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Abstract

In this paper, we present a numerical solution of one-dimensional Korteweg-

de Vries equation with variant boundary conditions by the Fourier pseudospec-

tral method. Four test problem with known exact solutions were studied to

demonstrate the accuracy of the present method. An artificial viscosity was

proposed to improve the accuracy of the numerical scheme. The obtained

results were compared with the exact solution of each problem and found to

be in good agreement with each other.

1 Introduction

A famous equation which arises in the study of nonlinear dispersive waves is the
Korteweg-de Vries (KdV) equation. KdV equation was derived in 1895 by Korteweg
and de Vries to model water in shallow canal [1]. We considered the KdV equation
which is a nonlinear partial differential equation of third order given by

∂U

∂t
(x, t) + εU(x, t)

∂U

∂t
(x, t) + µ

∂3U

∂x3
(x, t) = 0, a ≤ x ≤ b, t > 0, (1.1)

where ε and µ are positive parameters and a, b are real constants.
The KdV equation is generic equation for the study of weakly nonlinear long

waves. The KdV type of equation have been an important class of nonlinear evo-
lution equations with numerous applications in physical sciences and engineering
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field. For example, in plasma physics these equations give rise to the ion acoustic
solitons [2]; in geophysical fluid dynamics, they describe a long wave in shallow seas
and deep oceans [3, 5]. Their strong presence is exhibited in cluster physics, super
deformed nuclei, fission, thin films, radar and rheology [7, 16].

Several authors mainly had paid attention to study solutions of nonlinear equa-
tion by using various methods, such as tanh method [8], the sine-cosine method
[9] and the homogeneous balance method [17]. This equation is of interest of the
numerical point of view, because in general, analytical solution is not available.
For appropriate initial condition, Gardner et al. [13] have shown the existence and
uniqueness of solutions of the KdV equation. For KdV equation, there has been sev-
eral quite successful numerical methods such as finite element methods [14], finite
difference methods [12] and spectral methods [15].

This paper presents a new numerical Fourier pseudospectral scheme to solve third
order KdV equation with a set of initial and boundary conditions. An artificial
viscosity was used to reduce the round-off error of pseudospectral method. The
numerical results were compared with the exact solution of four model problem to
demonstrate the accuracy of the method. The numerical scheme was also compared
with earlier work and shown to be accurate and efficient.

This paper is organized as follows: In section 2, we proposed pseudospectral
method. The numerical results are presented in section 3. Finally the conclusion is
given in section 4.

2 The Fourier Pseudospectral Discretization

In this section, we will apply the Fourier pseudospectral method to (1.1). For
simplicity, we will consider the spatial domain [0, L]. The Fourier pseudospectral
method involve two basic steps. First, we construct the discrete representation of the
solution through interpolate trigonometric polynomial of the solution at collocation
points. Secondly, equation for the discrete values of the solution are obtained from
the original equation. This second step involves finding an approximation for the
differential operator in terms of the discrete values of the solution at collocation
points. For details, see [4, 10, 21].

We approximate u(x, t) by uN(x, t), which interpolate u(x, t) at the following set
of collocation points

xj =
L

N
j, j = 0, 1, · · ·, N − 1,

where N is an even number.
The approximation uN(x, t) have the form

uN(x, t) =
N−1∑

j=0

ujgj(x), (2.1)

where uj = u(xj, t), and gj(xk) = δk
j . Therefore, we have uN(xj , t) = uj, j =

0, 1, · · ·, N − 1. In fact gj(x) can be given explicitly by

gj(x) =
1

N

N/2∑

ℓ=−N/2

1

cℓ
eiℓµ(x−xj), (2.2)
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where cℓ = 1(|ℓ| 6= N/2), c−N/2 = cN/2 = 2, µ =
2π

L
. By direct computations, we can

easily verify that gj(xk) = δk
j . Substituting (2.2) into (2.1), we obtain

uN(x, t) =
N/2∑

ℓ=−N/2

1

cℓ

eijµx 1

N

N−1∑

ℓ=0

uℓe
−iℓµxj , (2.3)

with the following definition

ûℓ =
1

Ncℓ

N−1∑

j=0

uje
−iℓµxj , (2.4)

(2.3) becomes

uN(x, t) =
N/2∑

ℓ=−N/2

ûℓe
iℓµx. (2.5)

