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Abstract

We set D to be a simply connected domain and we consider exhaustion
function spaces, X∞(D) with the projective topology (see §1). We show that
the natural topology on the topological dual of X∞(D), (X∞(D))′, is the
inductive topology. As a main application we assume that D has a Jordan
rectifiable boundary ∂D, and M ⊂ ∂D to be an open analytic arc whose
Lebesgue measure satisfies 0 < m(M) < m(∂D). We prove a result for the
dual of NH1

M (D), which is the class of holomorphic functions in D which are
represented by Carleman formulae on M ⊂ ∂D. Furthermore we show that
the Cauchy Integral associated to f ∈ NH1

M (D) is an element of NH1
M (D).

Lastly, we solve an extremal problem for the dual of NH1
M (D).

1 Projective and Inductive topologies

We set D to be a bounded simply connected domain of the complex plane C and
{Di}i=1, i = 1, 2 . . . to be an increasing sequence of bounded simply connected
domains (i.e. Di ⊂ Di+1, i = 1, 2 . . .) such that D =

⋃
iDi with Di ⊂ D, i = 1, 2, . . .,

∂Di → ∂D in the sense that {∂Di}i eventually surrounds each compact subdomain
of D. Such a sequence of domains {Di}i is called an exhaustion of D. Furthermore
we set X(Di) to be a function space on Di with topology Ti.
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For simplicity in the symbolism write Xi for X(Di), and assume that each Xi

carries the topology Ti for all i ∈ N. In the following we construct the projective
limit associated with Xi and we provide it with the projective topology.

For all i ≤ j, fi ∈ Xi, i, j = 1, 2, . . ., define the connecting maps

µij : Xj → Xi, i ≤ j, (1.1)

such that µij(fj) = fi is the restriction of fj on Di. In addition note that for all
i, j, k = 1, 2 . . ., i ≤ j ≤ k, holds µik = µij ◦µjk. We consider X∞ to be the subspace
of

∏
iXi whose elements f = (f1, f2, . . .) satisfy the relation fi = µij(fj) for all i ≤ j.

X∞ is called the projective limit of the family {Xi}i with respect to the mappings
µij and is denoted by X∞ = lim

←−
µij(Xi, Ti).

We set µi to be the restriction to X∞ of the projection map pi of
∏
iXi onto

Xi, i = 1, 2 . . ., and we give X∞ the projective topology T∞ with respect to the
family {(Xi, Ti), µi}i. That is the coarsest topology on X∞ for which each of the
mappings µi : X∞ → (Xi, Ti), i ∈ N, is continuous. An element fi ∈ Xi is called a
representative of f ∈ X∞, if µi(f) = fi, i ∈ N. Note that each element of X∞ has
a unique representative in each Xi, but that an element of Xi does not necessarily
represent a unique element of X∞. Furthermore note that there is no restriction
of generality in assuming that a projective limit is reduced, in the sense that for
each i ∈ N the projection µi(X∞) is dense in Xi. (An elaborate treatment of the
projective limits and of their topologies, can be found in [12].) The following is the
definition of the exhaustion space.

Definition 1.1. We say that a function f belongs to the class (X∞(D), T∞) if
f ∈ (X(Di), Ti), for each i = 1, 2, . . ., where {Di}i is an exhaustion of D and T∞
is the projective topology with respect to the family {(Xi(D), Ti), µi}i. For simplicity
write (X∞, T∞) and call it the exhaustion space of ({Xi, Ti)}, µi), i = 1, 2 . . ..

It is clear that the above definition does not depend on the particular exhaustion
of D.

In order to describe the topological dual of (X∞, T∞) we need the notion of
inductive topologies. For i ∈ N set Yi ≡ Y (Di) to be the algebraic dual (that is
the space of linear functionals) on each Xi. Furthermore suppose that each Yi has
a topology Li. For all i, j ∈ N set φij to be the dual maps of µij. That is φij = µ∗ij
are defined as

φij : Yi → Yj, i ≤ j, (1.2)

and if yi, yj are elements of Yi, Yj respectively, then yj = φij(yi) = yi ◦ µij. This and
the relation (1.1) imply that for fi ∈ Xi, fj ∈ Xj, i ≤ j, the action of yj on fj is
identified with the action of yi on fi.

