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Abstract

In [17] the author considered a compound Markov renewal process (S̃Nt)
where ((Jn, Sn)) and ((J̃n, S̃n)) are suitable independent Markov additive
processes such that (Sn − Sn−1) are positive random variables, and Nt =∑

n≥1 1Sn≤t. In this paper we present the analogous results for a more general
situation where we consider a unique Markov additive process ((Jn, Zn)) in
place of ((Jn, Sn)) and ((J̃n, S̃n)), and Zn = (S̃n, Sn). Some further results
are also presented; in particular we relate in terms of large deviations the
sequence ((S̃n, Sn)) and the process ((S̃Nt , Nt)).

1 Introduction

In [17] the author proves large deviation results concerning compound Markov re-
newal processes (S̃Nt

) (see (5)), where ((Jn, Sn)) and ((J̃n, S̃n)) are suitable inde-
pendent Markov additive processes; thus the jump sizes (S̃n − S̃n−1) and the jump
waiting times (Sn − Sn−1) of (S̃Nt

) are independent. In particular some results con-
cern some level crossing probabilities and their estimation by importance sampling.
There are several works which relate large deviations and importance sampling for
the estimation of rare events: some of them are cited in this paper (here the rare
event is a level crossing) and further references can be found in the Introduction of
[17].
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In this paper we consider a more general model with a unique Markov additive
process ((Jn, Zn)), where Zn = (S̃n, Sn). Roughly speaking ((S̃n − S̃n−1, Sn −Sn−1))
is a sequence of conditionally independent random variables given J = (Jn) and, for
each n ≥ 1, the conditional distribution of (S̃n − S̃n−1, Sn − Sn−1) given J depends
on (Jn−1, Jn) only; for a more detailed definition see subsection 2.1. We present the
extension of the results in [17] adapted to this more general model. We also illustrate
the relationship in terms of large deviations between the sequence ((S̃n, Sn)) and the
process ((S̃Nt

, Nt)), where Nt =
∑

n≥1 1Sn≤t (see (5)).

The interest of this generalization is motivated by some recent works in the
literature. Here we cite the following papers: [1] with a ruin model in insurance
with dependence between claim sizes and claim intervals (see also [6] for a related
model in queueing theory); [2] where ((S̃n − S̃n−1, Sn − Sn−1)) is a sequence of i.i.d.
random variables, and the joint distribution of (S̃1, S1) is modeled by a copula (see
e.g. [14] and [18] as references on copulas).

If the jumps are upwards (namely each random variable S̃n − S̃n−1 is positive)
there is a natural interpretation in insurance. Indeed, if the insurance company has
an initial reserve b and receives premiums linearly at rate c > 0, (S̃Nt

− ct) and
(b + ct − S̃Nt

) are called claim surplus process and risk reserve process respectively
(see e.g. [4], page 1); moreover (S̃n − S̃n−1) are the claim sizes, (Sn − Sn−1) are the
claim waiting times and the ruin of the company occurs when (S̃Nt

− ct) crosses the
positive level b. The model presented in this paper generalizes other known models
in the literature, as the renewal model and the Cramér-Lundberg model (see e.g.
[12], page 22); the Cramér-Lundberg model is also known in the literature as the
compound Poisson model (see e.g. [3], pages 111 and 280).

The outline of the paper is the following. Section 2 is devoted to recall prelimi-
naries. Large deviation principles and the results on level crossing probabilities are
presented in sections 3 and 4 respectively. Finally concluding remarks and further
minor results are presented in section 5.

2 Preliminaries

2.1 Generalities on Markov additive processes

Set E = {1, . . . , m}, let J = (Jn) be a E valued Markov chain and let (pij)i,j∈E be
the transition matrix of J . Furthermore let (Zn) be a R

2 valued sequence of ran-
dom variables such that Z0 = (0, 0) and (Zn − Zn−1) is a sequence of conditionally
independent random variables given J ; moreover, in general, the conditional distri-
bution of Zk − Zk−1 given J depends on (Jk−1, Jk) only. In view of what follows we
use the notation Zn = (S̃n, Sn); moreover we denote the conditional distribution of
Zk −Zk−1 given (Jk−1, Jk) = (i, j) by Hij and the corresponding moment generating

function by Ĥij.

As far as the terminology is concerned, ((Jn, Zn)) is a Markov additive process,
(Jn) is the environment and (Zn) is the additive part. A reference for the presenta-
tion above of Markov additive processes is [4] (chapter 2, section 5, page 40, discrete
time case) where the additive part is real valued; anyway the presentation can be
easily adapted to more general situations.
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Assume that J is irreducible. Then, for each fixed (α̃, α) ∈ R
2, we can consider

the matrices F (α̃, α) = (Fij(α̃, α))i,j∈E defined by

Fij(α̃, α) = E[eα̃S̃1+αS11J1=j|J0 = i] (∀i, j ∈ E).

