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Abstract

Let M be an n-dimensional complete non-compact hypersurface in Rn+1

and assume that its mean curvature lies between two positive numbers. De-
note by ∆ and A the Laplacian operator and the second fundamental form of
M , respectively. In this paper, we show that if 3 ≤ n ≤ 5 and if Ind(∆+ |A|2)
is finite, then M has finitely many ends. We also show that if 2 ≤ n ≤ 5 and
if Ind(∆ + |A|2) = 0, then M has only one end.

1. Introduction

The well-known Bernstein theorem [1] states that the only complete minimal graphs
in R3 are planes. As a natural generalization, it was shown independently by Do
Carmo-Peng [3], Fischer Colbrie-Schoen [5], and Pogorelov [12] that a complete sta-
ble minimal surface in R3 must be a plane. Later Gulliver [6] and Fischer-Colbrie [4]
proved independently that a complete immersed minimal surface in R3 with finite
index is conformally equivalent to a compact Riemann surface with finitely punc-
tures and in particular, it must have finitely many ends. In the higher dimensional
case, Cao-Shen-Zhu [2] proved that a complete, immersed, stable minimal hypersur-
face Mn of Rn+1 with n ≥ 3 has only one end. Recall that a minimal submanifold
is stable if the second variation of its volume is always nonnegative for any nor-
mal variation with compact support. Recently, Li-Wang generalized the result of
Gulliver and Fischer-Coolbrie for finitely many ends to higher dimensional minimal
hypersurfaces in Euclidean space. They proved in [10] that a complete, immersed
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minimal hypersurface in Rn+1(n ≥ 3) with finite index must have finitely many
ends.

In this paper, we study the similar topological properties for hypersurfaces with
mean curvature bounded between two positive numbers. Before stating our results,
let us fix some notation.

Let M be a complete non-compact hypersurface in Rn+1. Denote by ∆ Laplacian
operator acting on functions on M . Let |A|2 be the square of the length of the
second fundamental form A of M . Let D1 ⊂ D2 ⊂ · · · be an increasing sequence of
exhausting compact domains in M . Denote by IndL(Di) the index of L ≡ ∆ + |A|2
on Di which is the number of negative eigenvalues of the eigenvalue problem

{
(∆ + |A|2)f + λf = 0 on Di,
f |∂Di

= 0.

Set

Ind(L) = lim
i→∞

IndL(Di).

Our first result is the following finiteness theorem for ends of complete hyper-
surfaces in Rn+1.

Theorem 1.2. Let Mn(3 ≤ n ≤ 5) be a complete, non-compact, immersed
hypersurface in Rn+1. Assume that there are two positive constants Hi, i = 1, 2,
such that the mean curvature H of M satisfies H1 ≤ |H| ≤ H2. If Ind(L) is finite,
then M has only finitely many ends.

We then prove the following

Theorem 1.3. Let Mn(2 ≤ n ≤ 5) be a complete, non-compact, immersed
hypersurface in Rn+1 and denote by H the mean curvature of M . Assume that
Ind(L) = 0. If there are two positive constants Hi, i = 1, 2, such that H1 ≤ |H| ≤ H2,
then M has only one end.

2. Proofs of the Results

Before proving the Theorems, we list some facts we need.

Lemma 2.1. ([9], [10]) Let M be a complete Riemannian manifold. Let H0
D(M)

be the space of bounded harmonic functions with finite energy and denote by H1(L2(M))
the first L2-cohomology group of M . Then the number of non-parabolic ends of M
is bounded from above by dim H0

D(M) ≤ dim H1(L2(M)) + 1.

We can estimate by using Lemma 2.1 the number of ends of a non-compact
hypersurface in Rn+1 if we can prove that all its ends are non-parabolic. It has been
shown by Cao-Shen-Zhu [2] that this is indeed the case if the hypersurface is minimal.
Now we want to show that this is also the case for non-compact hypersurfaces M
with mean curvature bounded between two positive numbers and finite Ind(L). In
order to see this, let us first prove the following
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Lemma 2.2. Let Mn ⊂ Rm be an oriented complete non-compact submanifold.
Assume that the mean curvature vector H of M satisfies |H| ≤ H0 < +∞. Then
each end of Mn has infinite volume.

