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Abstract

We show that whenever densely similar operators on a Banach spaces,
their approximate point spectra must have non-empty intersection. Also, we
introduce the class A that consists of those operators for which the Goldberg
spectrum coincides with the right essential spectrum. We study spectral prop-
erties of quasisimilar operators satisfying Bishop’s property (β) in the class
A. Finally, as an application to the class N that consists of those operators
T whose range R(T ) is contained in the linear span of finite number of orbits
of T , we show that any two quasisimilar operators such that are in N and
satisfying property (β) must have the same approximate point spectrum.

1 Introduction

The notion of quasisimilarity plays an important role in the theory of operators
on Complex Banach spaces. This equivalence relation between operators is, however,
too weak a notion to preserve the distinguished parts of the spectrum, unless we add
extra assumptions on the operators. For instance, it is well known that quasisimilar
operators have the same spectrum if in addition they are both normal ( in fact, in
this case they will be unitarily equivalent [7]), or hyponormal [4], or decomposable
[5]. Additional references include [1],[3],[12] and [15].

Of special interest are the spectral consequences of the weaker notion of dense
similarity. For example, in 1992, Takahashi [16] showed that the essential spectrum
of an operator T satisfying Bishop’s property (β) is contained in the essential spec-
trum of any operator densely similar to T , and M. Putinar [14] proved that two
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densely similar tuples of operators having Bishop’s property (β) have equal essen-
tial spectra. More recently, Mbekhta and Zerouali showed that whenever densely
similar operators S and T on a Hilbert space are cyclic, their approximate point
spectra must have non-empty intersection [12, Theorem 3.5]. Our aim in this paper
is, first, among others results, we show in Theorem 3.1 that the above mentioned
result by Mbekhta and Zerouali is true even if T and S are not cyclic. Second,
we improve the results of [12, Theorem 5.5] and [12, Theorem 5.6] for the smaller
subclass of cyclic operators to the class A that consists of those operators for which
the Goldberg spectrum coincides with the right essential spectrum. Finally, for X
be a Banach space, we introduce the class N (X) that consists of those operators
T whose range R(T ) is contained in the linear span of a finite number of orbits of
T , an important consequence is that any two quasisimilar operators on the Banach
spaces X and Y such that S ∈ N (Y ) and T ∈ N (X) satisfying Bishop’s property
(β) must have the same approximate point spectrum.

2 � Preliminaries

Throughout This paper, X and Y are Banach spaces and L(X, Y ) denotes the
space of all bounded linear operators from X to Y . For a bounded linear operator
T ∈ L(X) := L(X,X), let as usual ρ(T ), σ(T ), σap(T ), σp(T ) and T ∗ denote the
resolvent set, the spectrum, the approximate point spectrum, the point spectrum
and the adjoint operator of T , respectively. Next, we will write N(T ) and R(T )
for the null space and range of T , respectively. Also, let α(T ) := dim N(T ) and
β(T ) := dim N(T ∗).

The next sets of upper and lower semi-Fredholm operators are well-known as

Φ+(X) = {T ∈ L(X) : R(T ) is closed and α(T ) < ∞}

and

Φ−(X) = {T ∈ L(X) : R(T ) is closed and β(T ) < ∞}.

The set of Fredholm operators is defined as Φ(X) = Φ+(X) ∩ Φ−(X). For a semi-
Fredholm operator T ∈ Φ+(X) ∪ Φ−(X), the index is given by :

ind(T ) := α(T )− β(T ).

The left and right essential spectrum of T , respectively, are defined as :

σle(T ) = {λ ∈ C : T − λI 6∈ Φ+(X)} and σre(T ) = {λ ∈ C : T − λI 6∈ Φ−(X)}.

The essential spectrum of T is defined as

σe(T ) = {λ ∈ C : T − λI 6∈ Φ(X)} = σle(T ) ∪ σre(T ).

Also, let ρap(T ), ρe(T ), ρle(T ), and ρre(T ) denote the complement of σap(T ),
σe(T ), σle(T ) and σre(T ), respectively. Finally, let ρSF (T ) = ρle(T ) ∪ ρre(T ) and
σSF (T ) = C \ ρSF (T ).
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For an operator T ∈ L(X) the Goldberg spectrum is defined as σf (T ) = {λ ∈
C : R(T − λ) is not closed } (cf.[9] ). Note that this spectrum is not necessarily
closed or open subset of C. The Kato resolvent set is defined as

ρK(T ) = {λ ∈ C : R(T − λI) is closed and N(T − λI) ⊂
⋂
n≥0

(T − λI)nX}.

