Isomorphism of spaces of analytic functions on n-circular domains

P. Chalov V. Zahariuta

Abstract

The space $A(D)$ of all analytic functions in a complete n-circular domain D in $\mathbb{C}^{n}, n \geq 2$, is considered with a natural Fréchet topology. Some sufficient conditions for the isomorphism of such spaces are obtained in terms of certain subtle geometric characteristic of domains D. This investigation complements essentially the second author's result [8] on necessary geometric conditions of such isomorphisms.

1 Introduction

By $A(D)$ we denote the Fréchet space of all analytic functions in a domain $D \in \mathbb{C}^{n}$ with the natural topology of the uniform convergence on compact subsets of D. We study the isomorphic classification of the spaces $A(D)$ with D from the class \mathcal{R}^{n} of all complete logarithmically convex n-circular (Reinhardt) domains in $\mathbb{C}^{n}, n \geq 2$ (see also, $[1,7,8,10]$). We represent the system of monomials $z^{k}:=z_{1}^{k_{1}} \cdots \cdots z_{n}^{k_{n}}, k=$ $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$, which forms an absolute basis in each space $A(D), D \in \mathcal{R}^{n}$, as a sequence

$$
\begin{equation*}
e_{i}(z):=z^{k(i)}, \quad i \in \mathbb{N}, \tag{1}
\end{equation*}
$$

so that $|k(i)|:=k_{1}(i)+\ldots+k_{n}(i)$ does not decrease. The characteristic function of a domain $D \in \mathcal{R}^{n}: h_{D}(\theta):=\sup \left\{\sum_{\nu=1}^{n} \theta_{\nu} \ln \left|z_{\nu}\right|: z=\left(z_{\nu}\right) \in D\right\}$, defined on the simplex $\Sigma:=\left\{\theta=\left(\theta_{\nu}\right) \in \mathbb{R}_{+}^{n}: \sum_{k=1}^{n} \theta_{k}=1\right\}$, is convex (hence continuous) on the convex set $\pi(D):=\left\{\theta \in \Sigma: h_{D}(\theta)<\infty\right\}$. It turns out that invariant properties of spaces $A(D)$ depend essentially on the topological behavior of the set $\pi(D)$, for example, $A(D)$ is not isomorphic to $A(G)$ if $\pi(D)$ is relatively open in Σ but $\pi(G) \neq$ Σ is closed. In what follows we restrict ourselves to the class \mathcal{R}_{o}^{n} of domains D for
which $\pi(D)$ is relatively open in $\Sigma, \pi(D) \neq \Sigma$ (if $\pi(D)=\Sigma$, then $A(D) \simeq$ $\left.A\left(\mathbb{U}^{n}\right)[1,7]\right)$. In order to investigate the isomorphic classification for this class it is convenient to introduce the following geometric characteristic of those domains:

$$
\begin{equation*}
g(\alpha):=g_{D}(\alpha):=\left(\frac{n!\operatorname{mes} \Sigma}{\operatorname{mes} \pi(D)}\right)^{1 / n} \chi^{-1}(\alpha), \quad 0<\alpha \leq 1, \tag{2}
\end{equation*}
$$

where $\chi(t):=\frac{\operatorname{mes}\left\{\theta \in \pi(D): h_{D}(\theta) \geq t\right\}}{\operatorname{mes} \pi(D)}, t \geq t_{0}:=\min _{\theta \in \pi(D)}\left\{h_{D}(\theta)\right\}$ and mes is the Lebesgue measure on Σ.

Using this characteristic, the following necessary condition for the isomorphism of spaces from the class $\mathcal{A}_{o}^{n}:=\left\{A(D): D \in \mathcal{R}_{o}^{n}\right\}$ was obtained in [8].

Proposition 1. Given domains $D, \widetilde{D} \in \mathcal{R}_{o}^{n}$ and $A(D) \simeq A(\widetilde{D})$, then

$$
\exists c: \frac{1}{c} g_{D}(c \alpha) \leq g_{\widetilde{D}}(\alpha) \leq c g_{D}\left(\frac{\alpha}{c}\right), 0<\alpha \leq \frac{1}{c}
$$

As a corollary, it was proved in [8] that there is a continuum of pairwise nonisomorphic spaces in \mathcal{A}_{o}^{n}. Here we represent, in terms of the same characteristic (2), some sufficient conditions for the isomorphism of those spaces. A distinction must be made between two types of domains from \mathcal{A}_{o}^{n}, described by one of the conditions:

$$
\begin{equation*}
\text { (a) } \operatorname{mes}(\Sigma \backslash \pi(D))=0 ; \quad \text { (b) } \operatorname{mes}(\Sigma \backslash \pi(D))>0 \text {. } \tag{3}
\end{equation*}
$$

It turns out that the spaces $A(D)$ and $A(\widetilde{D})$ are not isomorphic for domains of different type (see, Proposition 5 and Remark 6).

