other interesting DVRs with finite residue field are the rings of formal power series $\mathbb{F}_{q}[[t]]$.

For every $u \in \mathbb{Z}_{>0}$, there is a natural one to one correspondence between characters $\chi:\left(R / P^{u}\right)^{\times} \rightarrow \mathbb{C}^{\times}$and characters $\chi: R^{\times} \rightarrow \mathbb{C}^{\times}$with conductor less than or equal to u.

Let $u \in \mathbb{Z}_{>0}$ and let $L \subset R$ be a union of cosets of P^{u}. By abuse of notation, we will consider L sometimes as a subset of R / P^{u}. We will write $L \subset R / P^{u}$ if we want to stress this. If all elements of $L \subset R / P^{u}$ are units, we will also write $L \subset\left(R / P^{u}\right)^{\times}$.

The characters of a finite group $G, .\left(\right.$ and of $\left.R^{\times},.\right)$can be multiplied in an obvious way. The set of characters becomes a group for this operation. The identity of this group is the constant map on 1 , and this character is called the trivial character.

We now give a lot of propositions on character sums which will be used in Section 3. In [IR, Chapter 8], character sums of \mathbb{F}_{p}^{\times}are treated. We will use similar techniques in our proofs.
(2.2) Proposition. Let χ be a non-trivial character of a finite group G. Then $\sum_{x \in G} \chi(x)=0$.
Proof. Fix $a \in G$ such that $\chi(a) \neq 1$. Then

$$
\chi(a) \sum_{x \in G} \chi(x)=\sum_{x \in G} \chi(a x)=\sum_{x \in G} \chi(x) .
$$

The last equality is a consequence of the fact that $a x$ runs over all elements of G if x does. Our statement follows because $\chi(a) \neq 1$.

The previous proposition is well known. Now comes the serious work.
(2.3) Proposition. Let R be a $D V R$ and let χ be a non-trivial character of R^{\times} with conductor e. Then

$$
\begin{array}{r}
\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(x)=0, \\
\sum_{\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2}, x_{1}+x_{2} \in\left(R / P^{e}\right)^{\times}\right\}} \chi\left(x_{1}+x_{2}\right)=0 .
\end{array}
$$

Proof. (1) This is Proposition 2.2 for $G=\left(R / P^{e}\right)^{\times}$.
(2) Every element of $\left(R / P^{e}\right)^{\times}$can be written as $x_{1}+x_{2}$, with $x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}$, in exactly $(q-2) q^{e-1}$ ways. Consequently,

$$
\begin{aligned}
\sum_{\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2}, x_{1}+x_{2} \in\left(R / P^{e}\right)^{\times}\right\}} \chi\left(x_{1}+x_{2}\right) & =(q-2) q^{e-1} \sum_{t \in\left(R / P^{e}\right)^{\times}} \chi(t) \\
& =0 .
\end{aligned}
$$

(2.4) Proposition. Let R be a $D V R$ and let χ be a non-trivial character of R^{\times} with conductor $e \geq 2$. Let $a \in R^{\times}$, let $i \in\{1, \ldots, e-1\}$ and let $j \geq i$. Then

$$
\begin{aligned}
\sum_{x \in a+P^{i} \subset\left(R / P^{e}\right)^{\times}} \chi(x) & =0 \\
\sum_{x \in 1+P^{i} \subset\left(R / P^{e}\right)^{\times}} \chi\left(\pi^{j} a+x\right) & =0 \\
\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi\left(\pi^{j} a+x\right) & =0 .
\end{aligned}
$$

Proof. (1) Because

$$
a+P^{i} \rightarrow 1+P^{i}: x \mapsto a^{-1} x
$$

is a bijection, we obtain

$$
\begin{aligned}
\sum_{x \in a+P^{i} \subset\left(R / P^{e}\right)^{\times}} \chi(x) & =\sum_{x \in a+P^{i} \subset\left(R / P^{e}\right)^{\times}} \chi(a) \chi\left(a^{-1} x\right) \\
& =\chi(a) \sum_{t \in 1+P^{i} \subset\left(R / P^{e}\right)^{\times}} \chi(t) \\
& =0 .
\end{aligned}
$$

The last equality follows from Proposition 2.2 because $1+P^{i}$ is a subgroup of $\left(R / P^{e}\right)^{\times}$on which χ is non-trivial.
(2) Because

$$
1+P^{i} \rightarrow 1+P^{i}: x \mapsto \pi^{j} a+x
$$

is a bijection, we obtain

$$
\begin{aligned}
\sum_{x \in 1+P^{i} \subset\left(R / P^{e}\right)^{\times}} \chi\left(\pi^{j} a+x\right) & =\sum_{t \in 1+P^{i} \subset\left(R / P^{e}\right)^{\times}} \chi(t) \\
& =0 .
\end{aligned}
$$

(3) The proof of the last equality is analogous to (2).
(2.5) Proposition. Let R be a $D V R$ and let χ be a non-trivial character of R^{\times} with conductor e. Let $a \in R^{\times}$and let $i \in\{1, \ldots, e-1\}$. Then

$$
\begin{aligned}
\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(x) \chi^{-1}\left(x+\pi^{i} a\right) & = \begin{cases}0 & \text { if } i \in\{1, \ldots, e-2\} \\
-q^{e-1} & \text { if } i=e-1\end{cases} \\
\sum_{x \in\left(R / P^{e}\right) \times \backslash(-a+P)} \chi(x) \chi^{-1}(x+a) & = \begin{cases}0 & \text { if } e>1 \\
-1 & \text { if } e=1\end{cases} \\
\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(x) \chi^{-1}\left(\pi^{i} x+a\right) & =0 .
\end{aligned}
$$

Proof. (1) In this proof all calculations in R are modulo P^{e}. Because $\chi(x) \chi^{-1}(x+$ $\left.\pi^{i} a\right)=\chi\left(x /\left(x+\pi^{i} a\right)\right.$), we study the values $x /\left(x+\pi^{i} a\right)$ if x runs over $\left(R / P^{e}\right)^{\times}$. We have that $x /\left(x+\pi^{i} a\right)=t$ if and only if $x(1-t)=\pi^{i} a t$, and such a t is of the form $t=1+\pi^{i} b$ for some $b \in R^{\times}$. Moreover the $x \in\left(R / P^{e}\right)^{\times}$which satisfy this equation for such a fixed t are exactly the elements which are equal to $-a b^{-1} t$ modulo P^{e-i}. We thus have q^{i} values of $x \in\left(R / P^{e}\right)^{\times}$for such a fixed t. Consequently

$$
\begin{aligned}
\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(x) \chi^{-1}\left(x+\pi^{i} a\right) & =\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi\left(\frac{x}{x+\pi^{i} a}\right) \\
& =q^{i} \sum_{t \in 1+\left(P^{i} \backslash P^{i+1}\right) \subset\left(R / P^{e}\right)^{\times}} \chi(t) \\
& =q^{i}\left(\sum_{t \in 1+P^{i}} \chi(t)-\sum_{t \in 1+P^{i+1}} \chi(t)\right) \\
& = \begin{cases}0 & \text { if } i \in\{1, \ldots, e-2\} \\
-q^{e-1} & \text { if } i=e-1\end{cases}
\end{aligned} .
$$

The last equality follows from Proposition 2.2 because $1+P^{i}$ and $1+P^{i+1}$ are subgroups of $\left(R / P^{e}\right)^{\times}$.
(2) One verifies easily that the map

$$
\left(R / P^{e}\right)^{\times} \backslash(-a+P) \rightarrow\left(R / P^{e}\right)^{\times} \backslash(1+P): x \mapsto \frac{x}{x+a}
$$

is a bijection. Consequently

$$
\begin{aligned}
\sum_{x \in\left(R / P^{e}\right) \times \backslash(-a+P)} \chi(x) \chi^{-1}(x+a) & =\sum_{x \in\left(R / P^{e}\right) \times \backslash(-a+P)} \chi\left(\frac{x}{x+a}\right) \\
& =\sum_{t \in\left(R / P^{e}\right) \times \backslash(1+P)} \chi(t) \\
& = \begin{cases}0 & \text { if } e>1 \\
-1 & \text { if } e=1\end{cases}
\end{aligned}
$$