Now we define the natural injections gi : Yi ↪→
⊕

i Yi and let K denote the
(closed) subspace of

⊕
i Yi generated by the closure of the ranges of the linear maps

gi−gj ◦φij of Yi into
⊕

i Yi where i, j runs through all pairs such that i ≤ j. Let also
p :

⊕
i

Yi → (
⊕
i

Yi)/K. The quotient space Y ∞ ≡ (
⊕

i Yi)/K is called the inductive

limit of the family {Yi}i with respect to the mappings φij and is denoted by

Y ∞ = lim
−→

φij(Yi,Li).



Functions representable by Carleman type formulae 631

For all i ∈ N set φi to be the restriction to Yi of the map p :
⊕

i Yi → (
⊕

i Yi)/K (that
is the imbedding of Yi into Y ∞). Now provide Y ∞ with the inductive topology L∞
with respect to the family {(Yi,Li), φi)}i. That is the finest locally convex topology
that makes each of the mappings φi : (Yi,Li) → Y ∞, i ∈ N, continuous. An element
yi ∈ Yi is called a representative of y ∈ Y ∞, if φi(yi) = y. Note that for i ∈ N,
each element of Yi represents at most one element in Y ∞, but that an element of
Y ∞ does not necessarily has a unique representative in Yi. Furthermore, it is clear
that a given y ∈ Y ∞ need not have a representative in each Yi, i ∈ N. Set I to be
the subset of N, such that y ∈ Y ∞ has at least one representative in each element
of {Yi}i∈I .

In order to prove that there is a certain duality between inductive and pro-
jective topologies (as constructed above) we shall need the Mackey-Arens theorem
that characterizes the locally convex topologies consistent with a given duality ([12]
Chapter IV).

Suppose that F is a vector space over a field K. The algebraic dual of F ,
denoted by F ∗, is the vector space of all linear functionals of F . If in addition F is
a topological vector space, then the topological dual (or briefly dual) of F , denoted
by F ′, is the vector space of all continuous linear functionals on F . Recall (see [12])
that if F,G are vector spaces over a field, a locally convex topology T on F is called
consistent with the duality < F,G > if the dual of (F, T ) is identical with G (G
being viewed as a subspace of the algebraic dual F ∗). By σ(G,F ) denote the weak
topology on G generated by F .

The following theorem is the Mackey-Arens Theorem and is taken from [12].

Theorem 1.1. There is a finest locally convex topology τ(F,G) on F consistent
with < F,G >. This topology is the topology of uniform convergence on all σ(G,F )-
compact convex circled subsets of G.

This topology on F is called the Mackey Topology on F with respect to the
dual pair < F,G > and a locally convex space is called Mackey Space if its
topology is the Mackey topology.

Remark 1.1. (a). Combining the results [12], Ch.IV , 3.4 and 6.1 we can easily
conclude that if (F, T ) is a metrizable space, then its Mackey topology is the topology
of uniform convergence on all σ(G,F )-compact subsets of G and furthermore this
topology coincides with T .

(b). Using the construction of projective limits and [12], Ch.II, 5.3, it is ele-
mentary to show that the projective limit of Fréchet spaces is a Fréchet space.

In the rest of the paper we suppose that for all i ∈ N, (Xi, Ti) and (X ′i,Li) are
complete metric spaces (Fréchet spaces) themselves.

From Remark 1.1(a) we obtain the following,

Lemma 1.1. For all i ∈ N the Mackey topologies on (Xi, Ti) and on (X ′i,Li) coin-
cide with the metric topologies, Ti and Li respectively.

The next theorem is of importance. It is a consequence of the result [12], Ch.IV ,
4.4 once we use Remark 1.1 and Lemma 1.1.
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Theorem 1.2. The topological dual of the reduced projective limit X∞ = lim
←−

µij(Xi, Ti)
under its metric topology, can be identified with the inductive limit of the family
{X ′i,Li}i∈I with respect to the adjoint mappings φij of µij. That is X ′∞ = lim

−→
φij(X

′
i,Li).

2 The Dual of NH1
M(D)

In this section we define the ‘Hardy class H1 near a subset M of the boundary of
the domain D, M ⊂ ∂D’ and we denote this class by NH1

M(D). It has been shown
that if D is a bounded simply connected domain whose boundary ∂D is a Jordan
rectifiable curve, and if M is an analytic open arc contained in ∂D whose Lebesgue
measure satisfies 0 < m(M) < m(∂D), then this is exactly the class of holomorphic
functions in D which are represented by Carleman formulas on M ⊂ ∂D, provided
that ∂D is almost regular with respect to M ( Theorem 2.14, [7]). Analogous result
holds for some other particular domains ([1], [2], [3], [6]).