Theorem 2. Suppose $D, \widetilde{D} \in \mathcal{R}_{0}^{n}, g(\alpha):=g_{D}(\alpha), \widetilde{g}(\alpha):=g_{\widetilde{D}}(\alpha)$ and $\sigma:[0, q]$ $\rightarrow[0,1], 0<q<1$, is the continuous increasing function, which is continuously differentiable on $(0, q]$ and satisfies the differential equation

$$
\begin{equation*}
\sigma^{\prime}(\alpha)=\left(\frac{\widetilde{g}(\sigma(\alpha))}{g(\alpha)}\right)^{n}, \quad 0<\alpha \leq q \tag{4}
\end{equation*}
$$

with the initial condition $\sigma(0)=0$. If there is a constant $L>0$ such that

$$
\begin{equation*}
\frac{1}{L} \leq \sigma^{\prime}(\alpha) \leq L, \quad 0<\alpha \leq q \tag{5}
\end{equation*}
$$

and both domains are of the same type (3), then $A(D)$ is isomorphic to $A(\widetilde{D})$; moreover, there is an isomorphism $T: A(D) \rightarrow A(\widehat{D})$ such that $T e_{i}=t_{i} e_{\rho(i)}, i \in$ \mathbb{N}, where e_{i} is the monomial basis (1), t_{i} a scalar sequence and $\rho: \mathbb{N} \rightarrow \mathbb{N} a$ bijection.

This theorem will be an immediate consequence of some more general result about the isomorphic classification on a certain class of Köthe spaces (see, Theorem 7 below).

2 Modeled Köthe spaces

Köthe space $K(A)$ defined by a Köthe matrix $A=\left(a_{i, p}\right)_{i, p \in \mathbb{N}}$ (see, e.g., [4]) is the Fréchet space of all sequences $x=\left(\xi_{i}\right)_{i \in \mathbb{N}}$ such that $|x|_{p}:=\sum_{i=1}^{\infty}\left|\xi_{i}\right| a_{i, p}<\infty$ for all $p \in \mathbb{N}$, equipped with the topology generated by these seminorms. An operator $T: K(A) \longrightarrow K(\widetilde{A})$ is called quasidiagonal (with respect to the canonical bases $\left.e_{i}:=\left(\delta_{i, j}\right)_{j=1}^{\infty}, i \in \mathbb{N}\right)$ if $T e_{i}=t_{i} e_{\sigma(i)}$, where $\left(t_{i}\right)$ is a scalar sequence, $\sigma: \mathbb{N} \rightarrow \mathbb{N}$; if T is an isomorphism we say that the spaces $K(A)$ and $K(\widetilde{A})$ are quasidiagonally isomorphic. Given $\left(a_{i}\right) \in \omega^{+}$(where ω^{+}is the set of all positive scalar sequences) and $\lambda=\left(\lambda_{i}\right), \lambda_{i} \geq 1$, the space

$$
\begin{equation*}
F(\lambda, a):=K\left(\exp \left(\min \left\{p, \lambda_{i}-\frac{1}{p}\right\} a_{i}\right)\right), \tag{6}
\end{equation*}
$$

is called power Köthe space of second type (in contrast to those spaces of first type $[8,9])$; it is Montel if and only if $a_{i} \rightarrow+\infty$.
A. Grothendieck considered ([3], II,p.122) the important special classes of Köthe spaces:

$$
\begin{equation*}
E_{\alpha}(a):=K\left(\exp \left(\alpha_{p} a_{i}\right)\right) \tag{7}
\end{equation*}
$$

where $a=\left(a_{i}\right)_{i \in \mathbb{N}} \in \omega^{+}, \alpha_{p} \uparrow \alpha,-\infty<\alpha \leq+\infty$. We will call them power Köthe spaces of finite type (if $\alpha<\infty$) or infinite type (if $\alpha<\infty$) (centers of Riesz scales in [5] or power series spaces in [6]).