Proof. We will use the methods in [2] and [14]. Take an arbitrary point p ∈ M ,
without loss of generality, we can assume that p = 0. Let X be the position vector
in Rn+1 and let ∆ be the Laplacian operator acting on functions on M . We have
from |H| ≤ H0 that

∆
(
|X|2M

)
= 2n(1+ < H,X >) (2.1)

≥ 2n(1− |H||X|)
≥ 2n(1−H0|X|).

Let d be the distance function on M from 0 ; then we have

d ≥ |X|M . (2.2)

For s > 0, let B(s) be the geodesic ball of M of radius s with center 0. If we denote
by n the outward unit normal of ∂B(s), then we have

∂|X|2

∂n
= 2 < X,n > (2.3)

≤ 2|X|M
≤ 2s.

Thus, we obtain by integrating (2.1) over B(s) and using the divergence theorem
that

2n(1−H0s)V (B(s)) ≤ 2n
∫

B(s)
(1−H0d) (2.4)

≤ 2n
∫

B(s)
(1−H0|X|)

≤
∫

B(s)
∆
(
|X|2M

)
=

∫
∂B(s)

∂|X|2

∂n

≤ 2
∫

∂B(s)
s

= 2sA(∂B(s)),

where A(∂B(s)) and V (B(s)) denote the area of ∂B(s) and the volume of B(s),
respectively.

Set V (s) = V (B(s)). Since

A(∂B(s)) =
∂

∂r
V (r) |r=s ,

we have from (2.4) that

s
∂

∂r
V (r) ≥ n(1−H0s)V (s) |r=s ,
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that is

V ′(s)

V (s)
≥ n

s
− nH0. (2.5)

Fix an arbitrary t > 0. For any s > t, we get by integrating the above inequality
from t to s that

log
V (s)

V (t)
≥ n log

s

t
− nH0(s− t),

which gives

V (s) ≥ V (t)
(
s

t

)n

e−nH0(s−t).

Therefore for any s > 0, we have

V (s) ≥ lim
t→0

{
V (t)

(
s

t

)n

e−nH0(s−t)
}

(2.6)

= ωns
ne−nH0s,

where ωn is the volume of the unit ball in Rn. In particular, we have

V ((B(q, 1)) ≥ ωne
−nH0 , ∀q ∈M, (2.7)

where B(q, r) is the open geodesic ball of radius r with center q. Let E be an end of
M and assume that E is a connected component of M \Ω for some compact Ω ⊂M .
If E has finite volume, choose a positive integer T such that

ωne
−nH0T > vol(E). (2.8)

Take a point x ∈ E and a y ∈ ∂E such that d(x, y) = d(x, ∂E) ≥ 2T . Let γ be a
minimizing geodesic from x to y; then B(γ(0), 1), B(γ(2), 1), ..., B(γ(2(T − 1)), 1)
are disjoint and are contained in E. Thus we have

vol(E) ≥
T−1∑
i=0

V (B(γ(2i), 1))

≥ Tωne
−nH0 ,

which contradicts to (2.8). This proves the infinity of vol(E).

Now we can prove the following

Lemma 2.3. Let Mn(n ≥ 2) be a complete immersed non-compact hypersurface
in Rn+1. Assume that Ind(L) < +∞. If the mean curvature H of M satisfies
0 < H1 ≤ |H| ≤ H2 < +∞, then each end of M is non-parabolic.

