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Abstract

Let A be a bounded linear operator acting on a Hilbert space H. In [32],
A. Uchiyama proved that Weyl’s theorem holds for class A operators with the
additional condition that ker Aljr) = 0 and he showed that every class A
operator whose Weyl spectrum equals to zero is compact and normal. In this
paper we show that Weyl’s theorem holds for algebraically class A operator
without the additional condition ker A\[T m) = 0. This leads as to show that a
class A operator whose Weyl spectrum equals to zero is always compact and
normal.

1 Introduction

Let B(H) and K(H) denote, respectively, the algebra of bounded linear operators
and the ideal of compact operators acting on infinite dimensionel separable Hilbert
space H. If A € B(H) we shall write N(A) and R(7T) for the null space and the
range of A, respectively. Also, let a(A) := dimN(A), B(A) := dimN(A*), and
let 0(A), 0,(A) and m(A) denote the spectrum, approximate point spectrum and
point spectrum of A, respectively. An operator A € B(H) is called Fredholm if it
has closed range, finite dimensional null space, and its range has finite co-dimension.
The index of a Fredholm operator is given by

I(A) := a(A) — B(A).
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Ais called Weyl if it is of index zero, and Browder if it is Fredholm of finite ascent and
descent, equivalently ([19], Theorem 7.9.3) if A is Fredholm and A—\ is invertible for
sufficiently small [A\| > 0, A € C. The essential spectrum o.(A), the Weyl spectrum
ow(A) and the Browder spectrum o,(A) of A are defined by [18, 19]

0.(A) ={A e C: A— \is not Fredholm},
ow(A)={A e C: A— X is not Weyl},
op(A) ={A e C: A— \is not Browder},
respectively. Evidently

0e(A) Coy(A) Cop(A) = 0.(A) Uacca(A),

where we write accK for the accumulation points of K C C. If we write isoK =
K \ accK, then we let

moo(A) :={\ € isocA: 0 < alA—\) <oo}.
We say that Weyl’s theorem holds for A if
o(A)\ ow(A) = meo(A).

For any operator A in B(H) set, as usual, |A| = (A*A)% and [A*, A] = A*A —
AA* = | A |°—| A* |? (the self commutator of A), and consider the following standard
definitions: A is normal if A*A = AA*, hyponormal if A*A—AA* > 0, p-hyponormal
if (|A]* —|A*[*) > 0.

Ais said to be log-hyponormal if A is invertible and satisfies the following equality

log(A*A) > log(AA®).

It is known that invertible p-hyponormal operators are [og-hyponormal operators
but the converse is not true [30]. However it is very interesting that we may
regards log-hyponormal operators as 0-hyponormal operators [30, 29]. The idea
of log-hyponormal operator is due to Ando [2] and the first paper in which log-
hyponormality appeared is [15]. See [1, 30, 29, 31] for properties of log-hyponormal
operators. We say that an operator A € B(H) belongs to the class A if |A?| > | A|2.
Class A was first introduced by Furuta-Ito-Yamazaki [16] as a subclass of paranormal
operators which includes the classes of p-hyponormal and log-hyponormal operators.
The following Theorem is one of the results associated with class A operator.

Theorem 1.1. [16] Every log-hyponormal operator is a class A operator.

In [33], H. Weyl proved that Weyl’s theorem holds for hermitian operators.
Weyl’s theorem has been extended from hermitian operators to hyponormal and
Toeplitz operators [7], and to several classes of operators including semi-normal
operators ([4, 5]). Recently W.Y.Lee [23] showed that Weyl’s theorem holds for
algebraically hyponormal operators. In [11] the authors showed that Weyl’s theo-
rem holds for algebraically p-hyponormal operators. A.Uchiyama [32] extended this
result to a class A operator with the additional condition ker Aljrg = 0 . In this
paper we show that Uchiyama’s results remains holds without additional condition.
Stamplfli [27] proved that if A is hyponormal and o,(A) = 0, Then A is compact
and normal. In this paper we extend Stampfli’s result to a class A operator.
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2 Main results

Let r(A) and W(A) denote the spectral radius and the numerical range of A, re-
spectively. It is well known that r(A) < ||A|| and that W (A) is convex with convex

hull convo(A) C W(A). A is said convexoid if convo(A) = W(A).
Lemma 2.1. Let A be a class A operator and A € C. If 0(A) = {\}, then A = \.
Proof. We consider two cases:
Case 1 (A =0). Since A is class A operator, A is normaloid [1]. Therefore A = 0.
Case 2 (A # 0). Here A is invertible, and since A is a class A operator, A~!
is also a class A operator [31]. Therefore A~! is normaloid. On the other hand,
o(A7Y) = {3}. Hence ||A[||[|[A7}|] = |A]|3] = 1. It follows from ([24], Lemma 3) that
A is convexoid. Hence W(A) = {A\} and A = \. [

The following lemma is well known.