The space (6) is quasidiagonally isomorphic to (i) the space (7) of finite type if λ_{i} is bounded, (ii) the space (7) of infinite type if $\lambda_{i} \rightarrow \infty$. Otherwise the space (6) is called mixed power Köthe space of second type; it is essentially mixed if it is not isomorphic quasidiagonally to a Cartesian product $E_{0}(b) \times E_{\infty}(c)$.

Proposition 3. ([9], Lemma 2.3). Let $\left(t_{i}\right)$ be a scalar sequence and $\rho: \mathbb{N} \rightarrow \mathbb{N}$ a bijection. Then the rule $T e_{i}=t_{i} e_{\rho(i)}, i \in \mathbb{N}$, defines a quasidiagonal isomorphism from a Montel space $F(\lambda, a)$ onto a space $F(\widetilde{\lambda}, \widetilde{a})$ if and only if the following assertions are valid: (a) $a_{i} \asymp \widetilde{a}_{\rho(i)}$, i.e. $a_{i} / c \leq \widetilde{a}_{\rho(i)} \leq c a_{i}, i \in \mathbb{N}$, with some constant $c>1$; (b) $-\Delta \leq \frac{\ln \left|t_{i}\right|}{a_{i}} \leq \Delta, i \in \mathbb{N}$, with some constant $\Delta>0$; (c) for any subsequence $I \subset \mathbb{N}$, such that $\lambda_{i} \rightarrow l \in[1, \infty], \tilde{\lambda}_{\rho(i)} \rightarrow \widetilde{l} \in[1, \infty]$, $\frac{\widetilde{a}_{\rho(i)}}{a_{i}} \rightarrow \gamma$ as $i \rightarrow \infty, i \in I$, either $l=\tilde{l}=\infty$ or both of l and \tilde{l} are finite and $\lim \frac{\ln \left|t_{i}\right|}{a_{i}}=l-\tilde{l} \gamma$.

The following fact (see, e.g., [9], Proposition 3.3) will be useful later.
Proposition 4. Let $m_{a}(t):=\left|\left\{k: a_{k} \leq t\right\}\right|, m_{b}(t):=\left|\left\{k: b_{k} \leq t\right\}\right|$ be the counting functions of non-decreasing positive sequences $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right)$. If $m_{a}(t) \leq$ $m_{b}(C t), t>0$, with some constant C, then $b_{k} \leq C a_{k}, k \in \mathbb{N}$.

With an eye to spaces from the class \mathcal{A}_{o}^{n} we deal with the following quite narrow subclass of power Köthe spaces of the second type dealing only with "thickly distributed" sequences $\lambda: \Phi^{(n)}(\varphi, g):=F\left((g(\varphi(i))),\left(i^{1 / n}\right)\right)$, where $g:(0,1] \rightarrow \mathbb{R}_{+}$is
a continuous function such that $\lim _{\xi \rightarrow 0} g(\xi)=\infty$ and $\varphi: \mathbb{N} \rightarrow(0,1]$ is a function with equidistributed values, that is

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{|\{i \leq t: c<\varphi(i) \leq d\}|}{t}=d-c, \quad 0 \leq c<d \leq 1 \tag{8}
\end{equation*}
$$

Given $D \in \mathcal{R}_{o}^{n}$ we divide the sequence $k(i)$ into two parts: the subsequence $l(i)=$ $k\left(j_{i}\right)$ covering the set $\left\{k \in \mathbb{Z}_{+}^{n}: \frac{k}{|k|} \in \pi(D)\right\}$ and the complementary subsequence $m(i)$. By Lemma 2 from [8], certain asymptotics for the counting functions of the sequences $|k(i)|,|l(i)|,|m(i)|$ hold; from them, using Proposition 4, one can derive the asymptotics:

$$
\begin{equation*}
|k(i)| \sim(n!i)^{1 / n},|l(i)| \sim\left(\frac{n!\operatorname{mes} \Sigma}{\operatorname{mes} \pi(D)} i\right)^{1 / n},|m(i)| \asymp i^{1 / d}, \quad i \rightarrow \infty \tag{9}
\end{equation*}
$$

