Completeness of certain function spaces

Leonhard Frerick

Stanislav Shkarin

Abstract

We give an example of a complete locally convex m-topology on the algebra of infinite differentiable functions on [0, 1] which is strictly coarser than the natural Fréchet-topology but finer than the topology of pointwise convergence. A similar construction works on the algebra of continuous functions on [0, 1]. Using this examples we can separate different notions of diffotopy and homotopy.

1 Introduction

Our notation concerning locally convex spaces is standard, we refer e.g. to [2] and [3]. Let \mathscr{K} be a family of compact subsets of [0, 1] which is closed with respect to finite unions. We introduce locally convex topologies $\theta_{\mathscr{K}}$ and $\tau_{\mathscr{K}}$ on $\mathscr{C}([0, 1])$ and $\mathscr{C}^{\infty}([0, 1])$, respectively. Namely, $\theta_{\mathscr{K}}$ is defined by the family of seminorms

$$p_K(f) := \sup_K |f|, \ K \in \mathscr{K},$$

and $\tau_{\mathscr{K}}$ is defined by the family of seminorms

$$p_{n,K} := \sup_{0 \le \nu \le n} p_K(f^{(\nu)}), \ K \in \mathscr{K}, n \in \mathbb{N}_0.$$

To force the topologies to be finer than the topology of pointwise convergence, we assume, in addition, that $\cup \mathscr{K} = [0, 1]$. Equipped with the pointwise multiplication, $(\mathscr{C}([0, 1]), \theta_{\mathscr{K}})$ and $(\mathscr{C}^{\infty}([0, 1]), \tau_{\mathscr{K}})$ are locally m-convex algebras, i.e. they admit a fundamental system of submultiplicative seminorms. $\mathscr{K} := \{[0, 1]\}$ leads to the natural topologies. We write $\mathscr{K}_1 \leq \mathscr{K}_2$ if for every $K_1 \in \mathscr{K}_1$ there exists $K_2 \in \mathscr{K}_2$ with $K_1 \subseteq K_2$. The following proposition is easy to prove.

Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 509-512

Proposition 1 The following statements are equivalent:

- 1. $\mathscr{K}_1 \leq \mathscr{K}_2$, 2. $\theta_{\mathscr{K}_1} \subseteq \theta_{\mathscr{K}_2}$,
- 3. $\tau_{\mathscr{K}_1} \subseteq \tau_{\mathscr{K}_2}$.

In particular, if $[0,1] \notin \mathscr{K}$ then $\theta_{\mathscr{K}}$ and $\tau_{\mathscr{K}}$ are strictly coarser than the natural topologies on $\mathscr{C}([0,1])$ and $\mathscr{C}^{\infty}([0,1])$, respectively.

2 Completeness

Let us denote \mathscr{K}_{seq} the system of all compact subsets of [0, 1] having only finitely many accumulation points and let us denote \mathscr{K}_{seq}^{0} the system of all compact subsets K of [0, 1] such that there is $\varepsilon > 0$ with $[0, \varepsilon] \cap K \in \mathscr{K}_{seq}$.

Theorem 2

- 1. If $\mathscr{K}_{seq} \leq \mathscr{K}$ then $(\mathscr{C}([0,1]), \theta_{\mathscr{K}})$ is complete.
- 2. If $\mathscr{K}_{seq}^0 \leq \mathscr{K}$ then $(\mathscr{C}^{\infty}([0,1]), \tau_{\mathscr{K}})$ is complete.

Proof. (1) Let $\theta := \theta_{\mathscr{K}}$ and let Φ be a Cauchy filter in $(\mathscr{C}([0,1]), \theta)$. Since $\cup \mathscr{K} = [0,1]$ this filter converges pointwise to a function f and for any $K \in \mathscr{K}$ its restriction to K converges in the Banach space $\mathscr{C}(K)$ to a function f_K with $f|_K = f_K$. In particular, $f|_K$ is continuous. Since $\mathscr{K}_{seq} \leq \mathscr{K}$ the function f is sequentially continuous, hence continuous. Therefore Φ converges in all the spaces $(\mathscr{C}([0,1]), p_K), K \in \mathscr{K}, \text{ to } f$ and this means precisely that it is θ -convergent to f. (2) Set $\tau := \tau_{\mathscr{K}}$ and let Φ be a Cauchy filter in $(\mathscr{C}^{\infty}([0,1]), \tau)$. Then $D : (\mathscr{C}^{\infty}([0,1]), \tau) \to (\mathscr{C}([0,1]), \theta)^{\mathbb{N}_0}, f \mapsto (f^{(n)})_{n \in \mathbb{N}_0}$ is an isomorphism onto its range. Using (1) we obtain that $D(\Phi)$ converges to some $F = (f_n)_{n \in \mathbb{N}_0}$. It remains to show that the continuous functions f_n are differentiable and $f'_n = f_{n+1}, n \in \mathbb{N}_0$. To this end, we use that $\mathscr{K}_{seq}^0 \leq \mathscr{K}$. Since $[\varepsilon, 1] \in \mathscr{K}$ for each $\varepsilon \in (0, 1)$, we see that f_n is differentiable on (0, 1] and its derivative is $f_{n+1}|_{(0,1]}$. Since f_{n+1} is continuous this shows that f_n is also differentiable at 0 and that $f'_n(0) = f_{n+1}(0)$.