The main result of this section (Theorem 2.1) is a description of the dual of
NH1

M(D), that is the dual of the class of functions representable by Carleman
formulas.

The following definition is from [11].

Definition 2.1. A function f(z) holomorphic in D belongs to the class Ep(D),
p > 0, if there exists a sequence of curves Γm in D converging to ∂D (in a sense
that it eventually surrounds every compact subdomain of D ) such that∫

Γm

|f(z)|p|dz| ≤ C1,

where C1 is independent of m.

Using the constructions in §1 we provide NH1
M(D) with the projective topology.

Actually we use a particular exhaustion of the domain D, with a certain subclass of
Smirnov domains Di ⊂ D, i ∈ I. More specifically we consider an Ahlfors regular
exhaustion of D attached to M , where M is the stable part of this exhaustion
(for details on Ahlfors regular exhaustions see [3]). The following definition is a
generalization of a definition in [3].

Definition 2.2. We say that a holomorphic function f on D with angular boundary
values defined almost everywhere on M (denoted also by f) belongs to the Hardy class
Hp, p > 0, near the set M ⊂ ∂D and denote this class by NHp

M(D) if f ∈ Ep(Di),
for all i ∈ N, p > 0, where {Di}i is an Ahlfors-regular exhaustion of D attached to
M .

From the above definition it is evident that the natural topology associated with
NHp

M(D) is the projective topology with respect to the mappings µij, i, j ∈ N, as
defined in equation (1.1). Hence,

(NHp
M(D), T ) = lim

←−
µij(E

p(Di), Ti),

where Ti, i ∈ N, is the vector space topology on each Ep(Di) p > 0, and T is the
vector space topology of NHp

M(D). In case where p ≥ 1, we consider the associate
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normed topologies (see also Remark 1.1 (b)). In this paper we are mainly interested
in the case of NH1

M(D). In light of the Theorem 1.2, in order to describe the dual
of NH1

M(D) we shall first examine the dual of each E1(Di), i ∈ N. For this we need
the following results.

The following lemma is an immediate consequence of [11], Theorem 10.4.

Lemma 2.1. Let D be a Jordan domain with rectifiable boundary ∂D. Then the set
of boundary functions of f ∈ E1(D) is precisely the class of functions f ∈ L1(∂D)

such that
∫
∂D
ζnf(ζ)dζ = 0, n = 0, 1, 2, . . ..

The next lemma was originally proved by Smirnov ([13]) in the case of the unit
disk (a proof of this can be found in [11]). Here we prove the analogous result for
arbitrary Smirnov domains. (The definition of a Smirnov domain can be found in
[11]).

Lemma 2.2. Let D be a Smirnov domain with rectifiable boundary ∂D. The set of
boundary functions of f ∈ Ep(D), 1 < p ≤ ∞, (denoted also by f) is precisely the

class of functions f ∈ Lp(∂D) such that
∫
∂D
ζnf(ζ)dζ = 0, n = 0, 1, 2, . . ..

Proof. Suppose that f ∈ Ep(D), 1 < p ≤ ∞. Since Ep(D) ⊂ E1(D), f ∈ E1(D)

with boundary values in L1(∂D). Hence by Lemma 2.1,
∫
∂D
ζnf(ζ)dζ = 0, n = 0, 1, 2, . . ..

Conversely, suppose that f ∈ Lp(∂D) such that
∫
∂D
ζnf(ζ)dζ = 0, n = 0, 1, 2, . . ..

Since Lp(∂D) ⊂ L1(∂D), by Lemma 2.1, f ∈ E1(D). Thus, f ∈ E1(D) with bound-
ary function f ∈ Lp(∂D), 1 < p ≤ ∞. Now the result follows from Lemma 2.3 in
[5], which uses the fact that the conformal mapping appeared in the definition of
Smirnov domains, is an outer, and hence a bounded below H1 function on the unit
disk. �

The following lemma is well known and shall be used in the sequel. For a proof
see [11].

Lemma 2.3. Suppose X is a Banach space and S a closed subspace of X. If S⊥ is
the annihilator of S in X ′, then the quotient space X ′/S⊥ is isometrically isomorphic
to S ′. Furthermore, for each fixed T ∈ X ′,

sup
x∈S,‖x‖≤1

|T (x)| = min
Q∈S⊥

‖T +Q‖,

where ‘ min’ indicates that the infimum is attained.