(3) One verifies easily that the map

$$
\left(R / P^{e}\right)^{\times} \rightarrow\left(R / P^{e}\right)^{\times}: x \mapsto \frac{x}{\pi^{i} x+a}
$$

is a bijection. Consequently

$$
\begin{aligned}
\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(x) \chi^{-1}\left(\pi^{i} x+a\right) & =\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi\left(\frac{x}{\pi^{i} x+a}\right) \\
& =\sum_{t \in\left(R / P^{e}\right)^{\times}} \chi(t) \\
& =0 .
\end{aligned}
$$

From now on, e is always the maximum of the conductors of the characters which are involved.
(2.6) Proposition. Let R be a $D V R$ and let χ, ψ, ρ be non-trivial characters of R^{\times}such that $\chi \neq \rho^{-1}$ and $\psi \neq \rho^{-1}$. Let $a \in R^{\times}$and let $i \in \mathbb{Z}_{\geq 0}$. Then

$$
\begin{aligned}
& \sum_{x \in\left(R / P^{e}\right)^{\times}} \psi(x) \rho\left(x+\pi^{i} a\right)=0 \quad \text { if } \quad e_{\rho} \leq e_{\psi \rho}+i-1, \\
& \sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(x) \rho\left(\pi^{i} x+a\right)=0 \quad \text { if } \quad e_{\rho} \leq e_{\chi}+i-1 .
\end{aligned}
$$

Proof. (1) Let $v \in 1+P^{e_{\psi \rho}-1}$ such that $(\psi \rho)(v) \neq 1$. Then

$$
\begin{aligned}
\sum_{x \in\left(R / P^{e}\right)^{\times}} \psi(x) \rho\left(x+\pi^{i} a\right) & =\sum_{x \in\left(R / P^{e}\right)^{\times}} \psi(v x) \rho\left(v x+\pi^{i} a\right) \\
& =\sum_{x \in\left(R / P^{e}\right)^{\times}} \psi(v x) \rho\left(v x+\pi^{i} v a\right) \\
& =(\psi \rho)(v) \sum_{x \in\left(R / P^{e}\right)^{\times}} \psi(x) \rho\left(x+\pi^{i} a\right) .
\end{aligned}
$$

Because $(\psi \rho)(v) \neq 1$, we get our statement. In the first equality, we used a translation in the group $\left(R / P^{e}\right)^{\times}$. For the second equality, we used that $e_{\rho} \leq e_{\psi \rho}+i-1$ and that $v \in 1+P^{e_{\psi \rho}-1}$.
(2) Let $v \in 1+P^{e_{\chi}-1}$ such that $\chi(v) \neq 0$. Then

$$
\begin{aligned}
\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(x) \rho\left(\pi^{i} x+a\right) & =\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(v x) \rho\left(\pi^{i} v x+a\right) \\
& =\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(v x) \rho\left(\pi^{i} x+a\right) \\
& =\chi(v) \sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(x) \rho\left(\pi^{i} x+a\right) .
\end{aligned}
$$

Because $\chi(v) \neq 1$, we get our statement. In the first equality, we used a translation in the group $\left(R / P^{e}\right)^{\times}$. For the second equality, we used that $e_{\rho} \leq e_{\chi}+i-1$ and that $v \in 1+P^{e_{\chi}-1}$.
(2.7) Proposition. Let R be a $D V R$ and let χ, ψ, ρ be non-trivial characters of R^{\times}such that $\chi \psi \rho=1$. Note that the largest two values of $e_{\chi}, e_{\psi}, e_{\rho}$ are equal. Let $a, x_{1}, x_{2} \in R^{\times}$and let $i \in \mathbb{Z}_{\geq 0}$. Then

$$
\begin{aligned}
\sum_{x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \psi\left(x_{2}\right) \rho\left(a x_{2}+\pi^{i} x_{1}\right) & =\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(x) \rho\left(a+\pi^{i} x\right) \\
& =\sum_{x_{1} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \psi\left(x_{2}\right) \rho\left(a x_{2}+\pi^{i} x_{1}\right),
\end{aligned}
$$

and this is equal to 0 if $e_{\rho} \leq e_{\chi}+i-1$.

Proof. Fix $v \in\left(R / P^{e}\right)^{\times}$. Then

$$
\begin{aligned}
\sum_{x_{2} \in\left(R / P^{e}\right)^{\times}} & \chi\left(x_{1}\right) \psi\left(x_{2}\right) \rho\left(a x_{2}+\pi^{i} x_{1}\right) \\
= & (\chi \psi \rho)(v) \sum_{x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \psi\left(x_{2}\right) \rho\left(a x_{2}+\pi^{i} x_{1}\right) \\
= & \sum_{x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(v x_{1}\right) \psi\left(v x_{2}\right) \rho\left(a v x_{2}+\pi^{i} v x_{1}\right) \\
= & \sum_{x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(v x_{1}\right) \psi\left(x_{2}\right) \rho\left(a x_{2}+\pi^{i} v x_{1}\right) .
\end{aligned}
$$

Because $v x_{1}$ takes all values of $\left(R / P^{e}\right)^{\times}$if v runs over $\left(R / P^{e}\right)^{\times}$, we obtain that

$$
\sum_{x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \psi\left(x_{2}\right) \rho\left(a x_{2}+\pi^{i} x_{1}\right)
$$

is independent of $x_{1} \in\left(R / P^{e}\right)^{\times}$. In the first equality, we put $x_{1}=1$:

$$
\begin{aligned}
\sum_{x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \psi\left(x_{2}\right) \rho\left(a x_{2}+\pi^{i} x_{1}\right) & =\sum_{x_{2} \in\left(R / P^{e}\right)^{\times}} \psi\left(x_{2}\right) \rho\left(a x_{2}+\pi^{i}\right) \\
& =\sum_{x \in\left(R / P^{e}\right)^{\times}} \psi\left(x^{-1}\right) \rho\left(a x^{-1}+\pi^{i}\right) \\
& =\sum_{x \in\left(R / P^{e}\right)^{\times}}(\psi \rho)^{-1}(x) \rho\left(a+\pi^{i} x\right) \\
& =\sum_{x \in\left(R / P^{e}\right)^{\times}} \chi(x) \rho\left(a+\pi^{i} x\right) .
\end{aligned}
$$

This is the first equality we had to prove. Analogously as before, we obtain that

$$
\sum_{x_{1} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \psi\left(x_{2}\right) \rho\left(a x_{2}+\pi^{i} x_{1}\right)
$$

is independent of x_{2}. If we put $x_{2}=1$, we obtain the second equality. We can use either of the equalities of (2.6) to prove that it is equal to 0 under the condition $e_{\rho} \leq e_{\chi}+i-1$.
(2.8) Proposition. Let R be a $D V R$ and let χ, ψ, ρ be non-trivial characters of R^{\times}such that $\chi \psi \rho=1$. Then

$$
\frac{1}{q^{e}} \sum_{x_{1}, x_{2}, x_{1}+x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \psi\left(x_{2}\right) \rho\left(x_{1}+x_{2}\right)=\frac{q-1}{q} \sum_{x \in\left(R / P^{e}\right)^{\times} \backslash(-1+P)} \psi(x) \rho(1+x) .
$$

Proof. The map $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}\right.$and $\left.x_{2} \notin-1+P\right\} \rightarrow\left\{\left(x_{1}, x_{2}\right) \mid\right.$ $\left.x_{1}, x_{2}, x_{1}+x_{2} \in\left(R / P^{e}\right)^{\times}\right\}:\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{1} x_{2}\right)$ is a bijection. Therefore

$$
\begin{aligned}
& \sum_{x_{1}, x_{2}, x_{1}+x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \psi\left(x_{2}\right) \rho\left(x_{1}+x_{2}\right) \\
&=\sum_{x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times} ; x_{2} \notin-1+P} \chi\left(x_{1}\right) \psi\left(x_{1} x_{2}\right) \rho\left(x_{1}+x_{1} x_{2}\right) \\
&=\sum_{x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times} ; x_{2} \notin-1+P} \psi\left(x_{2}\right) \rho\left(1+x_{2}\right) \\
&=(q-1) q^{e-1} \sum_{x \in\left(R / P^{e}\right)^{\times} \backslash(-1+P)} \psi(x) \rho(1+x) .
\end{aligned}
$$