Therefore

uj = uN(xj , t) =
N/2∑

ℓ=−N/2

ûℓe
iℓµxj . (2.6)

In order to obtain the equation for uℓ, we substitute (2.5) into (1.1) and requiring
that (2.1) is satisfied exactly at collocation points, i.e.,

∂

∂t
uN(xj , t)+εuN(xj , t)

∂

∂x
uN(xj , t)+µ

∂3

∂x3
uN(xj, t) = 0, j = 0, 1, ···, N−1. (2.7)

In order to obtain the values for the kth derivatives
∂k

∂xk
uN(xj , t) at the colloca-

tion points in terms of the value uj. We can differentiate (2.1) and evaluating the
resulting expression at the point xj

∂k

∂xk
uN(xj , t) =

N−1∑

n=0

un
∂k

∂xk
gn(xj , t) = (Dku)j, j = 0, 1, · · ·, N − 1, (2.8)

where (Dk) is an N × N matrix with elements (Dk)j,n =
dk

dxk
gn(xj). We call (Dk)

the kth order spectral differentiation matrix and u = (u0, u1, · · ·, uN−1)
T .

Remark 1
We can also evaluate the derivatives by using the FFT algorithm instead of

spectral differential matrix in O(N log N) operation rather than O(N2) operations.
However it is more convenient to investigate the Fourier pseudospectral discretiza-
tions of (1.1) by using the spectral differential matrices.
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2.1 Artificial Viscosity

The drawback of pseudospectral method is aliasing error could cause nonlinear
instability. In order to weaken the nonlinear instability in computation and improve
the accuracy of numerical solutions, we use the artificial viscosity as defined in [6].
Let γ ≥ 1 and Rγ be the artificial viscosity. It means that if

uN(x, t) =
N−1∑

j=0

ujgj(x) (2.9)

is the exact solution of the scheme. Then

RγuN(x, t) =
N−1∑

j=0

(
1 −

(∣∣∣∣
j

N − 1

∣∣∣∣
γ))

ujgj(x). (2.10)

Remark 2
The term ”artificial viscosity” Rγ refers to a ”filtering” term or more precisely

an ”artificial damping” term, which improves the stability of the pseudospectral
method, especially in case when the solution of the partial differential equations
change rapidly. A suitable value of γ must be chosen to get good results. How
to choose parameter γ suitably is relative to the smoothness of the exact solution.
Generally speaking, if the exact solution change rapidly we should take small γ and
conversely take large γ.

2.2 Treatment of Nonlinear Terms

Let

uN(x) =
N−1∑

j=0

ujgj(x), vN(x) =
N−1∑

k=0

vkgk(x),

The circle convolution is defined by

uN ∗ vN =
N−1∑

j=0

N−1∑

k=0

ukvj−kgj(x).

We denote here by VN the space of trigonometric polynomials of degree up to N −1:

VN = span

{
1√
L

exp(i2πjx/L) : j = 0, 1, · · ·, N − 1

}

,

where i =
√
−1. In order to approximate the nonlinear term uN

∂uN

∂x
of (2.7)

reasonably [15], we define the operator J : VN × VN −→ VN as

J(uN , vN) =
1

3
Pc

(
∂uN

∂x
∗ vN

)

+
1

3

∂

∂x
(Pc(uN ∗ vN)) , (2.11)

where Pc is the interpolation operator. Using (2.10) we can rewrite the nonlinear
terms as follows:

J(uN , vN) = Rγ

{
1

3
Pc

(
∂uN

∂x
∗ RγvN

)

+
1

3

∂

∂x
(Pc(uN ∗ RγvN ))

}

. (2.12)
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2.3 Solution of Korteweg-de Vries equation

In this section, we use the spectral differentiation matrix and artificial viscosity
to solve the Korteweg-de Vries equation, we obtain from (2.7)

d

dt
uN(xj , t) + εJ(uN(xj , t), uN(xj, t)) + µ(D3uN(xj , t)) = 0, j = 0, 1, · · ·, N − 1,

(2.13)
where

J(uN(xj , t), uN(xj , t))

= Rγ

{
1

3
Pc(D1uN(xj , t) ∗ RγuN(xj , t)) +

1

3
D1(Pc(uN(xj , t) ∗ RγuN(xj, t))

}
.