Lemma 2.2. [32] Let A € B(H) be class A operator. If X € o,(A) — {0}, then
A € 0,(AY)).

We say that A is algebraically class A operator if there exists a nonconstant
complex polynomial p such that p(A) is a class A operator.

Lemma 2.3. Let A be a quasinilpotent algebraically class A operator. Then A is
nilpotent.

Proof. Assume that p(A) is class A operator for some nonconstant polynomial p.
Since o(p(A)) = p(a(A)), the operator p(A) — p(0) is quasinilpotent. Thus Lemma
2.1 would imply that

cA™(A = X\)...(A=X\,) =p(A4) —p(0) =0,

where m > 1. Since A — ); is invertible for every A # 0, we must have A™ =0. =

Lemma 2.4. Let A be algebraically class A operator. Then A is isoloid.

Proof. Let A € isoo(A) and let
1
= — —T)d
2mi /(’)D(’u ) dn

be the associated Riesz idempotent, where D is a closed disk centered at A which
contains no other points of o(A). We can then represent A as the direct sum

P

Al 0
A= l 0 A, ] , whereo(A;) = {A\}ando(Ay) = o(A) \ {\}.

Since A is algebraically class A operator, p(A) is a class A operator for some non-
constant polynomial p. Since o(A;) = A, we must have

o(p(Ar)) = plo(Ar)) = {p(N)}-

Therefore p(A;) —p(\) is quasinilpotent. Since p(A;) is a class A operator, it follows
from lemma 2.2 that p(A;) —p(A\) = 0. Put ¢(z) := p(z) — p(\). Then q(A;) =0, so
Aj is algebraically class A operator. Since A; — A is quasinilpotent and algebraically
class A operator, it follows from Lemma 2.3 that A; — X\ is nilpotent. Therefore
A € mo(Ay), and hence A € mo(A). This shows that A is isoloid. ]
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Lemma 2.5. Let A € B(H) be class A operator. Then A has SVEP.
Proof. If A is class A operator, then |A]? < |A?|. By the Schwartz inequality,
1A2||* = (|A]*z; 2) < (1A% 2) < [||A%2]l2]| = ||A%]]]]«|]
for every x € H. Thus
| A||* < || A% ]|
for each unit vector z € H. If © € N(A?), then
| Az||* < [|A%]| = 0

and x € N(A). Since the non-zero eigenvalues of a class A operator are normal
eigenvalues of A by Lemma 2.2, if 0 # 0,(A) and (A — \)%z = 0, then

(A= N(A-Nz=0=(A—N"(A- Nz

and
(A= N)z|]* = (A= \)*(A = Nz, z) = 0.

Hence, if A is a class A operator, then asc(A — \) = 2. Since operators with finite
ascent have SVEP [21], A has SVEP. This completes the proof. ]

Theorem 2.1. Let A be an algebraically class A operator. Then Weyl’s theorem
holds for A

Proof. Assume that A € o(A) \ 0,(A). Then A — X\ is Weyl and not invertible.
We claim that A € do(A). Assume to the contrary that A is an interior point of
o(A). Then there exists a neigborhood U of A such that dim(A — ) > 0 for all
p € U. It follows from ([12], Theorem 10) that A does not have SVEP. On the
other hand, since p(A) is class A operator for nonconstant polynomial p, it follows
from Lemma 2.5 that p(A) has SVEP. Hence by (][22], Theorem 3.3.9), A has SVEP,
a contradiction. Therefore A € do(A). Conversely, assume that A\ € my(A), with
associated Riesz idempotent

1
=— —T)'d
— | (=1 ap,

where D is a closed disk centered at A which contains no other points of o(A). We
can then represent A as the direct sum

P

A= l 641 ?42 1 , where o(A1) = {A\}ando(As) = o(A) \ {\}.
We consider two cases:

Case 1 (A = 0). Here A; is algebraically class A and quasinilpotent. Hence it
follows from Lemma 2.3 that A, is nilpotent. We claim that dimR(P) < oo, where
R(P) is the range of P. For, if N(A;) were infinite dimensional, then 0 ¢ mo(A),
a contradiction. Therefore A; is a finite dimensional operator, therefore Weyl. But
since A, is invertible, we can conclude that A is Weyl. Thus 0 € o(A) \ 0, (A).