As usual, let ρf (T ) and σK(T ) denote the complement of σf (T ) and ρK(T ),
respectively.

Definition 2.1 ([11]). An operator T ∈ L(X) is said to have the single-valued
extension property, abbreviated SVEP, if for every non-empty open set U ⊆ C, the
equation (T − λI)f(λ) = 0 admits the zero function f ≡ 0 as a unique analytic
solution on U .

Definition 2.2 ([11]). An operator T ∈ L(X) is said to have Bishop’s property (β),
if, for each open subset U of C and every sequence of analytic functions fn : U −→ X
for which (T − λI)fn(λ) → 0 as n → ∞, locally uniformly on U , it follows that
fn(λ) → 0 as n →∞, again locally uniformly on U .

Next, for a subset E of X, we set cl span{E} the closure of the linear space
generated by E and E for the closure of E.

Let T be a bounded linear operator on a Banach space X. We say for an integer
n that T is a multicyclic operator of order n (n-multicyclic, for short) if there exist
n vectors x1, . . . , xn in X such that X = cl span{T kxi : 1 ≤ i ≤ n , k ≥ 0} and for
every n−1 vectors z1, . . . , zn−1 in X, the subspace cl span{T kzi : 1 ≤ i ≤ n−1 , k ≥
0} is proper. The n-tuple (x1, . . . , xn) is then called a cyclic n-tuple for T (see for
example [8]).

Next, we denote by M(X) the set of all multicyclic operators on the Banach
space X.

3 Densely similar operators

In this section, by an idea of the techniques of K. M. Laursen in [10], we establish
Theorem 5.3 of [12] in the general case.

Recall that a bounded linear operator A is a quasi-affinity if A is one-to-one and
R(A) is dense.

Definition 3.1. The operators T ∈ L(X) and S ∈ L(Y ) are densely similar
(respectively, quasisimilar) if there exist A ∈ L(X, Y ) and B ∈ L(Y,X) for which

SA = AT and TB = BS ,

and are with dense ranges (respectively, quasi-affinities).

Theorem 3.2. Let T ∈ L(X) and S ∈ L(Y ) be densely similar operators, Then

σap(T ) ∩ σap(S) 6= ∅.

Moreover, there is λ ∈ σap(T ) ∩ σap(S) which is a boundary point of either σ(T ) or
of σ(S).
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To prove Theorem 3.2, we start with the next lemma and proposition and recall
that the next lemma is the lemma 5.4 of [12] for Hilbert case; the proof is the same
in Banach case. Recall that, for a subset F ⊆ C we denote ∂F for the boundary of
F .

Lemma 3.3. Let T ∈ L(X), S ∈ L(Y ), A ∈ L(X, Y ) and B ∈ L(Y, X) be operators
such that A and B are with dense ranges. Then :

1) AT = SA =⇒ σ(S) \ σap(S) ⊆ σ(T );

2) TB = BS =⇒ σ(T ) \ σap(T ) ⊆ σ(S).

Proposition 3.4. Let T , S, A and B be operators as in lemma 3.3. If L ⊆ σ(T )
and K ⊆ σ(S) are intersecting components of the respective spectra. Then, there
exists

λ ∈ σap(S) ∩ σap(T ) ∩K ∩ L with λ ∈ ∂σ(S) or ∂σ(T ).

Proof. In the case when L 6⊆ K, we have L ∩K 6= ∅ and L ∩Kc 6= ∅, where Kc is
the complement of K. By connectedness we have

L ∩ ∂K 6= ∅.

