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Abstract

Let A be a bounded linear operator acting on a Hilbert space H. In [32],
A. Uchiyama proved that Weyl’s theorem holds for class A operators with the
additional condition that ker A|[TH] = 0 and he showed that every class A
operator whose Weyl spectrum equals to zero is compact and normal. In this
paper we show that Weyl’s theorem holds for algebraically class A operator
without the additional condition kerA|[TH] = 0. This leads as to show that a
class A operator whose Weyl spectrum equals to zero is always compact and
normal.

1 Introduction

Let B(H) and K(H) denote, respectively, the algebra of bounded linear operators
and the ideal of compact operators acting on infinite dimensionel separable Hilbert
space H . If A ∈ B(H) we shall write N(A) and R(T ) for the null space and the
range of A, respectively. Also, let α(A) := dimN(A), β(A) := dimN(A∗), and
let σ(A), σa(A) and π0(A) denote the spectrum, approximate point spectrum and
point spectrum of A, respectively. An operator A ∈ B(H) is called Fredholm if it
has closed range, finite dimensional null space, and its range has finite co-dimension.
The index of a Fredholm operator is given by

I(A) := α(A) − β(A).
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A is called Weyl if it is of index zero, and Browder if it is Fredholm of finite ascent and
descent, equivalently ([19], Theorem 7.9.3) if A is Fredholm and A−λ is invertible for
sufficiently small |λ| > 0, λ ∈ C. The essential spectrum σe(A), the Weyl spectrum
σw(A) and the Browder spectrum σb(A) of A are defined by [18, 19]

σe(A) = {λ ∈ C : A − λ is not Fredholm},

σw(A) = {λ ∈ C : A − λ is not Weyl},

σb(A) = {λ ∈ C : A − λ is not Browder},

respectively. Evidently

σe(A) ⊆ σw(A) ⊆ σb(A) = σe(A) ∪ accσ(A),

where we write accK for the accumulation points of K ⊆ C. If we write isoK =
K \ accK, then we let

π00(A) := {λ ∈ isoσA : 0 < α(A − λ) < ∞}.

We say that Weyl’s theorem holds for A if

σ(A) \ σw(A) = π00(A).

For any operator A in B(H) set, as usual, |A| = (A∗A)
1

2 and [A∗, A] = A∗A −
AA∗ = | A |2−| A∗ |2 (the self commutator of A), and consider the following standard
definitions: A is normal if A∗A = AA∗, hyponormal if A∗A−AA∗ ≥ 0, p-hyponormal
if (|A|2p − |A∗|2p) ≥ 0.

A is said to be log-hyponormal if A is invertible and satisfies the following equality

log(A∗A) ≥ log(AA∗).

It is known that invertible p-hyponormal operators are log-hyponormal operators
but the converse is not true [30]. However it is very interesting that we may
regards log-hyponormal operators as 0-hyponormal operators [30, 29]. The idea
of log-hyponormal operator is due to Ando [2] and the first paper in which log-
hyponormality appeared is [15]. See [1, 30, 29, 31] for properties of log-hyponormal
operators. We say that an operator A ∈ B(H) belongs to the class A if |A2| ≥ |A|2.
Class A was first introduced by Furuta-Ito-Yamazaki [16] as a subclass of paranormal
operators which includes the classes of p-hyponormal and log-hyponormal operators.
The following Theorem is one of the results associated with class A operator.

Theorem 1.1. [16] Every log-hyponormal operator is a class A operator.

In [33], H. Weyl proved that Weyl’s theorem holds for hermitian operators.
Weyl’s theorem has been extended from hermitian operators to hyponormal and
Toeplitz operators [7], and to several classes of operators including semi-normal
operators ([4, 5]). Recently W.Y.Lee [23] showed that Weyl’s theorem holds for
algebraically hyponormal operators. In [11] the authors showed that Weyl’s theo-
rem holds for algebraically p-hyponormal operators. A.Uchiyama [32] extended this
result to a class A operator with the additional condition ker A|[TH] = 0 . In this
paper we show that Uchiyama’s results remains holds without additional condition.
Stamplfli [27] proved that if A is hyponormal and σw(A) = 0 , Then A is compact
and normal. In this paper we extend Stampfli’s result to a class A operator.
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2 Main results

Let r(A) and W (A) denote the spectral radius and the numerical range of A, re-
spectively. It is well known that r(A) ≤ ||A|| and that W (A) is convex with convex
hull convσ(A) ⊆ W (A). A is said convexoid if convσ(A) = W (A).

Lemma 2.1. Let A be a class A operator and λ ∈ C. If σ(A) = {λ}, then A = λ.