The entries of these matrices could be infinite if (α̃, α) 6= (0, 0) (if (α̃, α) = (0, 0) the
entries are finite, indeed the matrix F (0, 0) coincides with the transition matrix of
J) and the latter is equivalent to

Fij(α̃, α) = Ĥij(α̃, α)pij (∀i, j ∈ E).

Thus, as far as the family of the moment generating functions (Ĥij) is concerned, we
remark that some pairs (i, j) can be neglected; indeed we can restrict our attention
on the pairs (i, j) such that pij > 0. Moreover, if we consider the n-th power
F n(α̃, α) = ((F n)ij(α̃, α))i,j∈E of F (α̃, α), we have

(F n)ij(α̃, α) = E[eα̃S̃n+αSn1Jn=j|J0 = i] (∀i, j ∈ E).

Finally let us consider the set

D := {(α̃, α) ∈ R
2 : Fij(α̃, α) < ∞ (∀i, j ∈ E)}

and let n ≥ 1 and (α̃, α) ∈ D be arbitrarily fixed (we point out that D is not empty
since (0, 0) ∈ D). Then we can say what follows.
• By the conditional independence of the increments of (Zn) given J we have

E[eα̃S̃n+αSn] = E[E[eα̃S̃n+αSn|J ]] = E

[ n∏

k=1

ĤJk−1Jk
(α̃, α)

]
; (1)

we point out that (1) holds for all (α̃, α) ∈ R
2.

• Perron Frobenius Theorem provides the existence of a simple and positive eigen-
value eΛ(α̃,α) of the matrix F (α̃, α) equal to its spectral radius; moreover

∑

j∈E

(F n)ij(α̃, α)hj(α̃, α) = enΛ(α̃,α)hi(α̃, α) (∀i ∈ E)

where (hi(α̃, α))i∈E is an eigenvector with positive components, unique up to a
positive constant.
• Let us consider an arbitrarily fixed initial distribution of J (namely an arbitrarily
fixed distribution of J0). Then we have

E[eα̃S̃n+αSn ] =
∑

i∈E

E[eα̃S̃n+αSn |J0 = i]P (J0 = i) =

=
∑

i∈E

(∑

j∈E

E[eα̃S̃n+αSn1Jn=j|J0 = i]
)
P (J0 = i) =

∑

i∈E

(∑

j∈E

(F n)ij(α̃, α)
)
P (J0 = i),

whence we obtain∑
i∈E hi(α̃, α)P (J0 = i)

maxj∈E hj(α̃, α)
enΛ(α̃,α) ≤ E[eα̃S̃n+αSn ] ≤

∑
i∈E hi(α̃, α)P (J0 = i)

minj∈E hj(α̃, α)
enΛ(α̃,α)

and

lim
n→∞

1

n
log E[eα̃S̃n+αSn ] = Λ(α̃, α). (2)

We point out that, if we set Λ(α̃, α) = ∞ for (α̃, α) /∈ D, (2) holds for all
(α̃, α) ∈ R

2; moreover we have

D = {(α̃, α) ∈ R
2 : Λ(α̃, α) < ∞}.
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2.2 A class of conjugate laws for Markov additive processes

In this subsection we present a class of conjugate laws (Pα̃,α)α̃,α:Λ(α̃,α)<∞ defined
as follows. For each fixed (α̃, α) ∈ D we have that P is absolutely continuous
with respect to Pα̃,α on each finite time interval {0, 1, . . . , n} and the corresponding

density ℓ
P,P

α̃,α
n is

ℓ
P,P

α̃,α
n = e−(α̃S̃n+αSn)+nΛ(α̃,α) hJ0(α̃, α)

hJn
(α̃, α)

. (3)

Then (see e.g. Proposition 5.10 and Theorem 5.11 in [4], pages 44-45) ((Jn, Sn)) is

again a Markov additive process under each Pα̃,α with transition matrix (p
(α̃,α)
ij )i,j∈E

for (Jn) defined by

p
(α̃,α)
ij :=

Fij(α̃, α)hj(α̃, α)

eΛ(α̃,α)hi(α̃, α)

and distributions (H
(α̃,α)
ij ) (which play the role of (Hij) under P ) defined by

H
(α̃,α)
ij (dỹ, dy) :=

eα̃ỹ+αy

Ĥij(α̃, α)
Hij(dỹ, dy).

Furthermore, by Proposition 4.1 and by the first part of Lemma 4.2 in [13] applied
with respect to each Pα̃,α, we have

lim
n→∞

Zn

n
= ∇Λ(α̃, α) Pα̃,α a.s.; (4)

see e.g. [19] (Theorem 3.6, page 123) for the first part of Lemma 4.2 in [13]. Finally
we point out that P0,0 = P .

2.3 Compound Markov renewal processes and main hypotheses

The following hypothesis plays a crucial role in the construction of our process of
interest:
(A1): the distributions (Hij) are concentrated on R×]0,∞[.
Now let us point out some consequences of (A1). The sequence (Sn) is (almost
surely) increasing and the random variables (Sn) can be seen as the jump times of
a counting process (Nt). More precisely from now on we set

Nt :=
∑

n≥1

1Sn≤t and S̃Nt
:=

Nt∑

n=1

S̃n, (5)

and (S̃Nt
) is called compound Markov renewal process.