Now, let λ ∈ L ∩ ∂K, hence λ ∈ σ(T ) ∩ ∂σ(S) and so λ ∈ σap(S). Suppose that
λ 6∈ σap(T ), then λ is an interior point of σ(T ), and since λ ∈ ∂σ(S) there is a
sequence (λn)n∈N in σ(T ) \ σ(S) which converge to λ. On the other hand, by the
preceding lemma, we have σ(T ) \ σap(T ) ⊆ σ(S) and so σ(T ) \ σ(S) ⊆ σap(T ) . We
deduce that

(λn)n∈N ⊆ σap(T ) and λn −→ λ as n −→ +∞

Since the approximate point spectrum is closed, then λ ∈ σap(T ), a contradiction.
On the other case, when L ⊆ K, we have ∂L ⊆ K. Let λ ∈ ∂L be given,
consequently λ ∈ ∂σ(T ) ∩ σ(S) and as in the preceding case, we show that λ ∈
σap(T ) ∩ σap(S), as desired. �

Proof of Theorem 3.2. Since SA = AT and A is non-trivial, σsu(S)∩ σap(T ) 6= ∅
(cf. [11, Theorem 3.5.1(b), and Proposition 3.5.3]), where σsu(S) is the surjective
spectrum of S. Consequently, Theorem 3.2 follows from Proposition 3.4. �

Remark. Generally we do not have the conclusion of the preceding theorem if we
suppose only that AT = SA. see example 4 of [12].

Clearly, the preceding results for the approximate point spectrum (Lemma 3.3,
Proposition 3.4 and Theorem 3.2) hold for the Kato spectrum if T and S are qua-
sisimilar. We refine this result as follows

Lemma 3.5. Let T ∈ L(X) and S ∈ L(Y ) be operators such that A have dense range
and B is one to one, and for which AT = SA and TB = BS. Then σ(S)\σK(S) ⊆
σ(T ) and vice versa.

Proof. First, from the fact that σ(T ) = σ(T ∗), and A∗ and B are one to one, we
obtain obviously that σ(S) \ σK(S) ⊆ σ(T ). Similarly, we deduce σ(T ∗) \ σK(T ∗) ⊆
σ(S∗). And so, σ(T ) \ σK(T ) ⊆ σ(S), since σK(T ∗) = σK(T ). �
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Theorem 3.6. Let T ∈ L(X) and S ∈ L(Y ) be operators such that A have dense
range and B is one to one, and for which AT = SA and TB = BS. Then there is
λ ∈ σK(T ) ∩ σK(S) which is a boundary point of either σ(T ) or of σ(S).

Proof. Obtained by using lemma 3.5 and an argument similar to the proof of Propo-
sition 3.4 and Theorem 3.2. �

Corollary 3.7. Let T ∈ L(X) and S ∈ L(Y ) be operators such that A have dense
range and B is one to one, and for which AT = SA and TB = BS. Then there is
λ ∈ σap(S) ∩ σap(T ) ∩ σsu(T ) ∩ σsu(S) which is a boundary point of either σ(T ) or
of σ(S).

4 � Spectra and quasisimilarity

It is well-known that quasisimilar Banach space operators can have different
parts of their distinguished part of the spectrum. (see for example [1]). And so, it
seems interesting to consider the connection between various distinguished parts of
the spectrum for quasisimilar operators.

In the cyclic case [12], and the multicyclic case [8], the authors established that
if T is a cyclic or multicyclic operator and has SVEP, then there are certain parts
of it is spectrum that are equal. Also, established in [12] that if T and S are
quasisimilar operators with Bishop’s property (β), then certain distinguished parts
of their spectrum coincide. In this section, we show the same result for a class larger
than multicyclic operators.

Next, for every x ∈ X, we set Xx = cl span{T kx : k ≥ 0} and Tx := T|Xx be the
restriction of T on Xx. It is not hard to see that for every n-tuple (x1, . . . , xn) ∈ Xn,
we have

cl span{T kxi : 1 ≤ i ≤ n , k ≥ 0} = Xx1 + . . . + Xxn . (4.1)

The following lemma will be useful in the sequel.

Lemma 4.1 ([8]). Let T ∈ L(X) be an m-multicyclic operator, then

codimR(T − λI) ≤ m for all λ ∈ C.

It is known that the quasisimilarity conserves the concept of multicyclic opera-
tors. For completeness, we include it’s proof.

Proposition 4.2. Let T ∈ L(X) and S ∈ L(Y ) be densely similar operators. Then
for all n ≥ 1, T is n-multicyclic operator if and only if S is n-multicyclic operator.
In particular, T is multicyclic operator if and only if S is multicyclic operator.

Proof. It suffices to prove one implication. Let A and B be operators defined as
above, and suppose that T is n-multicyclic. By (4, 1), there exists (x1, . . . , xn) ∈ Xn

such that
X = Xx1 + . . . + Xxn .