Proof. We consider two cases:
Case 1 (λ = 0). Since A is class A operator, A is normaloid [1]. Therefore A = 0.
Case 2 (λ 6= 0). Here A is invertible, and since A is a class A operator, A−1

is also a class A operator [31]. Therefore A−1 is normaloid. On the other hand,
σ(A−1) = { 1

λ
}. Hence ||A||||A−1|| = |λ|| 1

λ
| = 1. It follows from ([24], Lemma 3) that

A is convexoid. Hence W (A) = {λ} and A = λ. �

The following lemma is well known.

Lemma 2.2. [32] Let A ∈ B(H) be class A operator. If λ ∈ σp(A) − {0}, then
λ ∈ σp(A

∗)).

We say that A is algebraically class A operator if there exists a nonconstant
complex polynomial p such that p(A) is a class A operator.

Lemma 2.3. Let A be a quasinilpotent algebraically class A operator. Then A is
nilpotent.

Proof. Assume that p(A) is class A operator for some nonconstant polynomial p.
Since σ(p(A)) = p(σ(A)), the operator p(A) − p(0) is quasinilpotent. Thus Lemma
2.1 would imply that

cAm(A − λ1)...(A − λn) ≡ p(A) − p(0) = 0,

where m ≥ 1. Since A − λi is invertible for every λ 6= 0, we must have Am = 0. �

Lemma 2.4. Let A be algebraically class A operator. Then A is isoloid.

Proof. Let λ ∈ isoσ(A) and let

P :=
1

2πi

∫

∂D
(µ − T )−1dµ

be the associated Riesz idempotent, where D is a closed disk centered at λ which
contains no other points of σ(A). We can then represent A as the direct sum

A =

[

A1 0
0 A2

]

, where σ(A1) = {λ} andσ(A2) = σ(A) \ {λ}.

Since A is algebraically class A operator, p(A) is a class A operator for some non-
constant polynomial p. Since σ(A1) = λ, we must have

σ(p(A1)) = p(σ(A1)) = {p(λ)}.

Therefore p(A1)−p(λ) is quasinilpotent. Since p(A1) is a class A operator, it follows
from lemma 2.2 that p(A1)− p(λ) = 0. Put q(z) := p(z)− p(λ). Then q(A1) = 0, so
A1 is algebraically class A operator. Since A1−λ is quasinilpotent and algebraically
class A operator, it follows from Lemma 2.3 that A1 − λ is nilpotent. Therefore
λ ∈ π0(A1), and hence λ ∈ π0(A). This shows that A is isoloid. �
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Lemma 2.5. Let A ∈ B(H) be class A operator. Then A has SVEP.

Proof. If A is class A operator, then |A|2 ≤ |A2|. By the Schwartz inequality,

||Ax||2 = (|A|2x; x) ≤ (|A2|; x) ≤ |||A2|x||x|| = ||A2x||||x||

for every x ∈ H . Thus
||Ax||2 ≤ ||A2x||

for each unit vector x ∈ H . If x ∈ N(A2), then

||Ax||2 ≤ ||A2x|| = 0

and x ∈ N(A). Since the non-zero eigenvalues of a class A operator are normal
eigenvalues of A by Lemma 2.2, if 0 6= σp(A) and (A − λ)2x = 0, then

(A − λ)(A − λ)x = 0 = (A − λ)∗(A − λ)x

and
||(A − λ)x||2 = ((A − λ)∗(A − λ)x, x) = 0.

Hence, if A is a class A operator, then asc(A − λ) = 2. Since operators with finite
ascent have SVEP [21], A has SVEP. This completes the proof. �

Theorem 2.1. Let A be an algebraically class A operator. Then Weyl’s theorem
holds for A

Proof. Assume that λ ∈ σ(A) \ σw(A). Then A − λ is Weyl and not invertible.
We claim that λ ∈ ∂σ(A). Assume to the contrary that λ is an interior point of
σ(A). Then there exists a neigborhood U of λ such that dim(A − µ) > 0 for all
µ ∈ U . It follows from ([12], Theorem 10) that A does not have SVEP. On the
other hand, since p(A) is class A operator for nonconstant polynomial p, it follows
from Lemma 2.5 that p(A) has SVEP. Hence by ([22], Theorem 3.3.9), A has SVEP,
a contradiction. Therefore λ ∈ ∂σ(A). Conversely, assume that λ ∈ π00(A), with
associated Riesz idempotent

P :=
1

2πi

∫

∂D
(µ − T )−1dµ,

where D is a closed disk centered at λ which contains no other points of σ(A). We
can then represent A as the direct sum

A =

[

A1 0
0 A2

]

, where σ(A1) = {λ} andσ(A2) = σ(A) \ {λ}.