We have a generalization of the renewal model. Indeed we have the renewal
model if the distributions Hij are all the same product measure H̃⊗H concentrated
on ]0,∞[×]0,∞[ (as pointed out above we can restrict our attention on i, j ∈ E
such that pij > 0): in such a case H̃ is the common distribution of jump sizes and
H is the common distribution of jump waiting times. In particular we have the
Cramér-Lundberg model (or the compound Poisson model) if H is an exponential
distribution.
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For each fixed α̃ ∈ R such that

Dα̃ := {α ∈ R : Λ(α̃, α) < ∞} (6)

is nonempty, the restriction of Λ(α̃, ·) on Dα̃ is an increasing function and we can
consider the inverse function [Λ(α̃, ·)]−1 of Λ(α̃, ·).

Then we can present some further hypotheses which play crucial role in this
paper; in particular we refer to the concept of essentially smooth function (see e.g.
[10], Definition 2.3.5, page 44).
(A2): (A1) holds; for each α̃ ∈ R we have Dα̃ 6= ∅ and Λ(α̃, ·) : Dα̃ → R is
surjective; moreover let us consider the function ΨΛ defined as follows

ΨΛ(α̃, α) := −[Λ(α̃, ·)]−1(−α).

(A3): (A2) holds; we have

lim
t→∞

1

t
log E[eα̃S̃Nt ] = ΨΛ(α̃, 0) (∀α̃ ∈ R);

ΨΛ(α̃, 0) is finite in a neighbourhood of the origin α̃ = 0, essentially smooth and
lower semicontinuous.
(A4): (A2) holds; we have

lim
t→∞

1

t
log E[eα̃S̃Nt

+αNt ] = ΨΛ(α̃, α) (∀(α̃, α) ∈ R
2);

ΨΛ(α̃, α) is finite in a neighbourhood of the origin (α̃, α) = (0, 0), essentially smooth
and lower semicontinuous.

It is useful to point out what follows. By the identity Λ(α̃,−ΨΛ(α̃, α)) = −α we
have {

∂Λ
∂α̃

(α̃,−ΨΛ(α̃, α)) + ∂Λ
∂α

(α̃,−ΨΛ(α̃, α))(−∂ΨΛ

∂α̃
(α̃, α)) = 0

∂Λ
∂α

(α̃,−ΨΛ(α̃, α))(−∂ΨΛ

∂α
(α̃, α)) = −1

,

whence we obtain 



∂ΨΛ

∂α̃
(α̃, α) =

∂Λ

∂α̃
(α̃,−ΨΛ(α̃,α))

∂Λ
∂α

(α̃,−ΨΛ(α̃,α))
∂ΨΛ

∂α
(α̃, α) = 1

∂Λ
∂α

(α̃,−ΨΛ(α̃,α))

. (7)

Then the next (almost sure) limit holds as a consequence of (4) and the motivations
below:

lim
t→∞

(
S̃Nt

t
,
Nt

t

)
=

( ∂Λ
∂α̃

(α̃, α)
∂Λ
∂α

(α̃, α)
,

1
∂Λ
∂α

(α̃, α)

)
=(7) ∇ΨΛ(α̃, α) Pα̃,α a.s.. (8)

The limit of the second component follows from (4) together with the definition of
(Nt) in (5) and from a well known result in renewal theory (see e.g. [5], Ex. 2.3.10,
page 310), while the limit of the first component follows from the limit of the second

component and from
S̃Nt

t
=

S̃Nt

Nt

Nt

t
(by taking into account that Nt diverges to ∞ as

t → ∞ and by (4)).
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3 Large deviation principles

In this section we refer to the concept of large deviation principle (see e.g. [10], page
5). Throughout this paper we use shorthand LDP for large deviation principle.

The two following Propositions 3.1 and 3.2 are an immediate consequence of the
hypotheses ((A3) and (A4) respectively) and of Gärtner Ellis Theorem.

Proposition 3.1. Assume (A3) holds. Then
(

S̃Nt

t

)
satisfies the LDP with rate

function [ΨΛ(·, 0)]∗ defined by

[ΨΛ(·, 0)]∗(x̃) = sup
α̃∈R

[α̃x̃ − ΨΛ(α̃, 0)] (∀x̃ ∈ R).

This means that [ΨΛ(·, 0)]∗ : R → [0,∞] is a lower semicontinuous function and we
have

lim inf
t→∞

1

t
log P

(
S̃Nt

t
∈ O

)
≥ − inf

x̃∈O
[ΨΛ(·, 0)]∗(x̃) (∀O open) (9)

and

lim sup
t→∞

1

t
log P

(
S̃Nt

t
∈ C

)
≤ − inf

x̃∈C
[ΨΛ(·, 0)]∗(x̃) (∀C closed).