where $d-1=\operatorname{dim}(\Sigma \backslash \pi(D))$. Define the function $\varphi=\varphi_{D}: \mathbb{N} \rightarrow(0,1]$ by the formula

$$
\begin{equation*}
\varphi(i):=\chi\left(h_{D}(\theta(i))\right), \quad i \in \mathbb{N} \tag{10}
\end{equation*}
$$

where $\theta(i):=\frac{l(i)}{|l(i)|}, i \in \mathbb{N}$. To prove that φ is a function with equidistributed values we use the asymptotics $(\tau \rightarrow \infty)$:

$$
\left|\left\{i:|l(i)| \leq \tau, \chi^{-1}(d) \leq h_{D}(\theta(i)) \leq \chi^{-1}(c)\right\}\right| \sim \frac{(d-c) \operatorname{mes} \pi(D) \tau^{n}}{n!\operatorname{mes} \Sigma}
$$

which follows from [8], Lemma 2. Then, taking into account (9), (10) and putting $t=\frac{\operatorname{mes} \pi(D) \tau^{n}}{n!\operatorname{mes} \Sigma}$, we arrive at (8).

A space $A(D) \in \mathcal{A}_{o}^{n}$ is represented as a direct sum of two closed basis subspaces $L(D):=\overline{\operatorname{span}}\left\{z^{l(i)}: i \in \mathbb{N}\right\}$ and $M(D):=\overline{\operatorname{span}}\left\{z^{m(i)}: i \in \mathbb{N}\right\}$. Due to the asymptotics (9) for $|m(i)|$, the space $M(D)$ is isomorphic to the space $E_{\infty}\left(i^{1 / d}\right)$. On the other hand, since by Proposition $3 F(\lambda, c a)=F(c \lambda, a), \quad c>0$, we obtain that the space $L(D)$ is isomorphic to the space $\Phi^{(n)}(\varphi, g)$ with φ and g defined in (10) and (2). Since the space $E_{\infty}\left(i^{1 / d}\right)$ is contained in $\Phi^{(n)}(\varphi, g)$ as a basic subspace if $d<n$ (what is the same, if mes $(\Sigma \backslash \pi(D))=0$) we obtain the following statement.

Proposition 5. Suppose $D \in \mathcal{R}_{o}^{n}$ and φ, g are defined in (10), (2). Then $A(D) \simeq$ $\Phi^{(n)}(\varphi, g)$ if $\operatorname{mes}(\Sigma \backslash \pi(D))=0$ and $A(D) \simeq \Phi^{(n)}(\varphi, g) \times E_{\infty}\left(\left(i^{\frac{1}{n}}\right)\right)$, otherwise.

Remark 6. The spaces $\Phi^{(n)}(\varphi, g) \times E_{\infty}\left(\left(i^{\frac{1}{n}}\right)\right)$ and $\Phi^{(n)}(\varphi, \tilde{g})$ are not quasidiagonally isomorphic for any functions g, \widetilde{g}, because the second space contains no basic subspace isomorphic to $E_{\infty}\left(\left(i^{\frac{1}{n}}\right)\right)$. In fact, these spaces are not isomorphic ([2]), but the proof of this fact is not the aim of the present paper.

Proposition 5 reduces Theorem 2 to the following more general result which will be proved in section 4.

Theorem 7. Suppose $g(\alpha), \widetilde{g}(\alpha)$ are two continuous functions on $(0,1]$ tending to ∞ as $\alpha \rightarrow 0 ; \varphi, \widetilde{\varphi}$ are mappings from \mathbb{N} onto (0,1$]$ with equidistributed values and $\sigma:[0, q] \rightarrow[0,1], 0<q<1$, is the continuous increasing function, which satisfies the differential equation (4) with the initial condition $\sigma(0)=0$. If the condition (5) holds, then the spaces $\Phi^{(n)}(\varphi, g)$ and $\Phi^{(n)}(\widetilde{\varphi}, \widetilde{g})$ are quasidiagonally isomorphic.