(2.9) Proposition. Let R be a $D V R$ and let χ, ρ be non-trivial characters of R^{\times} such that $\chi \rho \neq 1$. Let $a \in R^{\times}$. Let $i \in \mathbb{Z}_{\geq 0}$. Then

$$
\begin{aligned}
\sum_{x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \rho\left(a x_{1}+\pi^{i} x_{2}\right) & =0 \\
\sum_{x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \rho\left(a x_{2}+\pi^{i} x_{1}\right) & =0 \\
\sum_{x_{1}, x_{2}, x_{1}+x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \rho\left(x_{2}\right) & =0 .
\end{aligned}
$$

Proof. Let $v \in\left(R / P^{e}\right)^{\times}$such that $(\chi \rho)(v) \neq 0$. The map $\left(x_{1}, x_{2}\right) \mapsto\left(v x_{1}, v x_{2}\right)$ is a bijection of $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}\right\}$and also of $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2}, x_{1}+x_{2} \in\right.$ $\left.\left(R / P^{e}\right)^{\times}\right\}$. Therefore

$$
\begin{aligned}
\sum_{x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \rho\left(a x_{1}+\pi^{i} x_{2}\right) & =\sum_{x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(v x_{1}\right) \rho\left(a v x_{1}+\pi^{i} v x_{2}\right) \\
& =(\chi \rho)(v) \sum_{x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \rho\left(a x_{1}+\pi^{i} x_{2}\right), \\
\sum_{x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \rho\left(a x_{2}+\pi^{i} x_{1}\right) & =\sum_{x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(v x_{1}\right) \rho\left(a v x_{2}+\pi^{i} v x_{1}\right) \\
& =(\chi \rho)(v) \sum_{x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \rho\left(a x_{2}+\pi^{i} x_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{x_{1}, x_{2}, x_{1}+x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \rho\left(x_{2}\right) & =\sum_{x_{1}, x_{2}, x_{1}+x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(v x_{1}\right) \rho\left(v x_{2}\right) \\
& =(\chi \rho)(v) \sum_{x_{1}, x_{2}, x_{1}+x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \rho\left(x_{2}\right) .
\end{aligned}
$$

Because $(\chi \rho)(v) \neq 1$, we obtain our statements.
(2.10) Proposition. Let R be a $D V R$ and let χ, ψ, ρ be non-trivial characters of R^{\times}such that $\chi \psi \rho \neq 1$. Let $a \in R^{\times}$. Let $i \in \mathbb{Z}_{\geq 0}$. Then

$$
\begin{array}{r}
\sum_{x_{1}, x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \psi\left(x_{2}\right) \rho\left(a x_{2}+\pi^{i} x_{1}\right)=0, \\
\sum_{x_{1}, x_{2}, x_{1}+x_{2} \in\left(R / P^{e}\right)^{\times}} \chi\left(x_{1}\right) \psi\left(x_{2}\right) \rho\left(x_{1}+x_{2}\right)=0 .
\end{array}
$$

Proof. We obtain these equalities analogously as in (2.9). Now we have to take $v \in\left(R / P^{e}\right)^{\times}$such that $(\chi \psi \rho)(v) \neq 1$.

3 The vanishing result

Let K be a p-adic field, i.e., an extension of \mathbb{Q}_{p} of finite degree. Let R be the valuation ring of K, P the maximal ideal of R, π a fixed uniformizing parameter for R and q the cardinality of the residue field R / P. For $z \in K$, let ord $z \in \mathbb{Z} \cup\{+\infty\}$ denote the valuation of $z,|z|=q^{-\operatorname{ord} z}$ the absolute value of z and $\operatorname{ac} z=z \pi^{-\operatorname{ord} z}$ the angular component of z.

Let X be an open and compact subset of K^{3}. Let f be a K-analytic function on X. Let $g: Y=Y_{t} \rightarrow X=Y_{0}$ be an embedded resolution of f which is a composition $g_{1} \circ \cdots \circ g_{t}$ of blowing-ups $g_{i}: Y_{i} \rightarrow Y_{i-1}$ with centre a K-analytic closed submanifold which has only normal crossings with the union of the exceptional surfaces in Y_{i-1} and with exceptional surface E_{i}. Let χ be a character of R^{\times}.

Proposition. Let $r \in\{1, \ldots, t\}$ and let $P \in Y_{r-1}$ be the centre of the blowingup g_{r}. Suppose that the expected order of a candidate pole s_{0} associated to E_{r} is one. Suppose that there exists a chart $\left(V, y=\left(y_{1}, y_{2}, y_{3}\right)\right)$ centred at P on which $f \circ g_{1} \circ \cdots \circ g_{r-1}$ is given by a power series with lowest degree part of the form $e y_{1}^{k} y_{2}^{l} y_{3}^{m}\left(y_{1}+y_{2}\right)^{n}$, with $e \in K^{\times}$and $k, l, m, n \in \mathbb{Z}_{\geq 0}$. Then the contribution of $E_{r} \subset Y$ to the residue of $Z_{f, \chi}(s)$ at s_{0} is zero.
Proof. We may suppose that $f \circ g_{1} \circ \cdots \circ g_{r-1}=e y_{1}^{k} y_{2}^{l} y_{3}^{m}\left(y_{1}+y_{2}\right)^{n}+\theta$ and $\left(g_{1} \circ\right.$ $\left.\cdots \circ g_{r-1}\right)^{*} d x=\rho y_{1}^{a-1} y_{2}^{b-1} y_{3}^{c-1}\left(y_{1}+y_{2}\right)^{d-1} d y$ with $a, b, c, d \in \mathbb{Z}_{>0}$ and $\rho, \theta K$-analytic functions satisfying $\rho(0,0) \neq 0$ and $\operatorname{mult}(\theta)>k+l+m+n$. Remark that at least one of the numbers a, b, d is equal to 1 .

We look at the chart $\left(O, z=\left(z_{1}, z_{2}, z_{3}\right)\right)$ on Y_{r} for which $g_{r}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1} z_{3}, z_{2} z_{3}, z_{3}\right)$. Then

$$
f \circ g_{1} \circ \cdots \circ g_{r}=z_{3}^{k+l+m+n}\left(e z_{1}^{k} z_{2}^{l}\left(z_{1}+z_{2}\right)^{n}+z_{3} \frac{\theta\left(z_{1} z_{3}, z_{2} z_{3}, z_{3}\right)}{z_{3}^{k+l+m+n+1}}\right)
$$

and

$$
\left(g_{1} \circ \cdots \circ g_{r}\right)^{*} d x=\rho\left(z_{1} z_{3}, z_{2} z_{3}, z_{3}\right) z_{1}^{a-1} z_{2}^{b-1} z_{3}^{a+b+c+d-2}\left(z_{1}+z_{2}\right)^{d-1} d z
$$

Remark that the equation of E_{r} is $z_{3}=0$, that $N_{r}=k+l+m+n$ and that $\nu_{r}=a+b+c+d-1$. The contribution to the residue at s_{0} of the strict transform in Y of an open and compact subset A of $E_{r} \subset Y_{r}$ which is contained in O is equal to

$$
\kappa:=\left(\frac{q-1}{q N_{r} \log q}\right)|e|^{s_{0}}|\rho(0,0,0)| \chi(\operatorname{ac} e)
$$

times

$$
\left[\int_{A} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{k s+a-1}\left|z_{2}\right|^{\mid s+b-1}\left|z_{1}+z_{2}\right|^{n s+d-1}\left|d z_{1} \wedge d z_{2}\right|\right]_{s=s_{0}}^{\mathrm{mc}}
$$