Case 2 (A # 0): As in the proof of Lemma 2.3, A; — X is nilpotent. Since
A € mo(A), Ay — A is finite demensionel operator. Therefore A; — A is Weyl. Since
Ay — X is invertible, A — X\ is Weyl and Weyl’s theorem holds for A. [
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As a consequence of the above theorem, we obtain

(1) Every Algebraically hyponormal operator satisfies Weyl’s theorem. In par-
ticular Weyl’s theorem holds for hyponormal operators.

(2) Every Algebraically log-hyponormal operator satisfies Weyl’s theorem. In
particular Weyl’s theorem holds for [og-hyponormal operators.

(3) Every Algebraically p-hyponormal operator satisfies Weyl’s theorem. In par-
ticular Weyl’s theorem holds for p-hyponormal operators.

Theorem 2.2. Let A € B(H) be algebraically class A operator. Then Weyl’s theo-
rem holds for f(A) for every function f analytic on a neighborhood of o(A).

Proof. We prove that f(o,(A)) = ou(f(A)) for every function f analytic on a
neighborhood of o(A). Let f be an analytic function on a neighborhood of o(A).
Since 0,(f(A)) C f(ow(A)) with no restrection on A, it is sufficiant to prove that
flow(A)) Cow(f(A)). Assume that A & 0, (f(A)). Then f(A) — X is Weyl and

F(A) = X = oA = a1)(A - az)..(A — an)g(A), (2.1)

where ¢, oy, as, ...a, € C and g(A) is invertible. Since the operators on the right-
hand side of (2.1) commute, every A — «; is Fredholm. Since A is algebraically class
A operator, A has SVEP by Lemma 2.5. It follows from ([3], Theorem 2.6) that
i(A— ;) <0foreachi=12,..,n Hence A\ & f(o,(A)), and so f(o,(A)) =
Ful f(A)).

It is known [23], that if A is isoloid then

f(a(A)) \ moo(A) = o(f(A)) \ moo(A)

for every analytic function on a neighborhood of o(A). Since A is isoloid by Lemma
2.3 and Weyl’s theorem holds for f(A),

o(f(A) \ mo(A) = f(0(A)) \ moo(A) = f(ow(A)) = o (f(A)).
This completes the proof. [ |

Theorem 2.3. Let A € B(H) be a class A operator and let o,,(A) = 0. Then A is
compact and normal.

Proof. Since Weyl’s theorem holds for A by the above theorem and o,(A) = 0
and since a class A operator is normaloid, every non zero spectrum of A is an
isolated normal eigenvalue with finite dimensional eigenspace, which reduces A.
Hence o(A) \ 0,(A) is a finite set or a countable infinity set whose accumulation
point is only zero. Let o(A) \ 0,(A) = {\,} with |[A1] > [Xo] > ... > 0 and let E,
be the orthogonal projection onto ker(A — A,). Then AE, = E,A = \,E, and
E.E,=0ifn#m. Put E=®,E,. Then

A= @n)\nEn S¥ A|(1—E)H

and o(A|q-gu) = {0}. Since A|q_gyu also a class A operator because FH is a
reducing subspace of A, A|i_pg)z = 0by Lemma 2.1. This implies that A = &, A\, E,
is normal. The compactness of A follows from the finiteness or the countability of
{A\n}n satisfying |A,| | 0 and each E, is a finite rank projection. ]
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As a consequence of the above theorem, we obtain

Corollary 2.1. Let A € B(H). Then
(1) Every class A operator with o, (A) =0 is compact and normal.
(2) Every log-hyponormal operator with o,(A) = 0 is compact and normal.
(3) Every p-hyponormal operator with o,,(A) = 0 is compact and normal.
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