3 Main Lemma

Lemma 8. Let α, β be two functions from \mathbb{N} to (0,1$]$ with equidistributed values. Let $\sigma:[0,1] \rightarrow[0,1]$ be an increasing continuous function, continuously differentiable on $(0,1]$, such that $\sigma(0)=0, \sigma(1)=1$. Suppose that the condition (5) is fulfilled with $q=1$. Then there exists a bijection $\rho: \mathbb{N} \rightarrow \mathbb{N}$, satisfying the conditions: (i) $i \asymp \rho(i)$; (ii) $\beta\left(\rho\left(i_{k}\right)\right) \rightarrow \sigma(a), \frac{i_{k}}{\rho\left(i_{k}\right)} \rightarrow \sigma^{\prime}(a)$ for each $a \in(0,1]$ and any subsequence $\left(i_{k}\right)$ such that $\alpha\left(i_{k}\right) \rightarrow a$.

Proof. First we set $\alpha_{\nu}^{(s)}:=\frac{\nu}{2^{s}}, \beta_{\nu}^{(s)}:=\sigma\left(\alpha_{\nu}^{(s)}\right), \nu=\overline{0,2^{s}}, s \in \mathbb{Z}_{+}$. By (5) we have

$$
\begin{equation*}
\frac{1}{L} \leq d_{\nu}^{(s)}:=\frac{\beta_{\nu}^{(s)}-\beta_{\nu-1}^{(s)}}{\alpha_{\nu}^{(s)}-\alpha_{\nu-1}^{(s)}} \leq L, \quad \nu=\overline{1,2^{s}}, s \in \mathbb{N} . \tag{11}
\end{equation*}
$$

Take any sequence $\varepsilon_{s} \downarrow 0$ with $\varepsilon_{1} \leq 1 / 6$. Since the functions α and β are equidistributed, for each $s \in \mathbb{N}$ we find T_{s} such that for $t \geq T_{s}, \nu=\overline{1,2^{s}}, s \in \mathbb{N}$, the counting functions $n_{\nu}^{(s)}(t):=\left|\left\{i \leq t: \alpha_{\nu-1}^{(s)}<\alpha(i) \leq \alpha_{\nu}^{(s)}\right\}\right|, \quad m_{\nu}^{(s)}(t):=\mid\left\{i \leq t: \beta_{\nu-1}^{(s)}<\right.$ $\left.\beta(i) \leq \beta_{\nu}^{(s)}\right\} \mid$ satisfy the estimates

$$
\begin{align*}
t\left(1-\varepsilon_{s}\right)\left(\alpha_{\nu}^{(s)}-\alpha_{\nu-1}^{(s)}\right) & \leq n_{\nu}^{(s)}(t) \leq t\left(1+\varepsilon_{s}\right)\left(\alpha_{\nu}^{(s)}-\alpha_{\nu-1}^{(s)}\right), \\
t\left(1-\varepsilon_{s}\right)\left(\beta_{\nu}^{(s)}-\beta_{\nu-1}^{(s)}\right) & \leq m_{\nu}^{(s)}(t) \leq t\left(1+\varepsilon_{s}\right)\left(\beta_{\nu}^{(s)}-\beta_{\nu-1}^{(s)}\right) \tag{12}
\end{align*}
$$

Now introduce the sets $N_{\nu}^{(s)}=\left\{i \in \mathbb{N}: \alpha_{\nu-1}^{(s)}<\alpha(i) \leq \alpha_{\nu}^{(s)}, a_{s}<i \leq a_{s+1}\right\}, \nu=$ $\overline{1,2^{s-1}}, s \in \mathbb{Z}_{+}$, where the sequence a_{s} is chosen so that

$$
\begin{equation*}
a_{0}=0, \quad 2 L T_{s} \leq a_{s} \leq \frac{\varepsilon_{s} a_{s+1}}{8 L^{2}}, \quad s \in \mathbb{N}, \tag{13}
\end{equation*}
$$

and the sets $M_{\nu}^{(s)}=\left\{i \in \mathbb{N}: \beta_{\nu-1}^{(s)}<\beta(i) \leq \beta_{\nu}^{(s)}, b_{\zeta(\nu)}^{(s)}<i \leq b_{\nu}^{(s+1)}\right\}, \nu=\overline{1,2^{s-1}}$, $s \in \mathbb{Z}_{+}$where $\zeta(\nu)$ is equal to the integral part of $\frac{\nu+1}{2}$ and the parameters $b_{1}^{(0)}=$ $0, b_{\nu}^{(s)}, \nu=\overline{1,2^{s-1}}, s \in \mathbb{N}$, are chosen so that

$$
\begin{equation*}
\left|N_{\nu}^{(s)}\right|=\left|M_{\nu}^{(s)}\right|=: K(\nu, s), \nu=\overline{1,2^{s-1}}, s \in \mathbb{Z}_{+} \tag{14}
\end{equation*}
$$