Let $\left(O^{\prime}, z^{\prime}=\left(z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}\right)\right)$ be the chart on Y_{r} for which $g_{r}\left(z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}\right)=\left(z_{1}^{\prime} z_{2}^{\prime}, z_{2}^{\prime}, z_{2}^{\prime} z_{3}^{\prime}\right)$. Analogously as before, we obtain that the contribution to the residue at s_{0} of the strict transform in Y of an open and compact subset B of $E_{r} \subset Y_{r}$ which is contained in O^{\prime} is equal to κ times

$$
\left[\int_{B} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{m}\left(\operatorname{ac} z_{3}\right) \chi^{n}\left(\operatorname{ac} z_{1}+1\right)\left|z_{1}^{\prime}\right|^{k s+a-1}\left|z_{3}^{\prime}\right|^{m s+c-1}\left|z_{1}^{\prime}+1\right|^{n s+d-1}\left|d z_{1}^{\prime} \wedge d z_{3}^{\prime}\right|\right]_{s=s_{0}}^{\mathrm{mc}}
$$

Let $\left(O^{\prime \prime}, z^{\prime \prime}=\left(z_{1}^{\prime \prime}, z_{2}^{\prime \prime}, z_{3}^{\prime \prime}\right)\right)$ be the chart on Y_{r} for which $g_{r}\left(z_{1}^{\prime \prime}, z_{2}^{\prime \prime}, z_{3}^{\prime \prime}\right)=\left(z_{1}^{\prime \prime}, z_{1}^{\prime \prime} z_{2}^{\prime \prime}, z_{1}^{\prime \prime} z_{3}^{\prime \prime}\right)$. Analogously as before, we obtain that the contribution to the residue at s_{0} of the strict transform in Y of an open and compact subset C of $E_{r} \subset Y_{r}$ which is contained in $O^{\prime \prime}$ is equal to κ times

$$
\left[\left.\int_{C} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{m}\left(\operatorname{ac} z_{3}\right) \chi^{n}\left(\operatorname{ac} 1+z_{2}\right)\left|z_{2}^{\prime \prime}\right|^{l s+b-1}\left|z_{3}^{\prime \prime}\right|^{m s+c-1}\left|1+z_{2}^{\prime \prime}\right|^{n s+d-1}\left|d z_{2}^{\prime \prime} \wedge d z_{3}^{\prime \prime}\right|\right|_{s=s_{0}} ^{\mathrm{mc}}\right.
$$

Now we take $A=P \times P, B=P \times R$ and $C=R \times R$. Because these sets form a partition of $E_{r} \subset Y_{r}$, we have to prove that

$$
\begin{align*}
& {\left[\int_{A} \chi^{k}\left(\mathrm{ac} z_{1}\right) \chi^{l}\left(\mathrm{ac} z_{2}\right) \chi^{n}\left(\mathrm{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{k s+a-1}\left|z_{2}\right|^{l s+b-1}\left|z_{1}+z_{2}\right|^{n+d-1}\left|d z_{1} \wedge d z_{2}\right|\right]_{s=s_{0}}^{\mathrm{mc}}} \\
& +\left[\int_{B} \chi^{k}\left(\mathrm{ac} z_{1}\right) \chi^{m}\left(\operatorname{ac} z_{3}\right) \chi^{n}\left(\mathrm{ac} z_{1}+1\right)\left|z_{1}^{\prime}\right|^{k s+a-1}\left|z_{3}^{\prime}\right|^{m s+c-1}\left|z_{1}^{\prime}+1\right|^{n s+d-1}\left|d z_{1}^{\prime} \wedge d z_{3}^{\prime}\right|\right]_{s=s_{0}}^{\mathrm{mc}} \tag{}\\
& +\left[\left.\int_{C} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{m}\left(\operatorname{ac} z_{3}\right) \chi^{n}\left(\operatorname{ac} 1+z_{2}\right)\left|z_{2}^{\prime \prime}\right|^{\mid s+b-1}\left|z_{3}^{\prime \prime}\right|^{m s+c-1}\left|1+z_{2}^{\prime \prime}\right|^{n s+d-1}\left|d z_{2}^{\prime \prime} \wedge d z_{3}^{\prime \prime}\right|\right|_{s=s_{0}} ^{\mathrm{mc}}\right.
\end{align*}
$$

is equal to zero. Note that we have omitted the brackets in for example ac $\left(z_{1}+z_{2}\right)$. Put $\alpha_{1}=k s_{0}+a, \alpha_{2}=l s_{0}+b, \alpha_{3}=m s_{0}+c$ and $\alpha_{4}=n s_{0}+d$. In [Se1], we proved that $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=1$. To simplify our notation, we will put $s=s_{0}$ in the integrand. This is not exact because the integrals do not have to converge. We actually have to calculate these integrals for complex numbers s satisfying $\operatorname{Re}(s)>0$, and we have to evaluate the meromorphic continuation in $s=s_{0}$. This can be done
in mind while reading the calculations. With this convention, the expression above is equal to

$$
\begin{aligned}
& \int_{P \times P} \chi^{k}\left(\mathrm{ac} z_{1}\right) \chi^{l}\left(\mathrm{ac} z_{2}\right) \chi^{n}\left(\mathrm{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{1} \wedge d z_{2}\right| \\
& \quad+\int_{P} \chi^{k}\left(\mathrm{ac} z_{1}\right) \chi^{n}\left(\mathrm{ac} z_{1}+1\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{1}+1\right|^{\alpha_{4}-1}\left|d z_{1}\right| \int_{R} \chi^{m}\left(\mathrm{ac} z_{3}\right)\left|z_{3}\right|^{\alpha_{3}-1}\left|d z_{3}\right| \\
& \quad+\int_{R} \chi^{l}\left(\mathrm{ac} z_{2}\right) \chi^{n}\left(\mathrm{ac} 1+z_{2}\right)\left|z_{2}\right|^{\alpha_{2}-1}\left|1+z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right| \int_{R} \chi^{m}\left(\mathrm{ac} z_{3}\right)\left|z_{3}\right|^{\alpha_{3}-1}\left|d z_{3}\right| .
\end{aligned}
$$

Note that

$$
H:=\int_{R} \chi^{m}\left(\operatorname{ac} z_{3}\right)\left|z_{3}\right|^{\alpha_{3}-1}\left|d z_{3}\right|= \begin{cases}\frac{q-1}{q} \frac{1}{1-q^{-\alpha_{3}}} & \text { if } \chi^{m}=1 \\ 0 & \text { if } \chi^{m} \neq 1 .\end{cases}
$$

To calculate the first term in (*), we partition A into

$$
\begin{aligned}
& A_{1}=\left\{\left(z_{1}, z_{2}\right) \in P \times P \mid \operatorname{ord} z_{1}>\operatorname{ord} z_{2}\right\}=\bigsqcup_{i \in \mathbb{Z}}\left\{\left(z_{1}, z_{2}\right) \mid \text { ord } z_{1}>\operatorname{ord} z_{2}=i\right\} \\
& A_{2}=\left\{\left(z_{1}, z_{2}\right) \in P \times P \mid \operatorname{ord} z_{1}<\operatorname{ord} z_{2}\right\}=\bigsqcup_{i \in \mathbb{Z}>0}\left\{\left(z_{1}, z_{2}\right) \mid i=\operatorname{ord} z_{1}<\operatorname{ord} z_{2}\right\} \\
& A_{3}=\left\{\left(z_{1}, z_{2}\right) \in P \times P \mid \operatorname{ord} z_{1}=\operatorname{ord} z_{2}\right\}=\bigsqcup_{i \in \mathbb{Z}_{>0}}\left\{\left(z_{1}, z_{2}\right) \mid \operatorname{ord} z_{1}=\operatorname{ord} z_{2}=i\right\}
\end{aligned}
$$

To calculate the third term in $(*)$, we partition C into $C_{1}=(R \backslash(P \cup-1+P)) \times R$, $C_{2}=P \times R$ and $C_{3}=(-1+P) \times R$.

We have that N_{r} is a multiple of the order of χ because s_{0} is a candidate pole of $Z_{f, \chi}(s)$ associated to E_{r}. Because $N_{r}=k+l+m+n$, we obtain that $1=\chi^{N_{r}}=$ $\chi^{k+l+m+n}$.

Let e be the maximum of the conductors of $\chi^{k}, \chi^{l}, \chi^{m}$ and χ^{n}.
Case 1. $\chi^{k}=\chi^{l}=\chi^{m}=\chi^{n}=1$
The calculations for this case are the same as those for Igusa's p-adic zeta function with trivial character, and this can be found in [Se1].