We consider two cases:
Case 1 (λ = 0). Here A1 is algebraically class A and quasinilpotent. Hence it

follows from Lemma 2.3 that A1 is nilpotent. We claim that dimR(P ) < ∞, where
R(P ) is the range of P . For, if N(A1) were infinite dimensional, then 0 6∈ π00(A),
a contradiction. Therefore A1 is a finite dimensional operator, therefore Weyl. But
since A2 is invertible, we can conclude that A is Weyl. Thus 0 ∈ σ(A) \ σw(A).

Case 2 (λ 6= 0): As in the proof of Lemma 2.3, A1 − λ is nilpotent. Since
λ ∈ π00(A), A1 − λ is finite demensionel operator. Therefore A1 − λ is Weyl. Since
A2 − λ is invertible, A − λ is Weyl and Weyl’s theorem holds for A. �
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As a consequence of the above theorem, we obtain
(1) Every Algebraically hyponormal operator satisfies Weyl’s theorem. In par-

ticular Weyl’s theorem holds for hyponormal operators.
(2) Every Algebraically log-hyponormal operator satisfies Weyl’s theorem. In

particular Weyl’s theorem holds for log-hyponormal operators.
(3) Every Algebraically p-hyponormal operator satisfies Weyl’s theorem. In par-

ticular Weyl’s theorem holds for p-hyponormal operators.

Theorem 2.2. Let A ∈ B(H) be algebraically class A operator. Then Weyl’s theo-
rem holds for f(A) for every function f analytic on a neighborhood of σ(A).

Proof. We prove that f(σw(A)) = σw(f(A)) for every function f analytic on a
neighborhood of σ(A). Let f be an analytic function on a neighborhood of σ(A).
Since σw(f(A)) ⊆ f(σw(A)) with no restrection on A, it is sufficiant to prove that
f(σw(A)) ⊆ σw(f(A)). Assume that λ 6∈ σw(f(A)). Then f(A) − λ is Weyl and

f(A) − λ = c(A − α1)(A − α2)...(A − αn)g(A), (2.1)

where c, α1, α2, ...αn ∈ C and g(A) is invertible. Since the operators on the right-
hand side of (2.1) commute, every A−αi is Fredholm. Since A is algebraically class
A operator, A has SVEP by Lemma 2.5. It follows from ([3], Theorem 2.6) that
i(A − αi) ≤ 0 for each i = 1, 2, ..., n. Hence λ 6∈ f(σw(A)), and so f(σw(A)) =
σw(f(A)).

It is known [23], that if A is isoloid then

f(σ(A)) \ π00(A) = σ(f(A)) \ π00(A)

for every analytic function on a neighborhood of σ(A). Since A is isoloid by Lemma
2.3 and Weyl’s theorem holds for f(A),

σ(f(A)) \ π00(A) = f(σ(A)) \ π00(A) = f(σw(A)) = σw(f(A)).

This completes the proof. �

Theorem 2.3. Let A ∈ B(H) be a class A operator and let σw(A) = 0. Then A is
compact and normal.

Proof. Since Weyl’s theorem holds for A by the above theorem and σw(A) = 0
and since a class A operator is normaloid, every non zero spectrum of A is an
isolated normal eigenvalue with finite dimensional eigenspace, which reduces A.
Hence σ(A) \ σw(A) is a finite set or a countable infinity set whose accumulation
point is only zero. Let σ(A) \ σw(A) = {λn} with |λ1| ≥ |λ2| ≥ ... ≥ 0 and let En

be the orthogonal projection onto ker(A − λn). Then AEn = EnA = λnEn and
EnEm = 0 if n 6= m. Put E = ⊕nEn. Then

A = ⊕nλnEn ⊕ A|(1−E)H

and σ(A|(1−E)H) = {0}. Since A|(1−E)H also a class A operator because EH is a
reducing subspace of A, A|(1−E)H = 0 by Lemma 2.1. This implies that A = ⊕nλnEn

is normal. The compactness of A follows from the finiteness or the countability of
{λn}n satisfying |λn| ↓ 0 and each En is a finite rank projection. �
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As a consequence of the above theorem, we obtain

Corollary 2.1. Let A ∈ B(H). Then
(1) Every class A operator with σw(A) = 0 is compact and normal.
(2) Every log-hyponormal operator with σw(A) = 0 is compact and normal.
(3) Every p-hyponormal operator with σw(A) = 0 is compact and normal.
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