Represent the sets $N_{\nu}^{(s)}$, $M_{\nu}^{(s)}$ in the form of increasing finite sequences: $i_{k}^{(\nu, s)}$ and $j_{k}^{(\nu, s)}$ with $k=\frac{\nu}{1, K(\nu, s)}$ and construct the bijection $\rho: \mathbb{N} \rightarrow \mathbb{N}$ by the rule $\rho\left(i_{k}^{(\nu, s)}\right):=j_{k}^{(\nu, s)}, k=\overline{1, K(\nu, s)}, \nu=\overline{1,2^{s-1}}, s \in \mathbb{Z}_{+}$. Let us show that this is
the desired mapping. Using (13), (14), (12), (11), one can easily check by induction that

$$
\begin{equation*}
b_{\nu}^{(s)} \geq \frac{a_{s}}{2 L}, \quad \nu=\overline{1,2^{s-1}}, \quad s \in \mathbb{N} . \tag{15}
\end{equation*}
$$

Let us check the conditions $(i),(i i)$. Setting $r_{s}:=\frac{1+\varepsilon_{s}}{1-2 \varepsilon_{s}}$, and applying (14), (12), we obtain the inequalities

$$
\begin{equation*}
\frac{a_{s}}{r_{s-1} d_{\zeta(\nu)}^{(s-1)}} \leq b_{\nu}^{(s)} \leq \frac{r_{s-1} a_{s}}{d_{\zeta(\nu)}^{(s-1)}}, \quad \nu=\overline{1,2^{s-1}}, \quad s \in \mathbb{N} . \tag{16}
\end{equation*}
$$

The counting functions for the finite sequences $i_{k}^{(\nu, s)}$ and $j_{k}^{(\nu, s)}, k=\overline{1, K(\nu, s)}$ can be written in the following form

$$
\begin{align*}
p_{\nu}^{(s)}(t) & =\max \left\{0, \min \left\{n_{\nu}^{(s)}(t)-n_{\nu}^{(s)}\left(a_{s}\right), K(\nu, s)\right\}\right\} \\
q_{\nu}^{(s)}(t) & =\max \left\{0, \min \left\{m_{\nu}^{(s)}(t)-m_{\nu}^{(s)}\left(b_{\zeta(\nu)}^{(s)}\right), K(\nu, s)\right\}\right\} \tag{17}
\end{align*}
$$

Due to (17), (12), (16), we obtain, for $a_{s}<t \leq a_{s+1}$, the estimates

$$
\begin{align*}
p_{\nu}^{(s)}(t) & \leq\left(\left(1+\varepsilon_{s}\right) t-\left(1-\varepsilon_{s}\right) a_{s}\right)\left(\alpha_{\nu}^{(s)}-\alpha_{\nu-1}^{(s)}\right) \\
& \leq\left(\frac{\left(1+\varepsilon_{s}\right) t}{d_{\nu}^{(s)}}-\frac{\left(1-\varepsilon_{s}\right) b_{\zeta(\nu)}^{(s)} d_{\zeta(\nu)}^{(s-1)}}{r_{s-1} d_{\nu}^{(s)}}\right)\left(\beta_{\nu}^{(s)}-\beta_{\nu-1}^{(s)}\right) \tag{18}\\
& \leq m_{\nu}^{(s)}\left(\frac{h_{\nu}^{(s)} t}{d_{\nu}^{(s)}}\right)-m_{\nu}^{(s)}\left(b_{\zeta(\nu)}^{(s)}\right)=q_{\nu}^{(s)}\left(\frac{h_{\nu}^{(s)} t}{d_{\nu}^{(s)}}\right),
\end{align*}
$$

where

$$
\begin{equation*}
h_{\nu}^{(s)}=\frac{\left(1+\varepsilon_{s}\right) r_{s-1}+2 L\left|\left(1-\varepsilon_{s}\right) d_{\zeta(\nu)}^{(s-1)}-\left(1+\varepsilon_{s}\right) r_{s-1} d_{\nu}^{(s)}\right|}{\left(1-\varepsilon_{s}\right) r_{s-1} d_{\nu}^{(s)}} . \tag{19}
\end{equation*}
$$