Proposition 3.2. Assume (A4) holds. Then
((

S̃Nt

t
, Nt

t

))
satisfies the LDP with

rate function Ψ∗
Λ defined by

Ψ∗
Λ(x̃, x) = sup

(α̃,α)∈R2

[α̃x̃ + αx − ΨΛ(α̃, α)] (∀(x̃, x) ∈ R
2).

This means that Ψ∗
Λ : R

2 → [0,∞] is a lower semicontinuous function and we have

lim inf
t→∞

1

t
log P

((
S̃Nt

t
,
Nt

t

)
∈ O

)
≥ − inf

(x̃,x)∈O
Ψ∗

Λ(x̃, x) (∀O open)

and

lim sup
t→∞

1

t
log P

((
S̃Nt

t
,
Nt

t

)
∈ C

)
≤ − inf

(x̃,x)∈C
Ψ∗

Λ(x̃, x) (∀C closed).

In the next Proposition 3.3 we assume (A4) holds and we provide an explicit
expression of Ψ∗

Λ(x̃, x). If x > 0 this expression agrees with the expression in [20]
proved in a different way for a wide class of cases; the interest of the next proposition
is motivated by the expression of Ψ∗

Λ(x̃, x) for x = 0.

Proposition 3.3. Assume (A4) holds. Let Ψ∗
Λ be the rate function in Proposition

3.2 and, for any α̃ ∈ R, let Dα̃ be the set in (6). Then we have

Ψ∗
Λ(x̃, x) =





xΛ∗

(
x̃
x
, 1

x

)
if x > 0

supα̃∈R
[α̃x̃ + supDα̃] if x = 0

∞ if x < 0

. (10)
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Proof. Let x̃ ∈ R be arbitrarily fixed and let us distinguish three cases concerning
x ∈ R.
Case x > 0. We check two complementary inequalities. First of all we have

Ψ∗
Λ(x̃, x) = sup

(α̃,α)∈R2

[α̃x̃ + αx − ΨΛ(α̃, α)] =

= x sup
(α̃,α)∈R2

[
α̃

x̃

x
−ΨΛ(α̃, α)·

1

x
+α

]
= x sup

(α̃,α)∈R2

[
α̃

x̃

x
−ΨΛ(α̃, α)·

1

x
−Λ(α̃,−ΨΛ(α̃, α))

]

where the latter equality follows from the identity Λ(α̃,−ΨΛ(α̃, α)) = −α (which

holds by construction). Thus the first inequality Ψ∗
Λ(x̃, x) ≤ xΛ∗( x̃

x
, 1

x
) holds. In

order to obtain the complementary inequality, let us consider a sequence ((α̃n, βn))
such that

lim
n→∞

α̃n

x̃

x
+ βn ·

1

x
− Λ(α̃n, βn) = Λ∗

(
x̃

x
,
1

x

)
;

moreover let us set αn = −Λ(α̃n, βn), which is equivalent to ΨΛ(α̃n, αn) = −βn.
Then

Ψ∗
Λ(x̃, x) ≥ α̃nx̃ + αnx − ΨΛ(α̃n, αn) =

= x
[
α̃n

x̃

x
− ΨΛ(α̃n, αn) ·

1

x
+ αn

]
= x

[
α̃n

x̃

x
+ βn ·

1

x
− Λ(α̃n, βn)

]
(∀n ≥ 1)

and the second inequality Ψ∗
Λ(x̃, x) ≥ xΛ∗( x̃

x
, 1

x
) holds by taking the limit as n → ∞

in the right hand side.
Case x = 0. We check two complementary inequalities. Since (A4) implies (A2),
for any α̃ ∈ R it is defined the function [Λ(α̃, ·)]−1 : R → Dα̃, and the following limit
holds for the increasing function ΨΛ(α̃, ·):

ΨΛ(α̃, α) = −[Λ(α̃, ·)]−1(−α) ↓ − supDα̃ as α ↓ −∞.

Thus −ΨΛ(α̃, α) ≤ supDα̃ for any (α̃, α) ∈ R
2 and, by the definition of Ψ∗

Λ, we get

Ψ∗
Λ(x̃, 0) ≤ sup

α̃∈R

[α̃x̃ + supDα̃].

Furthermore, by the definition of Ψ∗
Λ, we have Ψ∗

Λ(x̃, 0) ≥ α̃x̃ − ΨΛ(α̃, α) for all
(α̃, α) ∈ R

2 and, by taking the limit as α ↓ −∞ in the right hand side, we obtain
Ψ∗

Λ(x̃, 0) ≥ α̃x̃ + supDα̃ for any α̃ ∈ R; thus

Ψ∗
Λ(x̃, 0) ≥ sup

α̃∈R

[α̃x̃ + supDα̃]

holds by taking the supremum with respect to α̃ ∈ R.

Case x < 0. It is trivial since we have P
(

Nt

t
≥ 0

)
= 1 for all t > 0 and, by well

known properties of large deviation principles, the rate function Ψ∗
Λ(x̃, x) has to be

equal to ∞ outside the closed set R × [0,∞[. �
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4 Results on level crossing probabilities

4.1 Preliminaries and exponential decay of p(b) as b → ∞

The results in this section concern the level crossing probabilities (p(b))b>0 of (S̃Nt
−

ct), where c > 0 is a suitable constant as before. In detail we set

p(b) = P (Tb < ∞) where Tb = inf{t ≥ 0 : S̃Nt
− ct ≥ b}.