Case 2. $\chi^{k}=\chi^{m}=1$ and $\chi^{l}, \chi^{n} \neq 1$
Note that $\chi^{l}=\chi^{-n}$ and that $e=e_{\chi^{l}}=e_{\chi^{n}}$.
The contribution of A_{1} to the first term in (*) is equal to

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \int_{P^{i+1}}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& \quad=\sum_{i=1}^{\infty} q^{-i\left(\alpha_{2}+\alpha_{4}-2\right)} \int_{P^{i+1}}\left|z_{1}\right|^{\alpha_{1}-1}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& \quad=-\frac{q-1}{q^{2}} q^{-(e-1) \alpha_{1}} \frac{1}{q^{\alpha_{1}+\alpha_{2}+\alpha_{4}-1}-1}+\left(\frac{q-1}{q}\right)^{2} \frac{q^{-e \alpha_{1}}}{\left(1-q^{-\alpha_{1}}\right)\left(q^{\alpha_{1}+\alpha_{2}+\alpha_{4}-1}-1\right)}
\end{aligned}
$$

For the last equality, note that by Proposition 2.5

$$
\begin{aligned}
\int_{P^{i} \backslash P^{i+1}} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|d z_{2}\right| & =\frac{1}{q^{i+e}} \sum_{z_{2} \in\left(R / P^{e}\right)^{\times}} \chi^{l}\left(z_{2}\right) \chi^{n}\left(\pi^{\operatorname{ord} z_{1}-i} \operatorname{ac}\left(z_{1}\right)+z_{2}\right) \\
& = \begin{cases}0 & \text { if ord } z_{1}-i \in\{1, \ldots, e-2\} \\
-q^{-i-1} & \text { if ord } z_{1}-i=e-1 \\
(q-1) q^{-i-1} & \text { if ord } z_{1}-i \geq e\end{cases}
\end{aligned}
$$

The contribution of A_{2} to the first term in $(*)$ is equal to

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \int_{P^{i+1}}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{1}\right|\right)\left|d z_{2}\right| \\
& \quad=\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{4}-2\right)} \int_{P^{i+1}} \chi^{l}\left(\operatorname{ac} z_{2}\right)\left|z_{2}\right|^{\alpha_{2}-1}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|d z_{1}\right|\right)\left|d z_{2}\right| \\
& \quad=0 .
\end{aligned}
$$

For the last equality, note that by Proposition 2.4

$$
\begin{aligned}
\int_{P^{i} \backslash P^{i+1}} \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|d z_{1}\right| & =\frac{1}{q^{i+e}} \sum_{z_{1} \in\left(R / P^{e}\right)^{\times}} \chi^{n}\left(z_{1}+\pi^{\text {ord } z_{2}-i} \operatorname{ac} z_{2}\right) \\
& =0
\end{aligned}
$$

The contribution of A_{3} to the first term in $(*)$ is equal to

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \int_{P^{i} \backslash P^{i+1}}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{l}\left(\mathrm{ac} z_{2}\right) \chi^{n}\left(\mathrm{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{1}\right|\right)\left|d z_{2}\right| \\
& =\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}-2\right)} \int_{P^{i} \backslash P^{i+1}}\left(\chi^{l}\left(\operatorname{ac} z_{2}\right) \int_{-z_{2}+P^{i+1}} \chi^{n}\left(\mathrm{ac} z_{1}+z_{2}\right)\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{1}\right|\right. \\
& \left.\quad \quad+\chi^{l}\left(\mathrm{ac} z_{2}\right) \int_{\left(P^{i} \backslash P^{i+1}\right) \backslash\left(-z_{2}+P^{i+1}\right)} \chi^{n}\left(\mathrm{ac} z_{1}+z_{2}\right)\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{1}\right|\right)\left|d z_{2}\right| \\
& =\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}-2\right)} \int_{P^{i} \backslash P^{i+1}}\left(\chi^{l}\left(\mathrm{ac} z_{2}\right) \int_{P^{i+1}} \chi^{n}(\mathrm{ac} z)|z|^{\alpha_{4}-1}|d z|\right. \\
& \left.\quad+\chi^{l}\left(\mathrm{ac} z_{2}\right) q^{-i\left(\alpha_{4}-1\right)} \int_{\left(P^{i} \backslash P^{i+1} \backslash\left(z_{2}+P^{i+1}\right)\right.} \chi^{n}(\mathrm{ac} z)|d z|\right)\left|d z_{2}\right| \\
& = \\
& = \begin{cases}0 & q^{-i\left(\alpha_{1}+\alpha_{2}+\alpha_{4}-3\right)} \int_{P^{i} \backslash P^{i+1}}\left(-\frac{\chi^{l}\left(\mathrm{ac} z_{2}\right)}{q^{i+e}} \sum_{z \in \mathrm{ac} z_{2}+P} \chi^{n}(z)\right)\left|d z_{2}\right| \\
-\frac{q-1}{q^{2}} \frac{1}{q^{\alpha_{1}+\alpha_{2}+\alpha_{4}-1}-1} & \text { if } e=1 .\end{cases}
\end{aligned}
$$

For the third equality, note that

$$
\int_{P^{i+1}} \chi^{n}(\mathrm{ac} z)|z|^{\alpha_{4}-1}|d z|=0
$$

and that for $z_{2} \in P^{i} \backslash P^{i+1}$

$$
\begin{aligned}
& \int_{\left(P^{i} \backslash P^{i+1}\right) \backslash\left(z_{2}+P^{i+1}\right)} \chi^{n}(\operatorname{ac} z)|d z| \\
&=\int_{\left(P^{i} \backslash P^{i+1}\right)} \chi^{n}(\operatorname{ac} z)|d z|-\int_{z_{2}+P^{i+1}} \chi^{n}(\operatorname{ac} z)|d z| \\
&=\frac{1}{q^{i+e}} \sum_{z \in\left(R / P^{e}\right)^{\times}} \chi^{n}(z)-\frac{1}{q^{i+e}} \sum_{z \in \operatorname{ac} z_{2}+P \subset\left(R / P^{e}\right)^{\times}} \chi^{n}(z) \\
&=-\frac{1}{q^{i+e}} \sum_{z \in \operatorname{ac} z_{2}+P \subset\left(R / P^{e}\right)^{\times}} \chi^{n}(z) .
\end{aligned}
$$

The second term of $(*)$ is equal to

$$
\begin{aligned}
& \int_{P} \chi^{n}\left(\operatorname{ac} z_{1}+1\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|d z_{1}\right| \int_{R}\left|z_{3}\right|^{\alpha_{3}-1}\left|d z_{3}\right| \\
& \quad=\left(\sum_{i=1}^{e-1} q^{-i\left(\alpha_{1}-1\right)} \int_{P^{i} \backslash P^{i+1}} \chi^{n}\left(\operatorname{ac} z_{1}+1\right)\left|d z_{1}\right|+\int_{P^{e}}\left|z_{1}\right|^{\alpha_{1}-1}\left|d z_{1}\right|\right) \int_{R}\left|z_{3}\right|^{\alpha_{3}-1}\left|d z_{3}\right| \\
& \quad=-\frac{q-1}{q^{2}} q^{-(e-1) \alpha_{1}} \frac{1}{1-q^{-\alpha_{3}}}+\left(\frac{q-1}{q}\right)^{2} \frac{q^{-e \alpha_{1}}}{\left(1-q^{-\alpha_{1}}\right)\left(1-q^{-\alpha_{3}}\right)}
\end{aligned}
$$

For the last equality, note that by Proposition 2.4

$$
\begin{aligned}
\int_{P^{i} \backslash P^{i+1}} \chi^{n}\left(\operatorname{ac} z_{1}+1\right)\left|d z_{1}\right| & =\int_{P^{i}} \chi^{n}\left(\operatorname{ac} z_{1}+1\right)\left|d z_{1}\right|-\int_{P^{i+1}} \chi^{n}\left(\operatorname{ac} z_{1}+1\right)\left|d z_{1}\right| \\
& =\frac{1}{q^{e}} \sum_{z \in 1+P^{i} \subset\left(R / P^{e}\right)^{\times}} \chi^{n}(z)-\frac{1}{q^{e}} \sum_{z \in 1+P^{i+1} \subset\left(R / P^{e}\right)^{\times}} \chi^{n}(z) \\
& = \begin{cases}0 & \text { if } i \in\{1, \ldots, e-2\} \\
-\frac{1}{q^{e}} & \text { if } i=e-1\end{cases}
\end{aligned}
$$