Proof. Let A denote the second fundamental form of M . Since Ind(L) is finite,
one can use the same arguments in [4] to prove that there exists a compact set Ω ⊂M
such that IndL(M \Ω) = 0. We can assume that Ω ⊂ B(p,R0) for some p ∈M and
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R0 > 0. The monotonicity of eigenvalues [4] implies that IndL(M \B(p,R0)) is also
zero. Thus for all compactly supported function φ ∈ H1,2(M \B(p,R0)), we have∫

M\B(p,R0)
φ2|A|2 ≤

∫
M\B(p,R0)

|∇φ|2. (2.9)

Take an end E of M . By choosing the above R0 properly, we can assume without
lose of generality that E is a connected component of M \B(p,R0). For x ∈M , let
d(x) = d(x, p) and for R sufficiently large, set ER = E ∩ B(p,R). Assume that fR

is the solution of the equation
∆fR = 0, on ER,
fR = 1, on ∂E,
fR = 0, on E ∩ ∂B(p,R).

The maximum principle implies that fR is uniformly bounded between 0 and 1.
Since

∫
ER
|∇fR|2 ≤

∫
E′

R
|∇f ′R|2 for R′ > R, there is a universal constant C such that

∫
ER

|∇fR|2 ≤ C.

Therefore by passing to a subsequence, still denoted by {fR}, we can find a harmonic
function f on E such that

lim
R→+∞

fR(x) = f(x), x ∈ E.

From the construction we have

f |∂E = 1. (2.10)

Furthermore, f satisfies the bounds

0 ≤ f ≤ 1.

Let us prove that f is non-constant, which will imply the non-parabolicity of E
(Cf. [7], [8], [9]). For fixed R > R1 > R0, let ψ be a non-negative cut-off function
satisfying the following conditions

ψ =

{
1 on ER \ ER1 ,
0 on ∂E,

and

|∇ψ|2 ≤ C1,

for some positive constant C1. We change the definition of ψfR to be zero at the
other ends of M and also in E \ER. This will be continuous and, properly choosing
fR and ψ, can be even C∞.
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Let λ1, ..., λn be the principal curvatures of M ; then we have

|A|2 =
n∑

i=1

λ2
i (2.11)

≥ 1

n

(
n∑

i=1

λi

)2

= n|H|2

≥ nH2
1 .

Using (2.9) and (2.11), integration by parts and the fact that fR is harmonic, we
get ∫

ER

(fRψ)2 ≤ 1

nH2
1

∫
ER

|∇(ψfR)|2

=
1

nH2
1

(∫
ER

|∇ψ|2f 2
R +

1

2

∫
ER

< ∇(ψ2),∇(f 2
R) >

+
∫

ER

ψ2|∇fR|2
)

=
1

nH2
1

∫
ER

|∇ψ|2f 2
R

≤ C1

nH2
1

∫
ER1

f 2
R.

Thus, for a fixed R1 satisfying R0 < R1 < R we have∫
ER\ER1

f 2
R ≤

C1

nH2
1

∫
ER1

f 2
R. (2.12)

Assume now that f is a constant. Then f must be identically 1 because of its
boundary condition. Taking R→∞ in (2.12), one gets

V (ER)− V (ER1) ≤
C1

nH2
1

V (ER1).

Since R > R1 is arbitrary, we conclude that E has finite volume. This contradicts
to Lemma 2.2 and completes the proof of Lemma 2.3.

Now we are ready to prove the main results in this paper.

Proof of Theorem 1.2. We will prove that M has finite first L2-Betti number, i.e.
dimH1(L2(M)) <∞, which, combining with Lemma 2.1 and Lemma 2.3 will imply
that M has finitely many ends. For any L2 harmonic 1-form ω on M , let h = |ω| be
the length of ω and denote by ω∗ be the vector field dual to ω. It follows from the
Bochner formula that

1

2
∆h2 = Ric(ω∗, ω∗) + |∇ω|2, (2.13)

where Ric is the Ricci curvature of M and ∇ω denotes the covariant derivative of
ω.
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By using the same arguments as in the proof of Theorem 5 in [10], we have

|∇ω|2 ≥ n|∇h|2

(n− 1)
. (2.14)

If we denote by e1, ..., en the orthonormal principal directions of M corresponding
to the principal curvatures λ1, ..., λn, then we have from the Gauss equation that

Ric(ei, ej) = 0, 1 ≤ i 6= j ≤ n,

and for any i,

Ric(ei, ei) =

(
n∑

k=1

λk

)
λi − λ2

i =

∑
k 6=i

λk

λi.