It is clear that
AXx ⊆ YAx for all x ∈ X (4.2)
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Since A is continuous, then

AX = AXx1 + . . . + Xxn ⊆ AXx1 + . . . + AXxn . (4.3)

As AX = Y , from (4.2) and (4.3) we obtain

Y1 + . . . + Yn = AXx1 + . . . + AXxn = Y.

where Yi = YAxi
, for i ∈ {1, . . . , n}. Now, suppose that there exists (y1, . . . , yn−1) ∈

Xn−1 such that
Y = Y1 + . . . + Yn−1;

hence, as above, we show that X = XBy1 + . . . + XByn−1 . This contradicts the fact
that T is n-multicyclic, which complete the argument. �

In the following, we define the class A(X) as the set of all operators T ∈ L(X)
satisfying the next relation

ρf (T ) ⊆ ρre(T ),

and note that for T ∈ A(X), it is clear that ρf (T ) = ρre(T ).
Clearly, the class A(X) contain M(X) (Lemma 4.1), and more examples when

X be an infinite dimensional are given in the following

i) If T is Riesz or in particular compact operator, then T ∈ A(X) if and only if
R(T ) is not closed.

ii) If T is Rationally cyclic then T ∈ A(X)([13, Proposition 1].

iii) If T is normal operator such that every isolated point of σ(T ) is an eigenvalue
of finite multiplicity then T ∈ A(X)([6, Proposition 4.5 and 4.6]).

The following result refines what has been proved in Theorem 5.5 of [12] for
cyclic case on Hilbert spaces. For completeness, we include it’s proof.

Theorem 4.3. Let T ∈ L(X) and suppose that T ∈ A(X). Then the following
statements hold.

(1) ρSF (T ) = ρf (T ) = ρre(T );

(2) ρe(T ) = ρle(T );

(3) Moreover, if T has the SVEP, then

σe(T ) = σSF (T ) = σf (T ) = σle(T ) = σre(T ).

Proof. (1) It is obviously that ρre(T ) ⊆ ρSF (T ) ⊆ ρf (T ), hence (1) is an immediate
consequence of the fact that ρre(T ) = ρf (T ) for T ∈ A(X).

(2) From (1) we obtain ρle(T ) ⊆ ρre(T ), and consequently

ρe(T ) = ρle(T ) ∩ ρre(T ) = ρle(T ).

(3) Let λ0 ∈ ρSF (T ), i.e (T − λ0I) is semi-Fredholm operator, from the Kato
decomposition, there exists η > 0 such that

D(λ0, η) \ {λ0} = {λ ∈ C : 0 <| λ− λ0 |< η} ⊆ ρK(T ) ;
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Since T has the SVEP, it follows from [11, corollary 3.1.7] that ρK(T ) = ρap(T ).
Thus, for all λ ∈ D(λ0, η) \ {λ0} we get R(T − λI) is closed and N(T − λI) = {0}.
This implies that ind(T − λI) ≤ 0 for all λ ∈ D(λ0, η) \ {λ0}. On the one hand,
by the continuity of the index we obtain ind(T − λ0I) ≤ 0. On the other hand, it
follows from T ∈ A(X) that β(T − λ0I) < ∞. Consequently,

−β(T − λ0I) ≤ ind(T − λ0I) ≤ 0.

Thus, λ0 ∈ ρe(T ) and so σe(T ) = σSF (T ). Therefore, from (1) and (2) the proof is
complete. �

From the preceding lemma, we see that A(X) contains the class of multicyclic
operators on X. As a consequence of this and Theorem 4.3, we obtain the following
result

Corollary 4.4. Let T ∈ L(X) be a multicyclic operator. Then the following state-
ment hold.

(1) ρSF (T ) = ρf (T ) = ρre(T );

(2) ρe(T ) = ρle(T ).

(3) Moreover, if T have the SVEP, then

σe(T ) = σSF (T ) = σf (T ) = σle(T ) = σre(T ).

The following proposition will be useful in what follows.

Proposition 4.5 ([11], Theorem 3.7.15). Let T ∈ L(X) and S ∈ L(Y ) be densely
similar operators with property (β). Then σ(T ) = σ(S), σe(T ) = σe(S) and ind(T −
λI) = ind(S − λI) for all λ ∈ ρe(T ).