In order to avoid the trivial case p(b) = 1 for all b > 0, we need to consider c large
enough; indeed, if c is large enough, we have S̃Nt

− ct → −∞ and therefore the level
crossing can fail with positive probability. We shall precise below that we have to
consider c > ∂ΨΛ

∂α̃
(0, 0).

In view of the presentation of the results in this section some preliminaries are
needed.

Let us consider the class of conjugate laws (Pα̃,α)α̃,α:Λ(α̃,α)<∞ presented in sub-
section 2.2. This class of conjugate laws is described on a pair of parameters (α̃, α);
on the other hand, in order to use the methods in the proofs of similar results in
the literature, we need to consider a family of densities which depends on only one
parameter. Then we shall consider the family of conjugate laws (Qα̃)α̃:[Λ(α̃,·)]−1(0)<∞

defined as follows:

Qα̃ := Pα̃,[Λ(α̃,·)]−1(0) = Pα̃,−ΨΛ(α̃,0). (11)

For each law of the family (Qα̃)α̃:[Λ(α̃,·)]−1(0)<∞ in (11), the density ℓ
P,P

α̃,α
n in (3) will

be denoted by ℓ
P,Q

α̃
n and, by taking into account the identity Λ(α̃,−ΨΛ(α̃, 0)) = 0,

we have

ℓ
P,Q

α̃
n = e−(α̃S̃n−ΨΛ(α̃,0)Sn) hJ0(α̃,−ΨΛ(α̃, 0))

hJn
(α̃,−ΨΛ(α̃, 0))

.

There are some (almost sure) inequalities which are useful in what follows. If we
set

M(α̃) = max
{

hi(α̃,−ΨΛ(α̃, 0))

hj(α̃,−ΨΛ(α̃, 0))
: i, j ∈ E

}
,

we have

ℓ
P,Q

α̃
n ≤ M(α̃)e−(α̃S̃n−ΨΛ(α̃,0)Sn). (12)

Moreover, by construction, we have SNt
≤ t which implies

−(S̃Nt
− cSNt

) ≤ −(S̃Nt
− ct) (for any c > 0). (13)

The value w in the next condition (A5) is called Lundberg’s parameter and
plays a crucial role in this section. The condition (A5) is the analogous of (A3) in
[16]:

(A5): (A2) holds and there exists w > 0 such that ΨΛ(w, 0)−cw = 0 and ∂ΨΛ

∂α̃
(w, 0)−

c > 0.
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Remark. We point out that (A5) implies the existence of a positive zero w for
the convex function

fc(α̃) = ΨΛ(α̃, 0) − cα̃

and moreover f ′
c(w) > 0. Thus, since fc(0) = 0 follows from ΨΛ(0, 0) = 0, the

derivative of fc at the origin is negative; thus we have 0 > f ′
c(0) = ∂ΨΛ

∂α̃
(0, 0) − c,

which is equivalent to c > ∂ΨΛ

∂α̃
(0, 0). We also remark that, if (A5) holds, the level

crossing can fail with positive probability; indeed we have S̃Nt
− ct → −∞ since

S̃Nt

t
− c converges to f ′

c(0) < 0. Finally we point out that Qw = Pw,−cw.

In the next Proposition 4.1 we prove the exponential decay of p(b) as b → ∞ in
the large deviations fashion; such exponential decay can be expressed in terms of
the Lundberg’s parameter.

Proposition 4.1. Assume (A3) and (A5) hold. Then limb→∞
1
b
log p(b) = −w.

Proof. The proof has some analogies with other proofs of similar results in the
literature (see e.g. Theorem 1 in [15] and Theorem 3.1 in [16]). The limit follows
from the lower bound

lim inf
b→∞

1

b
log p(b) ≥ −w

and the upper bound

lim sup
b→∞

1

b
log p(b) ≤ −w.

For the lower bound we use a standard procedure based on the lower bound for the

open sets (9) for the LDP of (
S̃Nt

t
); for instance see e.g. Lemma 2.1 in [11], which

deals with a more general situation. For the upper bound let b > 0 be arbitrarily
fixed. Then

p(b) = EP [1Tb<∞] = EQw
[ℓP,Qw

NTb
1Tb<∞] ≤(12)

EQw
[M(w)e

−(wS̃NTb
−ΨΛ(w,0)SNTb

)
1Tb<∞] =

= M(w)EQw
[e

−w(S̃NTb
−cSNTb

)+(ΨΛ(w,0)−cw)SNTb 1Tb<∞] ≤(A5) and (13)

≤ M(w)EQw
[e

−w(S̃NTb
−cTb)1Tb<∞] ≤ M(w)EQw

[e−wb1Tb<∞] = M(w)e−wbQw(Tb < ∞).