The following theorem was proved for the unit disk. Here we present a proof for
arbitrary Smirnov domains.

Theorem 2.1. Let D be a Smirnov domain with rectifiable boundary ∂D. The
dual of E1(D) is isometrically isomorphic to L∞(∂D)/H∞(D). Furthermore, each
T ∈ (E1(D))′ can be represented in the form

T (f) =
∫
∂D
f(ζ)g(ζ)dζ, (2.1)

by some function g ∈ L∞(∂D).
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Proof. Identifying each f ∈ E1(D) by its boundary functions, E1(D) can be re-
garded as a closed subspace of L1(∂D). Using Hahn-Banach theorem we first extend
each T ∈ (E1(D))′ on L1(∂D). Thus according to Riesz representation theorem the
extended functional has a unique representation such that for all f ∈ L1(∂D),

T (f) =
∫
∂D
f(ζ)g(ζ)dζ, g ∈ L∞(∂D). (2.2)

Furthermore, ‖T‖(L1(∂D))′ = ‖g‖∞, and (L1(∂D))′ is isometrically isomorphic to
L∞(∂D). Now Lemma 2.3 can be used to describe the dual (E1(D))′ once the
annihilator of E1(D) in (L1(D))′ can be determined.

If g ∈ L∞(∂D) annihilates every function in E1(∂D) then
∫
∂D
ζng(ζ)dζ = 0,

n = 0, 1, 2, . . .. Therefore by Lemma 2.2, g is a boundary function of an H∞(D)
function. Conversely, if g ∈ H∞(D), Lemma 2.2 and the fact that for Smirnov
domains D, polynomials are dense in E1(D) ([11],Theorem 10.6), we conclude that∫
∂D
g(ζ)f(ζ)dζ = 0, n = 0, 1, 2, . . . for every f ∈ E1(D). Hence H∞(D) is the

annihilator of E1(D) in (L1(D))′. Now Lemma 2.3 implies that the dual (E1(D))′

of E1(D) is isometrically isomorphic to L∞(∂D)/H∞(D) and hence the elements
of (E1(D))′ may represented in the form (2.1) for some g ∈ L∞(∂D). Certainly
this representation is not unique, since functions belonging to the same coset of
L∞(∂D)/H∞(D) represent the same functional T on E1(D). �

The constructions in §1, Theorem 1.2 and Theorem 2.1 immediately lead to the
following main result of this section.

Theorem 2.2. The dual of NH1
M(D) = lim

←−
µij(E

1(Di), Ti), under its metric topol-

ogy, can be identified with the inductive limit of the family {(L∞(∂Di)/H
∞(Di),Li)}i

with respect to the adjoint mappings φij of µij. That is

(NH1
M(D))′ = lim

−→
φij(L

∞(∂Di)/H
∞(Di),Li),

where each Li, i ∈ N, denotes the quotient normed topology on L∞(∂Di)/H
∞(Di).

Furthermore, each element Ti ∈ L∞(∂Di)/H
∞(Di) can be written in the form

Ti(f) =
∫
∂D
f(ζ)gi(ζ)dζ, f ∈ E1(Di),

for some gi ∈ L∞(∂Di), i ∈ N.
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3 Applications

3.1 Cauchy type Integrals

In the following we consider NH1
M(D) and we show a result for the Cauchy type

integral
1

2πi

∫
M

f(ζ)

ζ − z
dζ, z ∈ D,

whenever f ∈ NH1
M(D). This result holds for NH1

M(D) defined via Ahlfors-regular
proper exhaustions attached to M . (For the definition of Ahlfors-regular proper
exhaustion of a domain D, see [5]). Such domains are considered in the problems
studied in [1], [2], [5], [6]. In the cases [3] and [7] where the exhaustions of D are
Ahlfors-regular but not proper, an analogous result holds for almost all the proper
subarcs of M .

Theorem 3.1. Suppose that f ∈ NH1
M(D). If the exhaustion in NH1

M(D) is
Ahlfors regular and proper then the Cauchy type integral

1

2πi

∫
M

f(ζ)

ζ − z
dζ, z ∈ D,

belongs to NH1
M(D).