Using Proposition 2.5 we obtain that the contribution of C_{1} to the third term in $(*)$ is equal to

$$
\begin{aligned}
& \int_{R \backslash(P \cup-1+P)} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} 1+z_{2}\right)\left|d z_{2}\right| \int_{R}\left|z_{3}\right|^{\alpha_{3}-1}\left|d z_{3}\right| \\
& \quad=\left(\frac{1}{q^{e}} \sum_{z_{2} \in\left(R / P^{e}\right) \times \backslash(-1+P)} \chi^{l}\left(z_{2}\right) \chi^{n}\left(1+z_{2}\right)\right) \frac{q-1}{q} \frac{1}{1-q^{-\alpha_{3}}} \\
& \quad= \begin{cases}0 & \text { if } e>1 \\
-\frac{q-1}{q^{2}} \frac{1}{1-q^{-\alpha_{3}}} & \text { if } e=1 .\end{cases}
\end{aligned}
$$

Using Proposition 2.5 we obtain that the contribution of C_{2} to the third term in $(*)$ is equal to H multiplied by

$$
\begin{aligned}
& \int_{P} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\mathrm{ac} 1+z_{2}\right)\left|z_{2}\right|^{\alpha_{2}-1}\left|d z_{2}\right| \\
& \quad=\sum_{i=1}^{e-1} q^{-i\left(\alpha_{2}-1\right)} \int_{P^{i} \backslash P^{i+1}} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} 1+z_{2}\right)\left|d z_{2}\right|+\int_{P^{e}} \chi^{l}\left(\operatorname{ac} z_{2}\right)\left|z_{2}\right|^{\alpha_{2}-1}\left|d z_{2}\right| \\
& \quad=\sum_{i=1}^{e-1} \frac{q^{-i\left(\alpha_{2}-1\right)}}{q^{i+e}} \sum_{z \in\left(R / P^{e}\right) \times} \chi^{l}(z) \chi^{n}\left(1+\pi^{i} z\right) \\
& \quad=0 .
\end{aligned}
$$

Using Proposition 2.5 we obtain that the contribution of C_{3} to the third term in $(*)$ is equal to H multiplied by

$$
\begin{aligned}
& \int_{-1+P} \chi^{l}\left(\mathrm{ac} z_{2}\right) \chi^{n}\left(\mathrm{ac} 1+z_{2}\right)\left|1+z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right| \\
& = \\
& =\int_{P} \chi^{l}\left(\mathrm{ac}-1+z_{2}\right) \chi^{n}\left(\mathrm{ac} z_{2}\right)\left|z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right| \\
& = \\
& \sum_{i=1}^{e-1} q^{-i\left(\alpha_{4}-1\right)} \int_{P^{i} \backslash P^{i+1}} \chi^{l}\left(\mathrm{ac}-1+z_{2}\right) \chi^{n}\left(\mathrm{ac} z_{2}\right)\left|d z_{2}\right| \\
& \\
& \quad \quad+\chi^{l}(-1) \int_{P^{e}} \chi^{n}\left(\mathrm{ac} z_{2}\right)\left|z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right| \\
& = \\
& =\sum_{i=1}^{e-1} \frac{q^{-i\left(\alpha_{4}-1\right)}}{q^{i+e}} \sum_{z \in\left(R / P^{e}\right) \times} \chi^{l}\left(-1+\pi^{i} z\right) \chi^{n}(z) \\
& =0 .
\end{aligned}
$$

The contribution of A_{1} cancels with the one of B. The contribution of A_{3} cancels with the one of C_{1}. Here, we have to use the fact that $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=1$. Consequently, the contribution of $E_{r} \subset Y$ to the residue of $Z_{f, \chi}(s)$ at s_{0} is equal to zero in this case.

Case 3. $\chi^{k}=\chi^{l}=1$ and $\chi^{m}, \chi^{n} \neq 1$
Using Proposition 2.4 we obtain that the contribution of A_{1} to the first term in $(*)$ is equal to

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \int_{P^{i+1}}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& \quad=\sum_{i=1}^{\infty} q^{-i\left(\alpha_{2}+\alpha_{4}-2\right)} \int_{P^{i+1}}\left|z_{1}\right|^{\alpha_{1}-1}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& \quad=\sum_{i=1}^{\infty} q^{-i\left(\alpha_{2}+\alpha_{4}-2\right)} \int_{P^{i+1}}\left|z_{1}\right|^{\alpha_{1}-1}\left(\frac{1}{q^{i+e}} \sum_{z_{2} \in\left(R / P^{e}\right)^{\times}} \chi^{n}\left(\pi^{\operatorname{ord} z_{1}-i} \operatorname{ac}\left(z_{1}\right)+z_{2}\right)\right)\left|d z_{1}\right| \\
& \\
& =0 .
\end{aligned}
$$

Analogously, we obtain that the contribution of A_{2} to the first term in $(*)$ is equal to 0 .

Using Proposition 2.3 we obtain that the contribution of A_{3} to the first term in $(*)$ is equal to

$$
\begin{aligned}
\sum_{i=1}^{\infty} & \int_{P^{i} \backslash P^{i+1}}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{n}\left(\mathrm{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{1}\right|\right)\left|d z_{2}\right| \\
= & \sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}-2\right)} \int_{P^{i} \backslash P^{i+1}}\left(\int_{-z_{2}+P^{i+1}} \chi^{n}\left(\mathrm{ac} z_{1}+z_{2}\right)\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{1}\right|\right. \\
& \left.\quad+\int_{\left(P^{i} \backslash P^{i+1}\right) \backslash\left(-z_{2}+P^{i+1}\right)} \chi^{n}\left(\mathrm{ac} z_{1}+z_{2}\right)\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{1}\right|\right)\left|d z_{2}\right| \\
= & \sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}+\alpha_{4}-3\right)} \int_{P^{i} \backslash P^{i+1}} \int_{\left(P^{i} \backslash P^{i+1}\right) \backslash\left(-z_{2}+P^{i+1}\right)} \chi^{n}\left(\mathrm{ac} z_{1}+z_{2}\right)\left|d z_{1}\right|\left|d z_{2}\right| \\
= & \sum_{i=1}^{\infty} \frac{q^{-i\left(\alpha_{1}+\alpha_{2}+\alpha_{4}-3\right)}}{q^{2(i+e)}} \sum_{z_{1}, z_{2}, z_{1}+z_{2} \in\left(R / P^{e}\right)^{\times}} \chi^{n}\left(z_{1}+z_{2}\right) \\
= & 0 .
\end{aligned}
$$

The second and the third term in $(*)$ are both equal to zero. Indeed, we have that $H=0$ since $\chi^{m} \neq 1$.

Case 4. $\chi^{m}=1$ and $\chi^{k}, \chi^{l}, \chi^{n} \neq 1$
We may suppose that $e_{\chi^{n}} \leq e_{\chi^{k}}$ and that $e_{\chi^{n}} \leq e_{\chi^{l}}$. Note that $e_{\chi^{k}}=e_{\chi^{l}}$, and e is by definition this value.
The contribution of A_{1} to the first term in (*) is equal to

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \int_{P^{i+1}}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& \quad=\sum_{i=1}^{\infty} q^{-i\left(\alpha_{2}+\alpha_{4}-2\right)} \int_{P^{i+1}} \chi^{k}\left(\operatorname{ac} z_{1}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& \quad=0 .
\end{aligned}
$$

For the last equality, note that by Proposition 2.6

$$
\begin{aligned}
\int_{P^{i} \backslash P^{i+1}} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|d z_{2}\right| & =\frac{1}{q^{i+e}} \sum_{z_{2} \in\left(R / P^{e}\right)^{\times}} \chi^{l}\left(z_{2}\right) \chi^{n}\left(\pi^{\operatorname{ord} z_{1}-i} \operatorname{ac}\left(z_{1}\right)+z_{2}\right) \\
& =0 .
\end{aligned}
$$