Remark 3 If $\mathscr{K} = \mathscr{K}_{seq}$ then $(\mathscr{C}^{\infty}([0,1]), \tau_{\mathscr{K}})$ is not complete since D (taken from the preceding proof) has in this case a dense range. Indeed, let $f_1, \ldots, f_n \in$ $\mathscr{C}([0,1])$, and $K \in \mathscr{K}_{seq}$ be given. We may assume that K has only one accumation point, say x_0 . We choose a polynomial p with $p^{(\nu)}(x_0) = f_{\nu}(x_0), \ 0 \leq \nu \leq n$. For every $\varepsilon > 0$ there is a neighbourhood of x_0 on which $|p^{(\nu)} - f_{\nu}| < \varepsilon$. Outside this neighbourhood there are only finitely many points of K, hence we find a smooth function g which coincide with p on a neighbourhood U of x_0 and satisfies $g^{(\nu)} = f_{\nu}$ on $K \setminus U$.

Theorem 2 allows to construct an example separating two natural notions of diffotopy of homomorphisms between m-algebras (i.e. complete locally m-convex algebras), see also [1], 1.1. Let A and B be m-algebras. Two continuous homomorphisms $\varphi, \psi : A \to B$ are called diffotopic if there is a continuous homomorphism $\alpha : A \to \mathscr{C}^{\infty}([0,1], B)$ with $\alpha(\cdot)(0) = \varphi$ and $\alpha(\cdot)(1) = \psi$. Here $\mathscr{C}^{\infty}([0,1], B)$ is identified with the complete π tensor product $\mathscr{C}^{\infty}([0,1])\hat{\otimes}_{\pi}B$, where $\mathscr{C}^{\infty}([0,1])$ carries its natural Fréchet-topology. (Since $\mathscr{C}^{\infty}([0,1])$ is nuclear we can choose also the complete ε -tensor product)

Let us call φ and ψ pointwise difference if there is a family of continuous homomorphisms $\alpha_t : A \to B, t \in [0, 1]$ such that $\alpha_0 = \varphi, \ \alpha_1 = \psi$ and for any $a \in A$ the map $t \mapsto \alpha_t(a)$ from [0, 1] to B is smooth. Let $\mathscr{K} := \mathscr{K}^0_{seq}$ and $A := (\mathscr{C}^{\infty}[0, 1], \tau_{\mathscr{K}}), B := \mathbb{C}$.

We show that the evaluations $\delta_0 : A \to \mathbb{C}$ and $\delta_1 : A \to \mathbb{C}$ are not difference. Assume that there is a continuous homomorphism $\alpha : A \to \mathscr{C}^{\infty}([0,1])$ connecting δ_0 and δ_1 . Then $f \mapsto \alpha(f)(x)$ is a continuous character on A for every $x \in [0,1]$, hence there is $g(x) \in [0,1]$ with $\alpha(f)(x) = f(g(x))$. So $\alpha(f) = f \circ g$ and α is a composition operator. Applying α to f(x) = x we see that g is smooth. Since α connects δ_0 and δ_1 we obtain g(0) = 0 and g(1) = 1. The continuity of α ensures the existence of $K \in \mathscr{K}^0_{seq}, n \in \mathbb{N}$, and $C \geq 1$ such that

$$\sup_{x \in [0,1]} |f(g(x))| \le C \sup_{0 \le \nu \le n} \sup_{y \in K} |f^{(\nu)}(y)|$$

for every $f \in \mathscr{C}^{\infty}([0,1])$. But there is $x_0 \in [0,1]$ with $g(x_0) \notin K$. This contradicts the estimate above.

On the other hand, the homomorphism $\alpha : A \to \mathscr{C}^{\infty}([0,1]), f \mapsto f$ connects δ_0 and δ_1 . If we equip $\mathscr{C}^{\infty}([0,1])$ with the topology of pointwise convergence, α becomes continuous. Hence δ_0 and δ_1 are pointwise diffotopic.

Remark 4 i) With the obvious modifications in the definitions (replace smooth by continuous and $\mathscr{C}^{\infty}([0,1])\hat{\otimes}_{\pi}B$ by $\mathscr{C}([0,1])\hat{\otimes}_{\varepsilon}B)$ one can introduce also the concepts of homotopy and pointwise homotopy. Then δ_0 and δ_1 are not even homotopic. ii) If A is ultrabornogical (e.g. if A is Fréchet) and $\mathscr{C}^{\infty}([0,1])\hat{\otimes}_{\pi}B$ has a web (e.g. if B is Fréchet) then the closed graph theorem implies that both notions of diffotopy coincide. An analogous result holds in case of homotopy.

References

- J. Cuntz, Bivariante K-Theorie f
 ür lokalkonvexe Algebren und der bivariante Chern-Connes-Charakter, Docum. Math. J. DMV 2 (1997), 139-182, http://www.mathematik.uni-bielefeld.de/documenta
- [2] G. Köthe Topological Vector Spaces II, Springer-Verlag, New York-Berlin, 1979.
- [3] R. Meise, D. Vogt, Introduction to Functional Analysis, Oxford University Press, New York, 1997.

Fachbereich IV - Mathematik, Universität Trier, D-54286 Trier, Germany email:frerick@uni-trier.de

Department of Mathematics, King's College London, Strand London WC2R 2LS, UK email:stanislav.shkarin@kcl.ac.uk