In conclusion we have p(b) ≤ M(w)e−wb for all b > 0 and the upper bound holds. �

4.2 Importance sampling

Let us start with some preliminaries on the technique called importance sampling
used for the estimation of p(b) by Monte Carlo simulations. A reference with large
deviations and importance sampling used for the estimation of rare events by sim-
ulation is [9].

Let us suppose we want to estimate p(b) (for a fixed b > 0) by Monte Carlo
simulation. Thus let us consider R independent replications of (S̃Nt

− ct) under the
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law P ; then an unbiased estimator of p(b) is the relative frequency p̂(b) of the level
crossings

p̂(b) =
1

R

R∑

i=1

1
T

(i)
b

<∞
,

where T
(1)
b , . . . , T

(R)
b are the values of Tb in the replications. In such a case we have

two difficulties: the simulation time under P is not finite if the level crossing does not
occur; by Proposition 4.1 this Monte Carlo approach needs R growing exponentially

with b to keep a fixed relative precision, indeed the relative precision of p̂(b) is

1

p(b)

√
p(b)(1 − p(b))

R
.

Thus, in order to overcome these two difficulties, we consider R independent repli-
cations under another law Q chosen in a suitable way. First of all Q is such that P
is absolutely continuous with respect to Q locally on the event {Tb < ∞}; moreover
an unbiased estimator of p(b) is

[p̂(b)]Q =
1

R

R∑

i=1

ℓP,Q
N

T
(i)
b

1
T

(i)
b

<∞
,

where in general ℓP,Q
NTb

is the local density of P with respect to Q.

Furthermore we choose Q in a class of admissible laws; this means that Q(Tb <
∞) = 1 for all b > 0, so that we have finite time in simulation almost surely. The

choice of Q will be done in order to minimize VarQ[[p̂(b)]Q] in some sense. We point
out that

VarQ[[p̂(b)]Q] =
EQ[(ℓP,Q

NTb
)21Tb<∞] − p2(b)

R
=Q(Tb<∞)=1

EQ[(ℓP,Q
NTb

)2] − p2(b)

R

and the only part which depends on Q is the second moment

ηQ(b) := EQ[(ℓP,Q
NTb

)21Tb<∞] = EQ[(ℓP,Q
NTb

)2].

The minimization of this second moment for a fixed b is often intractable and,
since in the applications we are interested in large values of b, in order to use
standard features on large deviations we concentrate our attention on the asymptotic
behaviour of 1

b
log ηQ(b). Then we have

lim inf
b→∞

1

b
log EQ[(ℓP,Q

NTb
)21Tb<∞] ≥ lim inf

b→∞

1

b
log E

2
Q[ℓP,Q

NTb
1Tb<∞]

= lim inf
b→∞

1

b
log(p(b))2 = −2w (14)

by Jensen’s inequality and Proposition 4.1. Thus an admissible law Q is said to be
an asymptotically efficient simulation law if

lim
b→∞

1

b
log EQ[(ℓP,Q

NTb
)21Tb<∞] = −2w; (15)
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indeed, if R is chosen to guarantee a fixed relative precision

1

p(b)

√√√√EQ[(ℓP,Q
NTb

)21Tb<∞] − p2(b)

R

of [p̂(b)]Q, R has chance of growing less than exponentially if and only if (15) holds.

The aim of this subsection is to show that Qw is an asymptotically efficient
simulation law (Proposition 4.3). The first step consists to prove the admissibility
of Qw (Proposition 4.2).

Proposition 4.2. Assume (A3) and (A5) hold. Then Qw(Tb < ∞) = 1 for all
b > 0.

Proof. We prove this Proposition showing that, Qw a.s.,
S̃Nt

t
converges to some

positive limit, so that we can say that S̃Nt
− ct → ∞ as t → ∞, with probability 1

with respect to Qw. This fact is immediate; indeed (11) and (8) provide

lim
t→∞

S̃Nt

t
=

∂Λ
∂α̃

(w,−ΨΛ(w, 0))
∂Λ
∂α

(w,−ΨΛ(w, 0))
=

∂ΨΛ

∂α̃
(w, 0) Qw a.s.,

where ∂ΨΛ

∂α̃
(w, 0) > c by (A5). �

Proposition 4.3. Assume (A3) and (A5) hold. Then Qw is an asymptotically
efficient simulation law, namely (15) holds with Q = Qw.

Proof. First of all Qw is an admissible law by Proposition 4.2. Then we have to
check the lower bound

lim inf
b→∞

1

b
log EQw

[(ℓP,Qw

NTb
)21Tb<∞] ≥ −2w

and the upper bound

lim sup
b→∞

1

b
log EQw

[(ℓP,Qw

NTb
)21Tb<∞] ≤ −2w.

The lower bound holds by (14) with Q = Qw. For the upper bound we can follow
the lines of the proof of the upper bound in Proposition 4.1. Thus let b > 0 be
arbitrarily fixed; then we have

EQw
[(ℓP,Qw

NTb
)21Tb<∞] ≤ (M(w))2e−2wbQw(Tb < ∞),

whence we obtain EQw
[(ℓP,Qw

NTb
)21Tb<∞] ≤ (M(w))2e−2wb and the upper bound holds.