Observe thatλi +
1

2

n∑
k=1,k 6=i

λk

2

= λ2
i + λi

n∑
k=1,k 6=i

λk +
1

4

 n∑
k=1,k 6=i

λk

2

.

Hence

|A|2 + λi

n∑
k=1,k 6=i

λk =

n∑
k=1,k 6=i

λ2
k +

λi +
1

2

n∑
k=1,k 6=i

λk

2

− 1

4

 n∑
k=1,k 6=i

λk

2

.

But
n∑

k=1,k 6=i

λ2
k ≥

1

n− 1

 n∑
k=1,k 6=i

λk

2

.

It then follows from n ≤ 5 that

|A|2 + λi

n∑
k=1,k 6=i

λk

≥
n∑

k=1,k 6=i

λ2
k +

λi +
1

2

n∑
k=1,k 6=i

λk

2

+
(

1

n− 1
− 1

4

) n∑
k=1,k 6=i

λk

2

≥ 0.

Thus the Ricci curvature of M is bounded from below by −|A|2 and so we have

Ric(ω∗, ω∗) ≥ −|A|2|ω∗|2 (2.15)

= −|A|2h2.

Combining (2.13)-(2.15), we obtain

∆h ≥ −|A|2h+
|∇h|2

(n− 1)h
. (2.16)
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Since M has finite index, we know from the proof of Lemma 2.3 that the inequality
(2.9) holds. By choosing ψ = φh in (2.9) with φ being a non-negative compactly
supported function on M \B(p,R0), we arrive at∫

M\B(p,R0)
φ2|A|2h2 (2.17)

≤
∫

M\B(p,R0)
|∇φ|2h2 + 2

∫
M\B(p,R0)

φh < ∇φ,∇h >

+
∫

M\B(p,R0)
φ2|∇h|2

=
∫

M\B(p,R0)
|∇φ|2h2 −

∫
M\B(p,R0)

φ2h∆h.

Substituting (2.16) into (2.17), we get∫
M\B(p,R0)

φ2|∇h|2 ≤ (n− 1)
∫

M\B(p,R0)
|∇φ|2h2. (2.18)

The inequality (2.9) also implies that∫
M\B(p,R0)

φ2h2 ≤ 1

nH2
1

∫
M\B(p,R0)

φ2|A|2h2 (2.19)

≤ 1

nH2
1

∫
M\B(p,R0)

|∇(φh)|2

≤ 2

nH2
1

∫
M\B(p,R0)

(φ2|∇h|2 + |∇φ|2h2).

Thus we deduce from (2.18) and (2.19) that∫
M\B(p,R0)

φ2h2 ≤ 2

H2
1

∫
M\B(p,R0)

|∇φ|2h2. (2.20)

For R > R0 + 1, we take a φ satisfying the following conditions

φ =


0, on B(p,R0)
1, on B(p,R) \B(p,R0 + 1)
0, on M \B(p, 2R),

|∇φ| ≤
{
C3, on B(p,R0 + 1) \B(p,R0)
C3R

−1, on B(p, 2R) \B(p,R)

for some constant C3 > 0. It follows by substituting this φ into (2.20) that∫
B(p,R)\B(p,R0+1)

h2 ≤ C4

∫
B(p,R0+1)\B(p,R0)

h2

+C4R
−2
∫

B(p,2R)\B(p,R)
h2.

Since h ∈ L2, we obtain by taking R→∞ that∫
M\B(p,R0+1)

h2 ≤ C4

∫
B(p,R0+1)\B(p,R0)

h2. (2.21)
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Thus we have ∫
B(p,R0+2)

h2 =
∫

B(p,R0+1)
h2 +

∫
B(p,R0+2)\B(p,R0+1)

h2 (2.22)

≤ C5

∫
B(p,R0+1)

h2.