The equation (2.13) is the Fourier pseudospectral discretization for the Korteweg-
de Vries equation in the form (1.1). Now consider the time discretization of the
Fourier pseudospectral discretization (2.13). Using the modified leapfrog scheme
such that the linear part is treated implicitly and the nonlinear part explicitly, we
get a fully discrete Fourier pseudospectral scheme for (1.1): find u(t) ∈ VN such that






uN(xj , t + τ) − uN(xj , t − τ)

2τ
+ εJ (uN(xj , t), uN(xj, t))

+
µ

2
D3(uN(xj , t + τ) + uN(xj, t − τ) = 0,

uN(xj , τ) = PN

(

U(xj , 0) + τ
∂U

∂t
(xj , 0)

)

,

uN(xj , 0) = PNU(xj , 0),

(2.14)

where PN is the orthogonal projection operator. The values of uN(xj , 0) and uN(xj, τ)
are known, then we can evaluate the values of uN(xj , 2τ) etc. Since the nonlinear

term uN
∂uN

∂x
is approximated explicitly by J(uN(xj , t), uN(xj, t)), the solution of

the above scheme can be obtained by solving with an octa diagonal matrix at each
time level tk, k = 0, 1, · · ·, N − 1. We refer to [19] for details.

Remark 3
When time-dependent partial differential equations are solved numerically by

spectral methods, spectral differentiation is used in space, while finite differences
are used in the time direction. In principle, we have to sacrifice spectral accuracy
in time, but in practice a small time step with a formula of order two or higher
often leaves the global accuracy quite satisfactory. Small time steps are much more
affordable than small space steps, for they affect the computation time, but not the
storage. The details are given in [10, 21].
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3 Numerical Results

In this section, we present some numerical results of our scheme for the KdV
equation. We used single solitary wave propagation and double solitary waves in-
teraction to test the good accuracy of our method. All computations were carried
out in FORTRAN 90 and all figures were obtained by using Matlab 6.5 on Compaq
Branded system, Processor 3.2 GHz, Memory 1 GB, Hard Disk 80 GB. For describ-
ing the error, we defined maximum error and the discrete L2-normed error given as
follows:

‖E‖∞ = max
0≤j≤N−1

|U(xj , t) − uN(xj , t)|

and

‖E‖2 =
N−1∑

j=0

(U(xj , t) − uN(xj , t))
1/2,

where uN(xj , t) is the solution of numerical scheme (2.14) and U(xj , t) is the exact
solution of (1.1).

Problem (a): For this problem we considered the KdV equation (1.1) with ε = 1
and µ = 4.84 × 10−4. The homogenous boundary conditions are

U(0, t) = U(2, t) = 0, t > 0,

and initial condition is

U(x, 0) = 3r sech2(Ax + D), 0 ≤ x ≤ 2.

The problem has an exact solution of the form [14]:

U(x, t) = 3r sech2(Ax − Bt + D), 0 ≤ x ≤ 2,

where A = 1
2

√
εc/µ, B = εAc, r = 0.3 and D = −6 . This problem represents a

single soliton with amplitude 3r which moves to the right with constant speed εr.
The calculation is carried out at c = 0.5, and τ = 0.001. The approximate solution
obtained for N = 8 and N = 16 was compared with the exact solution. As seen in
Table 1 and Table 2, these solutions are in good agreement with each other. The
effect of artificial viscosity on the accuracy of the scheme (2.14) is clear. The value
of γ in the artificial viscosity must be chosen suitably small . If γ is too large the
filtering technique will be weakened. If γ is too small, the approximation accuracy
will be lowered. The suitable choice of γ is between 5 and 10. But the best choice
of γ varies in different cases. In our case the best choice of γ is 5 (see Table 1 and
Table 2). Numerical results show that numerical precision depends on the choice of
parameter γ.