Analogously, we obtain that the contribution of A_{2} to the first term in $(*)$ is equal to 0 .
The contribution

$$
\sum_{i=1}^{\infty} \int_{P^{i} \backslash P^{i+1}}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right| \mid\right)\left|d z_{1}\right|
$$

of A_{3} to the first term in $(*)$ is the sum of two parts.
Part 1. Using Proposition 2.7 we obtain that

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}-2\right)} \int_{P^{i} \backslash P^{i+1}}\left(\chi^{k}\left(\mathrm{ac} z_{1}\right) \chi^{l}\left(\mathrm{ac}-z_{1}\right) \int_{P^{i+e}} \chi^{n}\left(\mathrm{ac} z_{2}\right)\left|z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right. \\
& \left.+\sum_{j=1}^{e-1} \int_{P^{i+j} \backslash P^{i+j+1}} \chi^{k}\left(\mathrm{ac} z_{1}\right) \chi^{l}\left(\mathrm{ac}-z_{1}+z_{2}\right) \chi^{n}\left(\mathrm{ac} z_{2}\right)\left|z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& =\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}-2\right)} \\
& \int_{P^{i} \backslash P^{i+1}} \sum_{j=1}^{e-1} \frac{q^{-(i+j)\left(\alpha_{4}-1\right)}}{q^{i+j+e}} \sum_{z_{2} \in\left(R / P^{e}\right)^{\times}} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac}\left(-z_{1}\right)+\pi^{j} z_{2}\right) \chi^{n}\left(z_{2}\right)\left|d z_{1}\right| \\
& =\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}+\alpha_{4}-2\right)} \int_{P^{i} \backslash P^{i+1}} \sum_{j=1}^{e-1} \frac{q^{-j \alpha_{4}}}{q^{e}} \sum_{z_{2} \in\left(R / P^{e}\right) \times} \chi^{l}\left(-1+\pi^{j} z_{2}\right) \chi^{n}\left(z_{2}\right)\left|d z_{1}\right| \\
& =\frac{q-1}{q} \frac{1}{q^{\alpha_{1}+\alpha_{2}+\alpha_{4}-1}-1} \sum_{j=1}^{e-1} \frac{q^{-j \alpha_{4}}}{q^{e}} \sum_{z_{2} \in\left(R / P^{e}\right)^{\times}} \chi^{l}\left(-1+\pi^{j} z_{2}\right) \chi^{n}\left(z_{2}\right) \text {. }
\end{aligned}
$$

Part 2.

$$
\begin{aligned}
& \sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}+\alpha_{4}-3\right)} \int_{P^{i} \backslash P^{i+1}}\left(\int_{\left(P^{i} \backslash P^{i+1}\right) \backslash\left(-z_{1}+P^{i+1}\right)} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& \quad=\frac{1}{q^{2 e}} \frac{1}{q^{\alpha_{1}+\alpha_{2}+\alpha_{4}-1}-1} \sum_{z_{1}, z_{2}, z_{1}+z_{2} \in\left(R / P^{e}\right)^{\times}} \chi^{k}\left(z_{1}\right) \chi^{l}\left(z_{2}\right) \chi^{n}\left(z_{1}+z_{2}\right) .
\end{aligned}
$$

Using Proposition 2.6 we obtain that the second term in $(*)$ is equal to H multiplied by

$$
\begin{aligned}
\int_{P} & \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{n}\left(\mathrm{ac} z_{1}+1\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|d z_{1}\right| \\
& =\sum_{i=1}^{e-1} q^{-i\left(\alpha_{1}-1\right)} \int_{P^{i} \backslash P^{i+1}} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{n}\left(\operatorname{ac} z_{1}+1\right)\left|d z_{1}\right|+\int_{P^{e}} \chi^{k}\left(\operatorname{ac} z_{1}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|d z_{1}\right| \\
& =\sum_{i=1}^{e-1} \frac{q^{-i\left(\alpha_{1}-1\right)}}{q^{i+e}} \sum_{z \in\left(R / P^{e}\right)^{\times}} \chi^{k}(z) \chi^{n}\left(\pi^{i} z+1\right) \\
& =0 .
\end{aligned}
$$

The contribution of C_{1} to the third term in $(*)$ is equal to

$$
\begin{aligned}
& \int_{R \backslash(P \cup-1+P)} \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} 1+z_{2}\right)\left|d z_{2}\right| \int_{R}\left|z_{3}\right|^{\alpha_{3}-1}\left|d z_{3}\right| \\
& \quad=\left(\frac{1}{q^{e}} \sum_{z_{2} \in\left(R / P^{e}\right)^{\times} \backslash(-1+P)} \chi^{l}\left(z_{2}\right) \chi^{n}\left(1+z_{2}\right)\right) \frac{q-1}{q} \frac{1}{1-q^{-\alpha_{3}}} .
\end{aligned}
$$

The contribution of C_{2} to the third term in $(*)$ is 0 . The calculation is the same as the calculation of the second term.
The contribution of C_{3} to the third term in $(*)$ is equal to H multiplied by

$$
\begin{aligned}
& \int_{-1+P} \chi^{l}\left(\mathrm{ac} z_{2}\right) \chi^{n}\left(\mathrm{ac} 1+z_{2}\right)\left|1+z_{2}\right|^{\alpha_{4}-1}\left|d z_{1}\right| \\
& =\int_{P} \chi^{l}(\mathrm{ac}-1+z) \chi^{n}(\mathrm{ac} z)|z|^{\alpha_{4}-1}|d z| \\
& =\sum_{j=1}^{e-1} q^{-j\left(\alpha_{4}-1\right)} \int_{P^{j} \backslash P^{j+1}} \chi^{l}(\mathrm{ac}-1+z) \chi^{n}(\mathrm{ac} z)|d z|+\chi^{l}(-1) \int_{P^{e}} \chi^{n}(\mathrm{ac} z)|z|^{\alpha_{4}-1}|d z| \\
& =\sum_{j=1}^{e-1} \frac{q^{-j \alpha_{4}}}{q^{e}} \sum_{z \in\left(R / P^{e}\right)^{\times}} \chi^{l}\left(-1+\pi^{j} z\right) \chi^{n}(z)
\end{aligned}
$$

The contribution of C_{3} cancels with the one of the first part of A_{3}. Using Proposition 2.8 we obtain that the contribution of C_{1} cancels with the one of the second part of A_{3}.

Case 5. $\chi^{n}=1$ and $\chi^{k}, \chi^{l}, \chi^{m} \neq 1$
The contribution of A_{1} to the first term in $(*)$ is equal to

$$
\begin{aligned}
\sum_{i=1}^{\infty} & \int_{P^{i+1}}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac} z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& =\sum_{i=1}^{\infty} q^{-i\left(\alpha_{2}+\alpha_{4}-2\right)} \int_{P^{i+1}} \chi^{k}\left(\operatorname{ac} z_{1}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{l}\left(\operatorname{ac} z_{2}\right)\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& =0 .
\end{aligned}
$$

Analogously, we obtain that the contribution of A_{2} to the first term in $(*)$ is equal to 0 .
The contribution

$$
\sum_{i=1}^{\infty} \int_{P^{i} \backslash P^{i+1}}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac} z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right)\left|d z_{1}\right|
$$

of A_{3} to the first term in $(*)$ is the sum of two parts.
Part 1. Using Proposition 2.9 we obtain that

$$
\begin{aligned}
& \sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}-2\right)} \int_{P^{i} \backslash P^{i+1}}\left(\int_{-z_{1}+P^{i+1}} \chi^{k}\left(\mathrm{ac} z_{1}\right) \chi^{l}\left(\mathrm{ac} z_{2}\right)\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& =\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}-2\right)} \int_{P^{i} \backslash P^{i+1}}\left(\int_{P^{i+1}} \chi^{k}\left(\mathrm{ac} z_{1}\right) \chi^{l}\left(\mathrm{ac}-z_{1}+z_{2}\right)\left|z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& =\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}-2\right)} \sum_{j=1}^{\infty} q^{-(i+j)\left(\alpha_{4}-1\right)} \int_{P^{i} \backslash P^{i+1}} \int_{P^{i+j} \backslash P^{i+j+1}} \chi^{k}\left(\mathrm{ac} z_{1}\right) \chi^{l}\left(\mathrm{ac}-z_{1}+z_{2}\right)\left|d z_{2}\right|\left|d z_{1}\right| \\
& =\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}+\alpha_{4}-3\right)} \sum_{j=1}^{\infty} \frac{q^{-j\left(\alpha_{4}-1\right)}}{q^{2 i+j+2 e}} \sum_{z_{1}, z_{2} \in\left(R / P^{e}\right)^{\times}} \chi^{k}\left(z_{1}\right) \chi^{l}\left(-z_{1}+\pi^{j} z_{2}\right) \\
& =0 .
\end{aligned}
$$