Analogously, we obtain the estimate:

$$
\begin{equation*}
q_{\nu}^{(s)}(t) \leq p_{\nu}^{(s)}\left(g_{\nu}^{(s)} d_{\nu}^{(s)} t\right), \tag{20}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{\nu}^{(s)}=\frac{\left(1+\varepsilon_{s}\right) r_{s-1} d_{\zeta(\nu)}^{(s-1)} d_{\nu}^{(s)}+2 L\left|\left(1-\varepsilon_{s}\right) d_{\nu}^{(s)}-\left(1+\varepsilon_{s}\right) r_{s-1} d_{\zeta(\nu)}^{(s-1)}\right|}{\left(1-\varepsilon_{s}\right) r_{s-1} d_{\zeta(\nu)}^{(s-1)}} . \tag{21}
\end{equation*}
$$

By Lemma 4 and (18), (20) we have

$$
\begin{equation*}
\frac{i_{k}^{(\nu, s)}}{g_{\nu}^{(s)}} \leq d_{\nu}^{(s)} j_{k}^{(\nu, s)} \leq h_{\nu}^{(s)} i_{k}^{(\nu, s)} \tag{22}
\end{equation*}
$$

for $k=\overline{1, K(\nu, s)} ; \quad \nu=\overline{1,2^{s-1}} ; s \in \mathbb{N}$. Taking into account (11), the definitions of the numbers $h_{\nu}^{(s)}$ and $g_{\nu}^{(s)}$ and (22), we obtain that there is a constant M independent of ν and s such that $p_{\nu}^{(s)}(t) \leq q_{\nu}^{(s)}(M t), q_{\nu}^{(s)}(t) \leq p_{\nu}^{(s)}(M t), t>0$.Thus, the mapping $\rho: \mathbb{N} \rightarrow \mathbb{N}$ is constructed so that the condition (i) is fulfilled.

It remains to check the condition (ii). Take any subsequence $\left(i_{n}\right)$ such that $\alpha\left(i_{n}\right) \rightarrow a \in(0,1]$. For every n we find $s=s(n), \nu=\nu(n)$ and $k=k(n)$ such
that $i_{n}=i_{k(n)}^{(\nu(n), s(n))} \in N_{\nu(n)}^{(s(n))}$. Then $\alpha_{\nu(n)-1}^{(s(n))}<\alpha\left(i_{n}\right) \leq \alpha_{\nu(n)}^{(s(n))}$ and $\alpha_{\nu(n)}^{(s(n))} \rightarrow a$.By the construction, $\rho\left(i_{n}\right) \in M_{\nu(n)}^{(s(n))}$, therefore $\beta_{\nu(n)-1}^{(s(n))}<\beta\left(\rho\left(i_{n}\right)\right) \leq \beta_{\nu(n)}^{(s(n))}$. Hence, by smoothness of σ, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \beta\left(\rho\left(i_{n}\right)\right)=\sigma(a), \lim _{n \rightarrow \infty} d_{\nu(n)}^{(s(n))}=\lim _{n \rightarrow \infty} d_{\varsigma(\nu(n))}^{(s(n)-1)}=\sigma^{\prime}(a) . \tag{23}
\end{equation*}
$$

Then, taking into account (19), (21), (23), we conclude that $\lim _{n \rightarrow \infty} h_{\nu(n)}^{(s(n))}=\lim _{n \rightarrow \infty} g_{\nu(n)}^{(s(n))}$ $=1$.Combining this with (22), (23), we obtain that $i_{k(n)}^{(\nu(n), s(n))} \sim \sigma^{\prime}(a) j_{k(n)}^{(\nu(n), s(n))}$. Hence the condition (ii) is also proved. The proof is complete.

4 Proof of Theorem 7

Lemma 9. Let $\varphi, \widetilde{\varphi}$ be two functions from \mathbb{N} to $(0,1]$ with equidistributed values and $g:(0,1] \rightarrow \mathbb{R}_{+}$a decreasing continuous function such that $g(\xi) \rightarrow+\infty$ as $\xi \rightarrow 0$. Then $\Phi^{(n)}(\varphi, g)=F\left(g(\varphi(i)),\left(i^{\frac{1}{n}}\right)\right)$ is quasidiagonally isomorphic to $\Phi^{(n)}(\widetilde{\varphi}, g)=$ $F\left(g(\widetilde{\varphi}(i)),\left(i^{\frac{1}{n}}\right)\right)$.