(b) If the Ahlfors regular exhaustion in NH1
M(D) is not proper, that is with fixed

endpoints (see the case in [3]), we set L ⊂ M to be any subarc of M satisfying

L ⊂M . Then for almost all L the Cauchy type integral 1
2πi

∫
M

f(ζ)
ζ−z dζ, z ∈ D, belongs

to NH1
L(D).

Proof. As proved in [1, 2, 3, 5, 6, 7], if f ∈ NH1
M(D),

f(z) = F+(z) + G(z) =
1

2πi

∫
M

f(ζ)dζ

ζ − z
+ G(z), z ∈ D, (3.1.1)

where the holomorphic function G(z) has analytic continuation across the arc M .
In the case (a) where the exhaustion is proper this means that there exists open,
bounded, connected set U containingM and satisfying ∂U∩M = ∂M , and a function
Ĝ ∈ H(D

⋃
U) such that Ĝ(z) = G(z), z ∈ D. Thus G is a holomorphic function in

Di for every domain Di, i ∈ N, of the Ahlfors regular exhaustion of D. In particular,
G ∈ E1(Di), i ∈ N. Therefore, G ∈ NH1

M(D). Since by hypothesis f ∈ NH1
M(D),

we conclude by equation (3.1.1) that the Cauchy type integral 1
2πi

∫
M

f(ζ)
ζ−z dζ, z ∈ D,

is an element of NH1
M(D). In case (b) where the exhaustion is not proper, (see

(2.7) in [3]) the Ahlfors regular exhaustion of D, DL,i, i ∈ N attached to the arc
L ⊂ L ⊂ M with fixed endpoints ∂L is generated the same way as the proper
exhaustion {Di}, i ∈ N of D. Hence, DL,i ⊂ Dj for some j ∈ N. Thus, G (which
has analytic continuation across M) is holomorphic in DL,i. This as done in case
(a) implies that G ∈ NH1

L(D). �
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Conclusion: In general whenever f(ζ), ζ ∈ ∂D, is an element in L1(∂D) it
follows from the proof of lemma 3.5 in [6] (see also [8, 9, 10]) that the Cauchy type
integral

1

2πi

∫
M

f(ζ)

ζ − z
dζ, z ∈ D (3.1.2)

belongs to Ep(Di), i ∈ N, 0 < p < 1 for every domain Di of the Ahlfors regular
exhaustion of D, and hence is an element of NHp

M(D), for all 0 < p < 1. Our result
states that if in addition the function f(ζ), ζ ∈ ∂D, is the boundary function of
f ∈ NH1

M(D) and the exhaustion of D is proper, then the above Cauchy integral
belongs to NH1

M(D). An analogous result holds in the case of nonproper Ahlfors-
regular exhaustion of D as described earlier.

3.2 The Extremal problem

Let T ∈ (NH1
M(D))′ and recall that(NH1

M(D))′ = lim
−→

φij(L
∞(∂Di)/H

∞(Di),Li),
where each Li, i ∈ N, denotes the quotient normed topology on L∞(∂Di)/H

∞(Di).
Furthermore note that T has at least one representative in each element of
(E1(Di))

′ ≡ {L∞(∂Di)/H
∞(Di)}, i ∈ I ⊂ N (see (§1)).

In this section we solve the classical extremal problem on each (E1(Di))
′, i ∈ I.

That is to find
‖Ti‖ = sup

f∈E1(Di), ‖f‖1≤1

|Ti(f)|. (?)

We show that under some certain conditions an extremal function (that is a function
f ∈ E1(Di), i ∈ I, that solves the above problem) exist, and furthermore we prove
that the supremum in (?) is attained.

Fix i ∈ I. From Theorem 2.2, the most general bounded linear functional on
E1(Di) can be expressed in the form

Ti(f) =
∫
∂Di

f(ζ)k(ζ)dζ, f ∈ E1(Di), (3.2.1)

where k ∈ L∞(∂Di). For a given kernel k ∈ L∞(∂Di) the typical extremal problem
is given by (?).

A function h ∈ L∞(∂Di) is said to be equivalent to the given kernel k (h ∼ k)
if h, k belong to the same coset L∞(∂Di)/H

∞(Di), that is h − k ∈ H∞(Di). Thus
h, k determine the same functional on E1(Di) if and only if h ∼ k. An application
of Lemma 2.3 gives

sup
f∈E1(Di), ‖f‖1≤1

∣∣∣∣∫
∂Di

f(ζ)k(ζ)dζ
∣∣∣∣ = min

g∈H∞(Di)
‖k − g‖∞. (3.2.2)

This is called the duality relation. It connects the original extremal problem with
the dual extremal problem. That is to find the function g ∈ H∞(Di) which is closest
to the kernel k ∈ L∞(∂Di). According to Lemma 2.3 the minimum is attained and
hence the dual extremal problem has a solution.