According to the Sobolev inequality in [11], we have for compactly supported func-
tions g on M , with ∇g ∈ L1(M),(∫

M
|g|

n
n−1

)n−1
n

≤ C6(n)
∫

M
(|∇g|+ |g||H|)

≤ C7(n,H2)
∫

M
(|∇g|+ |g|).

Let f be a compactly supported function on M . By replacing g by f
2(n−1)

n−2 , and
finally squaring the inequality obtained, we arrive at(∫

M
|f |

2n
n−2

)n−2
n

≤ C8(n,H2)
∫

M
(|∇f |2 + |f |2). (2.23)

From (2.16), we have

∆h ≥ −|A|2h.

Fix an arbitrary x ∈ M . For any constant a ≥ 1 and any compactly supported
Lipschitz function φ on B(x, 1), it follows that∫

B(x,1)
φ2|A|2h2a ≥ −

∫
B(x,1)

φ2h2a−1∆h. (2.24)

Integrating by parts, we have

−
∫

B(x,1)
φ2h2a−1∆h

= 2
∫

B(x,1)
φh2a−1 < ∇φ,∇h > +(2a− 1)

∫
B(x,1)

φ2h2a−2|∇h|2

≥ 2
∫

B(x,1)
φh2a−1 < ∇φ,∇h > +a

∫
B(x,1)

φ2h2a−2|∇h|2.

Thus, by using (2.23), (2.24) and the identity∫
B(x,1)

|∇(φha)|2 = a2
∫

B(x,1)
φ2h2a−2|∇h|2

+
∫

B(x,1)
|∇φ|2h2a + 2a

∫
B(x,1)

φh2a−1 < ∇φ,∇h >,

we get

a
∫

B(x,1)
φ2|A|2h2a +

∫
B(x,1)

|∇φ|2h2a (2.25)

≥
∫

B(x,1)
|∇(φha)|2

≥ C−1
8

(∫
B(x,1)

(φ2h2a)µ

) 1
µ

−
∫

B(x,1)
(φha)2,
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where µ = n
n−2

.
For ρ > 0, σ > 0, with ρ + σ ≤ 1, let us choose φ(r) to be the Lipschitz cut-off

function depending only on r which is the distance function to x, given by

φ =


0 on B(x, 1) \B(x, ρ+ σ)

ρ+σ−r
σ

on B(x, ρ+ σ) \B(x, ρ)
1 on B(x, ρ).

Setting S = maxr(x,y)≤1 |A|2(y) and substituting the above φ into (2.25), we have

(∫
B(x,ρ)

h2aµ

) 1
µ

≤
(∫

B(x,1)
(φ2h2a)µ

) 1
µ

≤ C8

(
aS + 1 +

1

σ2

) ∫
B(x,ρ+σ)

h2a.

Therefore,

(
C8

(
aS + 1 +

1

σ2

)) 1
2a

||h||2a,ρ+σ ≥ ||h||2aµ,ρ, (2.26)

where for b > 0, c > 0

||h||b,c =

(∫
B(x,c)

hb

) 1
b

.

Let us now choose the sequences of ai, ρi and σi such that

a0 = 1, a1 = µ, · · · , ai = µi, ...,

σ0 = 2−2, σ1 = 2−3, · · · , σi = 2−(2+i), ...,

ρ−1 = 1, ρ0 = 1− σ0, ρ1 = 1− σ0 − σ1, · · · , ρi = 1−
i∑

j=0

σj, · · · .

Applying (2.26) to a = ai, ρ = ρi and σ = σi, and iterating the inequality, we
deduce that

||h||2ai+1,ρi
≤

i∏
j=0

(
C8

(
ajS + 1 +

1

σ2
j

)) 1
2aj

||h||2,1

Set V = vol(B(x, 1
2
)). Since

lim
i→∞

V
−1

2ai+1 ||h||2ai+1,ρi

≥ lim
i→∞

V
−1

2ai+1 ||h||2ai+1, 1
2

= sup
B(x, 1

2
)

h,

we conclude that

sup
B(x, 1

2
)

h ≤
∞∏

j=0

(
C8

(
µjS + 1 + 16 · 4j

)) 1

2µj ||h||2,1. (2.27)
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Observe that

∞∏
j=0

(
C8

(
µjS + 1 + 16 · 4j

)) 1

2µj

≤
∞∏

j=0

(
C8(S + 17)4j

) 1

2µj

= (C8(S + 17))
µ

2(µ−1) · 2
µ

(µ−1)2

≡ C
1
2
9 .