Part 2. Using Proposition 2.9 we obtain that

$$
\begin{aligned}
& \sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}+\alpha_{4}-3\right)} \int_{P^{i} \backslash P^{i+1}}\left(\int_{\left(P^{i} \backslash P^{i+1}\right) \backslash\left(-z_{1}+P^{i+1}\right)} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac} z_{2}\right)\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& \quad=\frac{1}{q^{2 e}} \frac{1}{q^{\alpha_{1}+\alpha_{2}+\alpha_{4}-1}-1} \sum_{z_{1}, z_{2}, z_{1}+z_{2} \in\left(R / P^{e}\right)^{\times}} \chi^{k}\left(z_{1}\right) \chi^{l}\left(z_{2}\right) \\
& \quad=0 .
\end{aligned}
$$

The second and the third term in $(*)$ are both equal to zero. Indeed, we have that $H=0$ since $\chi^{m} \neq 1$.

Case 6. $\chi^{k}, \chi^{l}, \chi^{m}, \chi^{n} \neq 1$
Using Proposition 2.10 we obtain that the contribution of A_{1} to the first term in $(*)$ is equal to

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \int_{P^{i+1}}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
&= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} q^{-i\left(\alpha_{2}+\alpha_{4}-2\right)-(i+j)\left(\alpha_{1}-1\right)} \\
& \int_{P^{i+j} \backslash P^{i+j+1}} \int_{P^{i} \backslash P^{i+1}} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|d z_{2}\right|\left|d z_{1}\right| \\
&= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{q^{-i\left(\alpha_{2}+\alpha_{4}-2\right)-(i+j)\left(\alpha_{1}-1\right)}}{q^{2 i+j+2 e}} \sum_{z_{1}, z_{2} \in\left(R / P^{e}\right)^{\times}} \chi^{k}\left(z_{1}\right) \chi^{l}\left(z_{2}\right) \chi^{n}\left(\pi^{j} z_{1}+z_{2}\right) \\
&=0 .
\end{aligned}
$$

Analogously, we obtain that the contribution of A_{2} to the first term in $(*)$ is equal to 0 .
The contribution

$$
\sum_{i=1}^{\infty} \int_{P^{i} \backslash P^{i+1}}\left(\int_{P^{i} \backslash P^{i+1}} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right)\left|z_{1}\right|^{\alpha_{1}-1}\left|z_{2}\right|^{\alpha_{2}-1}\left|z_{1}+z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right)\left|d z_{1}\right|
$$

of A_{3} to the first term in $(*)$ is the sum of two parts.
Part 1. Using Proposition 2.10 we obtain that

$$
\begin{aligned}
& \left.\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}-2\right)} \int_{P^{i} \backslash P^{i+1}}\left(\int_{-z_{1}+P^{i+1}} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\mathrm{ac} z_{2}\right) \chi^{n}\left(\mathrm{ac} z_{1}+z_{2}\right)\left|z_{1}+z_{2}\right|^{\alpha_{4}-1} \mid d z_{2}\right)\right)\left|d z_{1}\right| \\
& \quad=\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}-2\right)} \int_{P^{i} \backslash P^{i+1}}\left(\int_{P^{i+1}} \chi^{k}\left(\mathrm{ac} z_{1}\right) \chi^{l}\left(\mathrm{ac}-z_{1}+z_{2}\right) \chi^{n}\left(\mathrm{ac} z_{2}\right)\left|z_{2}\right|^{\alpha_{4}-1}\left|d z_{2}\right|\right)\left|d z_{1}\right| \\
& =\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}-2\right)} \sum_{j=1}^{\infty} q^{-(i+j)\left(\alpha_{4}-1\right)} \\
& \quad \int_{P^{i} \backslash P^{i+1}} \int_{P^{i+j} \backslash P^{i+j+1}} \chi^{k}\left(\mathrm{ac} z_{1}\right) \chi^{l}\left(\mathrm{ac}-z_{1}+z_{2}\right) \chi^{n}\left(\mathrm{ac} z_{2}\right)\left|d z_{2}\right|\left|d z_{1}\right| \\
& =\sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}+\alpha_{4}-3\right)} \sum_{j=1}^{\infty} \frac{q^{-j\left(\alpha_{4}-1\right)}}{q^{2 i+j+2 e}} \sum_{z_{1}, z_{2} \in\left(R / P^{e}\right) \times} \chi^{k}\left(z_{1}\right) \chi^{l}\left(-z_{1}+\pi^{j} z_{2}\right) \chi^{n}\left(z_{2}\right) \\
& =0 .
\end{aligned}
$$

Part 2. Using Proposition 2.10 we obtain that

$$
\begin{aligned}
& \sum_{i=1}^{\infty} q^{-i\left(\alpha_{1}+\alpha_{2}+\alpha_{4}-3\right)} \int_{P^{i} \backslash P^{i+1}}\left(\int_{\left(P^{i} \backslash P^{i+1}\right) \backslash\left(-z_{1}+P^{i+1}\right)} \chi^{k}\left(\operatorname{ac} z_{1}\right) \chi^{l}\left(\operatorname{ac} z_{2}\right) \chi^{n}\left(\operatorname{ac} z_{1}+z_{2}\right) \mid d z_{2}\right)\left|d z_{1}\right| \\
& \quad=\frac{1}{q^{2 e}} \frac{1}{q^{\alpha_{1}+\alpha_{2}+\alpha_{4}-1}-1} \sum_{z_{1}, z_{2}, z_{1}+z_{2} \in\left(R / P^{e}\right) \times} \chi^{k}\left(z_{1}\right) \chi^{l}\left(z_{2}\right) \chi^{n}\left(z_{1}+z_{2}\right) \\
& \quad=0 .
\end{aligned}
$$

The second and the third term in $(*)$ are again both equal to zero.
We have treated all the cases by using the geometric symmetry of the problem, so our proof is finished.

References

[ACLM] E. Artal Bartolo, P. Cassou-Noguès, I. Luengo and A. Melle Hernández, Monodromy Conjecture for some surface singularities, Ann. Scient. Ec. Norm. Sup. 35 (2002), 605-640.
[De] J. Denef, Report on Igusa's local zeta function, Sém. Bourbaki 741, Astérisque 201/202/203 (1991), 359-386.
[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79 (1964), 109-326.
[Ig] J. Igusa, An Introduction to the Theory of Local Zeta Functions, Amer. Math. Soc., Studies in Advanced Mathematics 14, 2000.
[IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, Springer-Verlag, 1990.
[Lo] F. Loeser, Fonctions d'Igusa p-adiques et polynômes de Bernstein, Amer. J. Math. 110 (1988), 1-21.
[Se1] D. Segers, On the smallest poles of Igusa's p-adic zeta functions, Math. Z. 252 (2006), 429-455.
[Se2] D. Segers, Lower bound for the poles of Igusa's p-adic zeta functions, Math. Ann. 336 (2006), 659-669.
[SV] D. Segers and W. Veys, On the smallest poles of topological zeta functions, Compositio Math. 140 (2004), 130-144.
[Ve] W. Veys, Poles of Igusa's local zeta function and monodromy, Bull. Soc. Math. France 121 (1993), 545-598.
K.U.Leuven, Departement Wiskunde,

Celestijnenlaan 200B, B-3001 Leuven, Belgium,
E-mail: dirk.segers@wis.kuleuven.be
URL: http://wis.kuleuven.be/algebra/segers/segers.htm

[^0]: *The author is a Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium)
 Received by the editors December 2006.
 Communicated by M. Van den Bergh.
 2000 Mathematics Subject Classification : 11D79 11S80 14B05 14E15.
 Key words and phrases : Igusa's p-adic zeta function.