In general the original extremal problem (?) need not have a solution in E1(Di)
for all k ∈ L∞(∂Di). We will show the following
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Theorem 3.2. A solution of the extremal problem exists in E1(Di) if the given
kernel k is continuous, that is if k ∈ C(∂Di).

The following two lemmata are needed for the proof of the above theorem. The
first one was originally proved by F. and M. Riesz in the case of the unit disk. Here
we prove the analogous result for arbitrary Jordan domains.

Lemma 3.1. Suppose that D is a Jordan domain with rectifiable boundary ∂D and
µ a complex valued measure of bounded variation on ∂D. If∫

∂D
ζndµ(ζ) = 0, n = 0, 1, 2 . . . , (3.2.3)

then dµ = f(ζ)dζ, for some f ∈ E1(D).

Proof. First note that the series expansion of the Cauchy kernel shows that the

equation (3.2.3) is equivalent to the identical vanishing of
∫
∂D

dµ(ζ)

ζ − z
, outside ∂D.

Now we modify a part of the technique presented in the proof of [11], Theorem
10.4 (page 171). Since µ is a complex valued measure of bounded variation we can
replace the function G appeared there, with dµ◦φ, where φ is a conformal map from
the unit disk onto D. Then we follow the steps of the proof as in Theorem 10.4 of
[11], page 171, after equation (6), to conclude that

f(z) =
1

2πi

∫
∂D

dµ(ζ)

ζ − z
∈ E1(D).

Thus, f has nontangential limits almost everywhere on ∂D, with f ∈ L1(∂D) and

hence from [11], Theorem 10.4, (first part), we get f(z) =
1

2πi

∫
∂D

f(ζ)dζ

ζ − z
. Using

the uniqueness of the Cauchy representation with the integral vanishing identically
outside ∂D we conclude that dµ = f(ζ)dζ, f ∈ E1(D). �

For a proof of the next lemma see [11].

Lemma 3.2. Suppose X is a Banach space and S is a closed subspace of X. If S⊥

is the annihilator of S in X ′, then the space (X/S)′ is isometrically isomorphic to
S⊥. Furthermore, for each fixed x ∈ X,

max
ψ∈S⊥,‖ψ‖≤1

|ψ(x)| = inf
y∈S

‖x+ y‖,

where ‘ max’ indicates that the supremum is attained.

Now we proceed with the proof of Theorem 3.2.

Proof. Consider the subspace P ≤ C(∂Di) which is the uniform closure of the
polynomials in ζ ∈ C(∂Di). Each function f ∈ L1(∂Di) defines a continuous linear
functional on C(∂Di),

ψ(k) =
∫
∂Di

f(ζ)k(ζ)dζ, k ∈ C(∂Di), (3.2.4)
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with ‖ψ‖ = ‖f‖1. We shall describe P⊥ in (C(∂Di))
′. According to Riesz represen-

tation theorem ([4]) each element ψ in (C(∂Di))
′ has the form ψ(k) =

∫
∂Di

k(ζ)dµ(ζ)

for some measure µ of bounded variation. Furthermore, for ψ ∈ P⊥,

ψ(ζn) =
∫
∂Di

ζndµ(ζ) = 0, n = 0, 1, 2 . . . .

Thus by Lemma 3.1 dµ(ζ) = f(ζ)dζ for some function f ∈ E1(Di). Conversely,
every ψ of the form (3.2.4) with f ∈ E1(D), annihilates P (Lemma 2.1). Therefore
the annihilator of P consists of all continuous linear functionals on C(∂Di) of the
form (3.2.4) with f ∈ E1(Di). Hence Lemma 3.2 can be invoked to conclude that

sup
f∈E1(Di),‖f‖1≤1

∣∣∣∣∫
∂Di

f(ζ)k(ζ)dζ
∣∣∣∣ is attained. To see this observe that

sup
ψ∈P⊥,‖ψ‖≤1

|ψ(k)| = sup
f∈E1(Di),‖f‖1≤1

|
∫
∂Di

f(ζ)k(ζ)dζ|.

Hence the extremal problem in question has a solution and the supremum is attained.
�
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