Therefore, it holds that

h2(x) ≤ C9

∫
B(x,1)

h2.

Since x is arbitrary, we get

sup
B(p,R0+1)

h2 ≤ C ′
9

∫
B(p,R0+2)

h2. (2.28)

It follows by combining (2.22) and (2.28) that

sup
B(p,R0+1)

h2 ≤ C10

∫
B(p,R0+1)

h2, (2.29)

for some constant C10 > 0 which depends only on n, H1, H2 and supB(p,R0+2) |A|2.
Since (2.29) holds, by using the same arguments as in the final part of the proof
of Theorem 5 in [10], one can deduce that H1(L2(M)) is finite dimensional. This
completes the proof of Theorem 1.2.

Proof of Theorem 1.3. According to Lemma 2.1 and Lemma 2.3, it suffices
to show that there exists no non-trivial L2 harmonic 1-form on M . We will prove
this by contradiction. Thus suppose that θ is a non-trivial L2 harmonic 1-form on
M . Set u = |θ|. Observe that (2.15) still holds if n = 2. Thus, by using the same
arguments as in the proof of Theorem 1.1, we have

u∆u ≥ −|A|2u2 +
|∇u|2

(n− 1)
. (2.30)

Since Ind(L) = 0, it follows from the definition that∫
M
|∇ψ|2 ≥

∫
M
|A|2ψ2, (2.31)

for all compactly supported ψ ∈ H1,2(M). Fix a point p ∈ M . Let us choose
φ ∈ C∞

0 (M) satisfying
(i) 0 ≤ φ ≤ 1

(ii) φ ≡ 1 on B(p, r
2
), φ ≡ 0 on M \B(p, r)

(iii) ‖∇φ‖2 ≤ c
r2 , c= constant independent of r.
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By choosing ψ = φu in (2.31) and using (2.30) and the divergence theorem, we
obtain

0 ≤
∫

M
(|∇(φu)|2 − |A|2φ2u2)

=
∫

M

(
−φu∆(φu)− |A|2φ2u2

)
=

∫
M

(
−φu(u∆φ+ φ∆u+ 2 < ∇φ,∇u > −|A|2φ2u2

)
≤

∫
M

(
−φu2∆φ− φ2|∇u|2

n− 1
− 2φu < ∇φ,∇u >

)

=
∫

M

(
−φu2∆φ− φ2|∇u|2

n− 1
+

1

2
u2∆φ2

)

=
∫

M
u2|∇φ|2 −

∫
M

φ2|∇u|2

n− 1

≤ cr2∫
B(p,r)

u2 −
∫

M

φ2|∇u|2

n− 1
.

Therefore, we have

1

n− 1

∫
B(p, r

2
)
|∇u|2 ≤

∫
M

φ2|∇u|2

n− 1

≤ c

r2

∫
B(p,r)

u2.

Since u ∈ L2(M), we conclude by taking r →∞ that

|∇u| ≡ 0.

Thus u is constant. On the other hand, we have by substituting the above φ into
(2.31) that ∫

M
|A|2φ2u2 ≤

∫
M
u2|∇φ|2,

which implies ∫
B(p,r)

|A|2u2 ≤ 1

r2

∫
B(p, r

2
)
u2.

If u 6= 0, we get by letting r →∞ that |A| ≡ 0. Thus M is totally geodesic and so
is an affine n-plane. This clearly contradicts the fact that there exists no non-trivial
L2 harmonic 1-form on Rn. Thus u ≡ 0 and the proof of Theorem 1.3 is complete.
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