�
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5 Concluding remarks and minor results

5.1 The independence case and two counterexamples

In this subsection we investigate in detail the case in which jump sizes and jump
waiting times are independent. A particular consequence is that Dα̃ does not depend
on α̃ (see (16) below) but this is not true in general, as shown in the counterexample
presented below.

If the jump sizes and jump waiting times are independent we have

Λ(α̃, α) = κ̃(α̃) + κ(α) (∀(α̃, α) ∈ R
2)

for suitable functions κ̃(·) = Λ(·, 0) and κ(·) = Λ(0, ·). Throughout this section we
always assume that (A2) holds. As an immediate consequence we have κ̃(α̃) < ∞
for all α̃ ∈ R and Dα̃ does not depend on α̃, indeed we have

Dα̃ = {α ∈ R : κ(α) < ∞}. (16)

Moreover there exists the inverse κ−1 of κ and we can consider the function Γκ(·) =
−κ−1(−(·)). In conclusion we have

ΨΛ(α̃, α) = −κ−1(−κ̃(α̃) − α) = Γκ(κ̃(α̃) + α)

and the rate function [ΨΛ(·, 0)]∗ coincides with the rate function I in Lemma 3.1 in
[17].

Furthermore it is easy to check that

Λ∗(x̃, x) = κ̃∗(x̃) + κ∗(x) (∀(x̃, x) ∈ R
2)

where κ̃∗(x̃) = supα̃∈R
[α̃x̃ − κ̃(α̃)] and κ∗(x) = supα∈R

[αx − κ(α)].
Finally assume (A4) holds and set

γ = sup{α ∈ R : κ(α) < ∞};

we point out that γ ∈ [0,∞]. Then, by Proposition 3.3 and by (16), we have

Ψ∗
Λ(x̃, x) =





x
[
κ̃∗

(
x̃
x

)
+ κ∗

(
1
x

)]
if x > 0

γ if (x̃, x) = (0, 0)
∞ otherwise

.

We pointed out above that, if jump sizes and jump waiting times are independent,
under condition (A2) we have:
(C1): Dα̃ does not depend on α̃;
(C2): Λ(α̃, 0) < ∞ for all α̃ ∈ R.
Obviously we can have (C1) and (C2) even if there is no independence; it is enough
to have Λ(α̃, α) < ∞ for all (α̃, α) ∈ R

2, and in particular (C1) holds with Dα̃ = R

for all α̃ ∈ R. Moreover, if ((S̃n, Sn)) is a bivariate random walk independent of

(Jn), we have Λ(α̃, α) = log E[eα̃S̃1+αS1 ] for all (α̃, α) ∈ R
2; thus, if we also have

Λ(α̃, α) < ∞ for all (α̃, α) ∈ R
2, (A2) holds since limα→±∞ Λ(α̃, α) = ±∞ for each

fixed α̃ ∈ R.
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Counterexample. Let λ, β > 0 be arbitrarily fixed. Again let ((S̃n, Sn)) be
a bivariate random walk independent of (Jn), and therefore we have the identity

Λ(α̃, α) = log E[eα̃S̃1+αS1 ]. We assume S̃1 exponentially distributed with failure rate
λ > 0 and, given {S̃1 = x}, S1 is Gamma distributed with parameters (x, β). One
can check that

Λ(α̃, α) =





log
(

λ

λ−

(
α̃+log( β

β−α
)

)
)

if α < β and α̃ + log( β

β−α
) < λ

∞ otherwise

;

in such a case (C1) fails since Dα̃ = {α ∈ R : α < β(1 − eα̃−λ)} for all α̃ ∈ R

and (C2) fails since {α̃ ∈ R : Λ(α̃, 0) < ∞} = {α̃ ∈ R : α̃ < λ} 6= R. Finally we
check that (A2) holds; indeed, for each fixed α̃ ∈ R, Dα̃ is trivially nonempty and
Λ(α̃, ·) : Dα̃ → R is surjective by noting that, for all y ∈ R, we have Λ(α̃, α(y)) = y,

with α(y) = β(1 − eα̃−λ(1−e−y)) ∈ Dα̃.

Remark. This contrasts situations where, conversely, one does expect dependence
but where the latter dissolves completely. Although the following example is based
on embedding, and hence not directly comparable, it displays this contrast clearly.
Let (Nt) be a Poisson process with intensity (Λt) and arrival times (Sn). Put inde-
pendent marks X1, X2, . . . on S1, S2, . . . and select the sub-process of arrival times
(S̃n) with records marks (see e.g. [7] and [8]). Since each Xn is a record with prob-
ability 1

n
, the record counting process (Ñt) should completely depend on the history

of (Nt). However, if (Λt) is randomized exponentially, then (Ñt) is an independent
Poisson process.