The difference between the exact and the numerical solution obtained, using the
present method, EFD[12] and ANM[18] are shown in Figure 1 to observe the error
distribution over the space domain 0 ≤ x ≤ 2. The graphs of the analytical and the
numerical solution of single soliton at t = 0.01 are given in Figure 2.
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Table 1: Maximum and L2- Errors of the problem (a) at N=8
‖E‖∞ ‖E‖2

t γ = 5 γ = 10 γ = ∞ γ = 5 γ = 10 γ = ∞
1 3.268E-5 4.984E-4 4.778E-3 3.388E-6 1.420E-4 5.009E-3
2 6.526E-5 2.109E-4 9.708E-3 6.910E-6 5.385E-4 2.652E-3
3 2.078E-4 1.909E-3 1.511E-2 1.197E-5 1.279E-3 5.793E-2
4 1.484E-4 2.961E-3 2.861E-1 3.894E-5 2.886E-3 1.139E-1
5 2.225E-4 4.367E-3 3.751E+0 8.491E-5 6.223E-3 2.168E+0

Table 2: Maximum and L2- Errors of the problem (a) at N=16
‖E‖∞ ‖E‖2

t γ = 5 γ = 10 γ = ∞ γ = 5 γ = 10 γ = ∞
1 5.167E-5 1.478E-4 1.506E-3 4.780E-6 1.131E-5 1.831E-3
2 1.157E-5 3.012E-4 3.066E-2 9.774E-6 5.981E-5 6.770E-2
3 1.989E-4 5.033E-3 5.384E-2 1.543E-5 1.706E-4 2.211E-2
4 2.997E-4 7.827E-3 1.026E-1 2.205E-5 3.625E-3 6.136E-1
5 4.131E-4 1.190E-2 7.002E+0 2.966E-5 6.957E-3 5.420E+0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5
x 10

−3

X

E
R

R
O

R

EFD[12] 

ANM[18] 
Present Method 

Figure 1: Graph of the errors=|Exact-Numerical| of problem (a) at t=0.005
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Problem (b): For this problem we considered the KdV equation (1.1) with
ε = 6 and µ = 1 with the homogeneous boundary conditions

U(0, t) = U(4, t) = 0, t > 0,

and the initial condition obtained from the exact solution [14]

U(x, t) = 12µ
∂2

∂x2
(log f), 0 ≤ x ≤ 4,

where

f = 1 + exp(η1) + exp(η2) +
(

α1 − α2

α1 + α2

)2

exp(η1 + η2),

ηi = αix − α3
i µt + bi, i = 1, 2.

α1 =

√
0.3

µ
, α2 =

√
0.1

µ
, b1 = −0.48α1 and b2 = −1.07α2.

We studied the interaction of two solitary waves to the third order nonlinear
KdV equation. The numerical solutions of KdV third order equation for this problem
obtained by the present method have been compared with analytical solution in
Table 3 and Table 4 for N = 8 and N = 16 at τ = 0.001. It can be seen that
numerical solutions are in good agreement with the analytical one. Table 3 and
Table 4 show that accuracy of the numerical solutions improve rapidly as the value
of γ in artificial viscosity is chosen suitably small.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
Analytical and Numerical Solution

x

U
(x

, 0
.0

1)
 a

nd
 u

N
(x

, 0
.0

1)

Analytical Solution
Numerical Solution

Figure 2: Plot of single soliton for problem (a) at t=0.01
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In Figure 3 we compare the difference between the exact and the numerical
solution obtained, from the Fourier pseudospectral method, EFD[12] and ANM[18]
over the space domain 0 ≤ x ≤ 4 . The graphs of the analytical and the numerical
solution of double soliton at t = 0.01 are given in Figure 4.

Table 3: Maximum and L2- Errors of the problem (b) at N=8
‖E‖∞ ‖E‖2

t γ = 5 γ = 10 γ = ∞ γ = 5 γ = 10 γ = ∞
0.1 2.055E-3 1.018E-3 4.810E-2 2.412E-3 1.390E-3 7.928E-2
0.2 4.482E-3 2.250E-2 1.075E-1 1.636E-3 8.713E-2 4.327E-1
0.3 1.040E-3 5.508E-2 2.677E+0 5.846E-3 3.110E-2 1.498E+0

Table 4: Maximum and L2 Errors of the problem (b) at N=16
‖E‖∞ ‖E‖2

t γ = 5 γ = 10 γ = ∞ γ = 5 γ = 10 γ = ∞
0.1 1.038E-3 1.301E-3 5.204E-2 2.604E-3 1.361E-3 6.515E-2
0.2 2.319E-3 2.961E-2 1.178E-1 5.949E-3 2.988E-2 1.522E-1
0.3 6.472E-3 8.778E-2 3.484E+0 7.186E-3 1.006E-1 5.908E+0

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4
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6
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x 10
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X

E
R

R
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ANM[18] 

EFD[12] 

Present Method 

Figure 3: Graph of the errors=|Exact-Numerical| of problem (b) at t=0.01

Problem (c): In this problem, we considered the KdV equation (1.1) with ε = 6,
µ = 1 with single solitary wave solution. The homogenous boundary conditions are

U(0, t) = U(40, t) = 0, t > 0,
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and initial condition is given by

U(x, 0) =
r

2
sech2

(√
r

2
x − 7

)

, r = 0.5.