Proof. Assume that the mapping σ in Lemma 8 is the identity. Then the bijection ρ : $\mathbb{N} \rightarrow \mathbb{N}$, constructed there, satisfies the condition $i \asymp \rho(i)$ and for any subsequence i_{k} such that $\varphi\left(i_{k}\right) \rightarrow \alpha \neq 0$ the conditions $\widetilde{\varphi}\left(\rho\left(i_{k}\right)\right) \rightarrow \alpha$ and $i_{k} \sim \rho\left(i_{k}\right)$ hold. Then, by Proposition 3, the operator $T: \Phi^{(n)}(\varphi, g) \rightarrow \Phi^{(n)}(\widetilde{\varphi}, g)$ defined by $T e_{i}=e_{\rho(i)}$, $i \in \mathbb{N}$, is a required isomorphism.

Proof of Theorem 7. By Lemma 9, we assume that $\widetilde{\varphi}=\varphi$. Let us introduce the functions $G(\alpha):=\int_{0}^{\alpha} \frac{d \lambda}{(g(\lambda))^{n}}, \widetilde{G}(\alpha):=\int_{0}^{\alpha} \frac{d \lambda}{(\widetilde{g}(\lambda))^{n}}$ and choose $q \in(0,1)$ so that $G(q)<\widetilde{G}(1)$. Then $\widetilde{q}:=\widetilde{G}^{-1}(G(q))<1$ and the function $\sigma:=\widetilde{G}^{-1} \circ G:[0, q] \longrightarrow$ $[0, \widetilde{q}]$ is continuous on $[0, q]$, continuously differentiable on $(0, q]$ and satisfies the equation (4) and the condition $\sigma(0)=0$. We extend the function σ to a bijection of the interval $[0,1]$ onto itself preserving continuous differentiability and denote this mapping by the same symbol σ. The constructed mapping meets the conditions of Lemma 8, hence there is a bijection $\rho: \mathbb{N} \rightarrow \mathbb{N}$ satisfying the conditions (i), (ii) of this lemma. Applying Proposition 3, one can easily check that a required isomorphism can be realized as the quasidiagonal operator defined by $T e_{i}:=e_{\rho(i)}$ for $0<\varphi(i) \leq q$, and by $T e_{i}:=\left(\exp \left(g(\varphi(i)) i^{1 / n}-\widetilde{g}(\varphi(\rho(i)))\right)(\rho(i))^{1 / n}\right) e_{\rho(i)}$ for the rest of i 's.

References

[1] Aizenberg L.A. and Mityagin B.S., Spaces of analytic functions in multicircular domains. Sib. Mat. Zh. 1 (1960), 153-170 (Russian).
[2] Chalov P., Zahariuta V., The structure of basic subspaces for power Köthe spaces of the second type. Preprint.
[3] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16, Providence (1955).
[4] Meise R. and Vogt D., Introduction to Functional Analysis. Clarendon Press, Oxford, 1997.
[5] Mityagin B.S., Approximative dimension and bases in nuclear spaces. Usp. Mat. Nauk 16 (1961), 63-132 (Russian).
[6] Pietsch A., Nukleare Lokalkonvexe Räume. Akademie-Verlag, Berlin, (1965).
[7] Rolewicz S., On spaces of analytic functions, Studia Math. 21 (1962), 135-160.
[8] Zahariuta V.P., Generalized Mityagin invariants and a continuum of pairwise non-isomorphic spaces of analytic functions. Funct. Anal. and Appl. 11 (1977), 24-30 (Russian).
[9] Zahariuta V.P., Linear topological invariants and their applications to isomorphic classification of generalized power spaces. Tr. J. Math. 20 (1996), 237-288.
[10] Zahariuta V.P. and Shubarin M. A., On isomorphism of spaces of analytic functions in unbounded multicircular domains, in: Differential, Integral Equations and Complex Analysis, Elista, Kalmuk State University (1988), 34-44 (Russian).

Department of Mathematics, Rostov State University, 344090 Rostov-on-Don, Russia
Sabanci University, Orhanli, 34956 Tuzla/Istanbul, Turkey