5.2 Inequalities and comparisons between convergences

Let ((Jn, Zn)) be a Markov additive process according to the presentation in the
previous sections. Let ((Jn, Zn)) be another Markov additive process of the same
kind and in particular we assume that (Jn) takes values on E as (Jn). We shall
use the notation Z = (Ũn, Un); for all the other items concerning ((Jn, Zn)) we use
overlined symbols (for instance we write Λ, N t, p(b) and w in place of Λ, Nt, p(b)
and w respectively).

The following statements relate some inequalities with some comparisons be-
tween convergences.
• Assume there exist the limits

lim
n→∞

1

n
log P

((
S̃n

n
,
Sn

n

)
∈ B

)
=: Λ∗(B) and lim

n→∞

1

n
log P

((
Ũn

n
,
Un

n

)
∈ B

)
=: Λ

∗
(B);

then

Λ∗(B) > Λ
∗
(B) implies lim

n→∞

P
((

S̃n

n
, Sn

n

)
∈ B

)

P
((

Ũn

n
, Un

n

)
∈ B

) = 0.

• Assume there exist the limits

lim
t→∞

1

t
log P

((
S̃Nt

t
,
Nt

t

)
∈ B

)
=: Ψ∗

Λ(B) and lim
t→∞

1

t
log P

((ŨNt

t
,
N t

t

)
∈ B

)
=: Ψ∗

Λ
(B);
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then

Ψ∗
Λ(B) > Ψ∗

Λ
(B) implies lim

t→∞

P
((

S̃Nt

t
, Nt

t

)
∈ B

)

P
((

Ũ
Nt

t
, Nt

t

)
∈ B

) = 0.

• Let (p(b)) be the level crossing probabilities as in section 4 and let (p(b)) be the
analogous of (p(b)) if we have ((Jn, Zn)) in place of ((Jn, Zn)). Assume there exist
the limits

lim
b→∞

1

b
log p(b) = −w and lim

b→∞

1

b
log p(b) = −w;

then

w > w implies lim
b→∞

p(b)

p(b)
= 0.

In the statements above we require strict inequalities in order to have that some
ratios goes to zero. The next Lemma 5.1 provides necessary conditions for these
strict inequalities.

Lemma 5.1. Let ((Jn, Zn)) and ((Jn, Zn)) be as above. Assume that

Λ(α̃, α) ≤ Λ(α̃, α) (∀(α̃, α) ∈ R
2). (17)

Then we have
Λ∗(x̃, x) ≥ Λ

∗
(x̃, x) (∀(x̃, x) ∈ R

2); (18)

if (A4) holds together with its version adapted to ((Jn, Zn)), then we have

Ψ∗
Λ(x̃, x) ≥ Ψ∗

Λ
(x̃, x) (∀(x̃, x) ∈ R

2); (19)

if (A5) holds together with its version adapted to ((Jn, Zn)), then we have w ≥ w.

Proof. First of all (18) is an immediate consequence of (17). Moreover, by (17),
we have Dα̃ ⊂ Dα̃ and then supDα̃ ≤ supDα̃ for all α̃ ∈ R; in conclusion (19) follows
from Proposition 3.3. Finally let (α̃, α) ∈ R

2 be arbitrarily fixed; then we have

sup
(x̃,x)∈R2

[α̃x̃+αx−Ψ∗
Λ(x̃, x)] = ΨΛ(α̃, α) and sup

(x̃,x)∈R2

[α̃x̃+αx−Ψ∗

Λ
(x̃, x)] = ΨΛ(α̃, α),

whence we have ΨΛ(α̃, α) ≤ ΨΛ(α̃, α) by (19). Thus we have w ≥ w since ΨΛ(α̃, 0)−
cα̃ ≤ ΨΛ(α̃, 0) − cα̃ for all α̃ ∈ R. �

Thus Lemma 5.1 motivates our interest in conditions which guarantee that (17)
holds. The next Proposition 5.2 provides a condition in terms of some inequalities
between moment generating functions, under the assumption that (Jn) and (Jn)
have the same transition matrix.

Proposition 5.2. Let ((Jn, Zn)) and ((Jn, Zn)) be as above. Assume that (Jn) and
(Jn) have the same transition matrix (pij)i,j∈E and

E[eα̃S̃1+αS1 |J0 = i, J1 = j] ≤ E[eα̃Ũ1+αU1|J0 = i, J1 = j] (∀(α̃, α) ∈ R
2), (20)

for all i, j ∈ E such that pij > 0. Then (17) holds.
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Proof. Let (α̃, α) ∈ R
2 be arbitrarily fixed. Then we have

E[eα̃S̃n+αSn ] ≤ E[eα̃Ũn+αUn ] (∀n ≥ 1)

by (1) together its version adapted to ((Jn, Zn)) and by (20); thus (17) follows from
(2) together its version adapted to ((Jn, Zn)). �

We remark that, since the function (x̃, x) 7→ eα̃x̃+αx is a convex function for each
fixed (α̃, α) ∈ R

2, Hij ≤cx H ij implies (20), where ≤cx is the convex order (namely
we mean the multivariate convex order; see e.g. [21], eq. (5.A.4), page 154).
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