Theorem 4.6. If T ∈ A(X) and S ∈ A(Y ) have property (β) and are densely
similar, then σ(T ) = σ(S) and σre(T ) = σle(T ) = σf (T ) = σSF (T ) = σe(T ) =
σe(S) = σSF (S) = σf (S) = σle(S) = σre(S).
If, in addition, S and T are quasisimilar, then they also satisfy that σp(T ) = σp(S),
and σap(T ) = σap(S).

Proof. Since S and T have property (β) and are densely similar, σe(T ) = σe(S)
and σ(T ) = σ(S) [11, Theorem 3.7.15]. Also, S and T satisfy the SVEP, since
they satisfy property (β) [11, Proposition 1.2.19]. Hence the first statement follows
from Theorem 4.3. For the second statement, σp(T ) = σp(S) follows from S and
T being quasisimilar, and hence by the first statement σap(T ) = σp(T ) ∪ σf (T ) =
σp(S) ∪ σf (S) = σap(S). �

Again, as a consequence of the fact that A(X) contains multicyclic operators on
X and Theorem 4.6, we obtain the following result

Corollary 4.7. If T ∈ M(X), S ∈ M(Y ) have property (β) and are densely
similar, then σ(T ) = σ(S) and σre(T ) = σle(T ) = σf (T ) = σSF (T ) = σe(T ) =
σe(S) = σSF (S) = σf (S) = σle(S) = σre(S).
If, in addition, S and T are quasisimilar, then they also satisfy that σp(T ) = σp(S),
and σap(T ) = σap(S).
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5 � Applications

In what follows, for a Banach space X an operator T ∈ L(X) is in N (X) if there
exist an integer n > 0 and (x1, . . . , xn) ∈ Xn for which

R(T ) ⊆ cl span{T kxi : 1 ≤ i ≤ n , k ≥ 0}.

It is clear that M(X) ⊆ N (X). The next example shows that, the class N (X)
may be larger than M(X).

Example 1. Let H be a separable Hilbert space, with an orthonormal basis (en)n∈N.
Let N ∈ L(H) be defined as follows :

Nen =

{
e1 if n = 0
0 if n ≥ 1

N is nilpotent and clearly that N ∈ N (H) but N 6∈ M(H).

Remark. If T ∈ N (X) such that codimR(T ) is finite, then T is a multicyclic
operator. In fact, let n ≥ 1 and (x1, . . . , xn) ∈ Xn for which R(T ) ⊆ cl span{T kxi :
1 ≤ i ≤ n , k ≥ 0}. Set E the subspace such that X = R(T ) ⊕ E and let
(xn+1, . . . , xn+p) be a basis of E. And so, it is not hard to see that

cl span{T kxi : 1 ≤ i ≤ n + p , k ≥ 0} = X.

It is known that if T is multicyclic and S densely similar with S, then so is S.
We extend this result as follows.

Proposition 5.1. Let T ∈ L(X) and S ∈ L(Y ) be densely similar operators. Then
T ∈ N (X) if and only if S ∈ N (Y ).

It is a simple consequence of proposition 4.2 and we omit the proof.
Next, for T ∈ L(X), we set X1 := R(T ), T1 := T|X1 and I1 := I|X1 viewed as

operators in L(X1). If T ∈ N (X), it is not hard to see that T1 is a multicyclic
operator on X1. In fact, let (x1, . . . , xn) ∈ Xn for which

X1 ⊆ cl span{T kxi : 1 ≤ i ≤ n , k ≥ 0},

and let I to be the subset of {1 . . . n} for which xi 6∈ X1. Now, for each i ∈ {1 . . . n},
we set

yi :=

{
Txi if i ∈ I
xi if i 6∈ I.

Thus, (y1, . . . , yn) ∈ Xn
1 and X1 = cl span{T k

1 yi : 1 ≤ i ≤ n , k ≥ 0}.

Lemma 5.2 ([2]). Let X be a Banach space and T ∈ L(X), let λ 6= 0 be a complex
number. If T ∈ N (X) Then the following assertions hold.

(a) R(T − λI) is closed if and only if R(T1 − λI1) is closed.

(b) R(T − λI) has finite codimension if and only if R(T1 − λI1) has finite codi-
mension.
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It suffices to apply in [2], Theorem 5 and Theorem 6 to Example 11.

Theorem 5.3. Let X be a Banach space and T ∈ L(X). Suppose that T ∈ N (X) \
M(X). Then the following assertions hold.