The exact solution [20] is

U(x, t) =
r

2
sech2

(√
r

2
(x − rt) − 7

)

, r = 0.5.

The calculation is carried out with parameter τ = 0.001, γ = 5 and N = 8.
To show the efficiency of the present method with the problem (c) in comparison
with exact solution, we report maximum error and the discrete L2-normed errors in
Table 5 for t = 1, 2, 3, 4 and 5. According to the results presented in Table 5, we
can say the present scheme provides better results than the results obtained from
[20]. Hence our scheme (2.14) is efficient and reliable. .

Problem (d): In this problem, we studied the interaction of two solitary waves
to the third order KdV equation (1.1) with ε = 6, µ = 1. The homogeneous bound-
ary conditions are

U(0, t) = U(15, t) = 0, t > 0,

and initial condition is

U(x, 0) = 12

{
3 + 4cosh(2x) + cosh(4x)

(3cosh(x) + cosh(3x))2

}

.
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, 0
.0

1)
 a

nd
 u

N
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, 0
.0

1)

Analytical Solution
Numerical Solution

Figure 4: Plot of double soliton for problem (b) at t=0.01
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Table 5: Comparison of numerical results of the problem (c)
with the results obtained from [20]

Present Method ANMC[20]
t ‖E‖∞ ‖E‖2 ‖E‖∞ ‖E‖2

1 1.7485 × 10−6 1.1245 × 10−5 1.8048 × 10−5 6.2366 × 10−5

2 3.4562 × 10−6 1.6758 × 10−5 3.0373 × 10−5 1.1264 × 10−4

3 5.3945 × 10−6 1.7459 × 10−5 4.0088 × 10−5 1.5537 × 10−4

4 5.6421 × 10−6 1.8147 × 10−5 4.8347 × 10−5 1.9400 × 10−4

5 6.3214 × 10−6 1.9171 × 10−5 5.6090 × 10−5 2.2943 × 10−4

The exact solution [20] is

U(x, t) = 12

{
3 + 4cosh(2x − 8t) + cosh(4x − 64t)

(3cosh(x − 28t) + cosh(3x − 36t))2

}

.

The approximate solution obtained for τ = 0.001, γ = 5 and N = 8, are com-
pared with the results of [20]. We report maximum error and the discrete L2-normed
errors at t = 0.1, 0.2 and 0.3 in Table 6. As shown in Table 6, these solutions are in
good agreement with each other. The results of the present method are much better
than that of [20].

Table 6: Comparison of numerical results of the problem (d)
with the results obtained from [20]

Present Method ANMC[20]
t ‖E‖∞ ‖E‖2 ‖E‖∞ ‖E‖2

0.1 2.3256 × 10−3 2.4215 × 10−3 5.6355 × 10−3 1.5444 × 10−2

0.2 4.5689 × 10−3 3.2156 × 10−3 2.3376 × 10−2 6.2286 × 10−2

0.3 5.7485 × 10−3 4.6541 × 10−3 5.9437 × 10−2 1.6348 × 10−1

4 Conclusion

In this paper, we discussed the well known Korteweg-de Vries equation. We
proposed a numerical scheme to solve the third order nonlinear KdV equation us-
ing the pseudospectral method with artificial viscosity. The numerical results given
in the previous section demonstrate the good accuracy of this scheme. For the test
problems, the present method provide more accurate results than ANM[18], EFD[12]
and ANMC[20]. So we have found advantages for the single soliton and double soli-
ton solution by the Fourier pseudospectral method in getting the numerical solution
of the KdV equation in terms of accuracy. From the errors plot, we observed the
maximum error occurred just around peak position of wave amplitude in the case of
single soliton and double soliton solution. The method is also capable of solving the
KdV type equation with other types of boundary conditions and initial conditions.
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