(1) If R(T ) is not closed, then the conclusion of Theorem 4.3 holds.

(2) If R(T ) is closed, then

a) ρSF (T ) \ {0} = ρf (T ) \ {0} = ρre(T ),

b) ρe(T ) = ρle(T ) \ {0},
c) Moreover, if T has The SVEP, then

σe(T ) = σSF (T ) ∪ {0} = σf (T ) ∪ {0} = σle(T ) ∪ {0} = σre(T ).

Proof. (2) a) As T ∈ N (X) \ M(X), we obtain through the remark preceding
Proposition 5.1, that R(T ) have infinite codimension and so 0 6∈ ρre(T ). Now, let
λ 6= 0 in C be given. From the fact that N(T − λI) = N(T1 − λI1) and by lemma
5.2, we obtain

σ∗(T ) \ {0} = σ∗(T1) \ {0} for σ∗ ∈ {σe, σle, σre, σf , σSF}.

Since T1 is a multicyclic operator, it follows from Theorem 4.3 (1) and Lemma 5.2
that

σf (T ) \ {0} = σre(T ) \ {0} = σSF (T ) \ {0}.

Consequently, (2)a) follows from the fact that 0 6∈ ρre(T ).
(2) b) Again, from Theorem 4.3(2) and Lemma 5.2, we obtain σe(T ) \ {0} =

σle(T ) \ {0}, and since 0 6∈ ρe(T ), we deduce that ρe(T ) = ρle(T ) \ {0}.
(2) c) We know that T1 inherits SVEP from T . And so, we obtain through

Theorem 4.3(3), Lemma 5.2 and 0 ∈ σre(T ), that

σe(T ) = σSF (T ) ∪ {0} = σf (T ) ∪ {0} = σle(T ) ∪ {0} = σre(T ).

(1) Assume that R(T ) is not closed, then

0 ∈ σ∗(T ) for σ∗ ∈ {σe, σle, σre, σf , σSF}.

And so, from Lemma 5.2, we have

σe(T ) = σSF (T ) = σf (T ) = σle(T ) = σre(T ).

This complete the argument. �

The next lemma shows that, the restriction to the closure of the range conserve
the densely similarity and the quasisimilarity. Also, it will be useful in the proof of
the last theorem.

Lemma 5.4. Let T ∈ L(X) and S ∈ L(Y ) be densely similar(respectively, quasisimilar).
Then, T1 ∈ L(X1) and S1 ∈ L(Y1) are densely similar(respectively, quasisimilar).

Again, I would omit its proof since this lemma is simple to verify.
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Theorem 5.5. Let T ∈ N (X) and S ∈ N (Y ) have property (β).

(a) If T and S are densely similar, then σre(T ) = σre(S).

(b) If T and S are quasisimilar, then σap(T ) = σap(S).

Proof. (a) From the fact that T1 and S1 are densely similar operators, and by the
techniques that used in the proof of the preceding theorem, we show that σre(T ) \
{0} = σre(S) \ {0}. Thus (a) follows, from Proposition 4.2 and Corollary 4.4 if
T ∈M(X), or from the fact that 0 ∈ σre(T ) ∩ σre(S) otherwise.

(b) Similarly, we obtain σap(T ) \ {0} = σap(S) \ {0}, since T1 and S1 are qua-
sisimilar operators. To prove the assertion (b), it suffices to show one implication.
Now, Assume that 0 6∈ σap(T ), and so 0 6∈ σp(T ), this implies that 0 6∈ σp(S). It
follows from the inclusion σap(T1) ⊆ σap(T ), that 0 6∈ σap(T1). On the one hand,
T1 and S1 are quasisimilar multicyclic operators and satisfying property (β), hence
Corollary 4.7 yields that σap(T1) = σap(S1). Consequently 0 6∈ σap(S1) and therefore
R(S1) is closed because 0 6∈ σp(S). And since S1 is a multicyclic operator on R(S),
by lemma 4.1 there exists a finite dimensional subspace F of R(S) such that

R(S) = R(S1)⊕ F.

Finally, since R(S1) ⊆ R(S), it is easy to see that

R(S) = R(S1)⊕ F ∩R(S).

Thus R(S) is closed ([9, Theorem 1.4.12]) and so 0 6∈ σap(S), as claimed. �
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