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Abstract

Starting from the Zariski topology, a natural notion of nonstandard generic
point is introduced in complex algebraic geometry. The existence of this kind
of point is a strong form of the Nullstellensatz. This notion is connected
with the classical concept of generic point in the spectrum Spec(An,C) of the
corresponding algebra An,C. The nonstandard affine space ∗

C
n appears as an

affine unfolding of the geometric space Spec(An,C). This affine space is the
disjoint union of the sets whose elements are the nonstandard generic points
of prime and proper ideals of An,C: this structure leads to the definition of
algebraic points in ∗

C
n. A natural extension to analytic points in ∗

C
n is given

by Robinson’s concept of generic point in local complex analytic geometry.
The end of this paper is devoted to a generalization of this point of view to
the real analytic case.

1 Introduction

Since the ancient Greeks, a point is a very simple geometrical figure without any
internal structure. This mode of thinking is being questioned by the contemporary
developments of algebraic geometry. Particularly with A.Grothendieck’s works [7,
15], sophisticated concepts of points appeared thanks to an impressive ascent in
abstraction : ”A R-valued point of a prescheme X is a morphism of Spec(R)
into X”. One of the motivations of these constructions is to get infinitesimals well
adapted to algebraic and geometrical structures.

This is the way David Mumford motivates the introduction of the concept of
preschemes and schemes in The Red Book of the Varieties and Schemes :
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Another motivation for preschemes comes from the possibility of con-
structing via schemes an explicit and meaningful theory of infinitesimal
objects.

In a completely independent way, nonstandard analysis offers at once infinitesi-
mals available in most elementary spaces [2, 3, 8, 9, 12, 16, 19]. Furthermore, this
method provides every point of the euclidian space with a non trivial structure [4, 5].

It is natural to wonder on the connections which exist among both points of
view. The purpose of this work is to begin to establish a link between them 1. The
motivation is obviously not to reconstruct algebraic geometry on a nonstandard
basis. The idea is rather to throw light on some difficult concepts of algebraic
geometry by getting them in touch with typical nonstandard entities.

Within the framework of this program, firstly we introduce a nonstandard notion
of generic point of an algebraic sets in the affine space Cn. Secondly, we establish
a comparison between two kinds of generic point: the classical generic points which
belong to the spectrum of the ring of polynomials and the nonstandard generic
points which are points of the nonstandard affine space. Finally the concept of
generic point is generalized to the analytic case.

This study is an extension of former works. The notion of nonstandard generic
point in the case of local complex analytic geometry leading to the Rückert Null-
stellensatz was introduced by A. Robinson, the creator of nonstandard analysis [20].
In the same spirit, the author of these lines also introduced a concept of nonstan-
dard generic point adapted to the local real analytical geometry in a document not
formally published [24]. A nonstandard point of view for generic points was also
developped in [6].

We use the usual following notations: N is the set of nonnegative integers, R is
the set of real numbers, C is the set of complex numbers and K = R or C.

Let n be a positive integer and let An,K be the ring K[X1, . . . , Xn] of polyno-
mials with coefficients in K and n indeterminates. Finally, let On,K be the ring
K{X1, . . . , Xn} of convergent power series with coefficients in K and n indetermi-
nates.

2 Nonstandard preliminaries

2.1 Choosing a nonstandard formalism

Although the nonstandard formalism generally used by the author is Internal Set
Theory (I.S.T.) of E.Nelson [3, 2, 16], this work is stated in the more classical
framework of nonstandard extension of sets and structures [8, 9, 12, 17]. This choice
offers some conceptual advantages about the notion of external sets. Furthermore,
the point of view according to which we look for solutions of polynomial or analytic
equations with coefficients in C in an appropriate extension ∗C of C is more in
the spirit of field theory and algebraic geometry. In some way, we can consider
that nonstandard generic points of an ideal P are special imaginary solutions of the
equations belonging to P. Lastly, this nonstandard formalism is developed in the

1This work is probably related to the approach of algebraic geometry by model theory [14]
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usual mathematical language (i.e. set theory); we hope this choice will contribute
to fill the too important gap between nonstandardists and the majority of working
mathematicians.

2.2 A very short introduction to nonstandard extension

All the sets needed in this work (N, K = R or C, An,K and On,K) are identified to
suitable subsets of On,C. We choose a nonstandard extension ∗On,C of On,C which
is sufficiently rich 2. All ordinary sets X depending on On,C are simultaneously
extended to new objects ∗X such that X ⊂ ∗X; every x ∈ X is a standard element
of ∗X, every element of ∗X \ X is a nonstandard element of ∗X. Hence, we get at
once nonstandard extensions ∗

N of N, ∗
R of R, ∗

C of C, ∗An,R of An,R, ∗An,C of An,C

and ∗On,R of On,R.
The main interest of this machinery lies in two important principles 3. The first

one asserts that X and ∗X share the same properties. From the second one, we
deduce the existence of many ideal objects in ∗X.

2.2.1 The transfer principle

Given a formula ϕ without free variable relating a mathematical property of objects
like the preceding X, the ∗-transform ∗ϕ of ϕ is obtained by replacing each object Y
in ϕ by its extension ∗Y . The first important property of a nonstandard extension
is: ∗ϕ is true whenever ϕ is true. This is the transfer principle.

From this principle, we deduce that the ∗-transform behaves well with regard to
set operations: ∗∅ = ∅, ∗(A \ B) = ∗A \ ∗B, ∗(A × B) = ∗A × ∗B, if f is a map
from A to B then ∗f is a map from ∗A to ∗B,. . .We also see that ∗R is an ordered
field extension of R and ∗C is a field extension of C, that An,K is a K-subalgebra
of ∗An,K and that On,K is a K-subalgebra of ∗On,K. From the transfert principle we
also deduce that, for every f ∈ ∗(C[X]), there exists x ∈ ∗C such that f(x) = 0; as
∗C[X] ⊂ ∗(C[X]), we get that the field ∗C is algebraically closed.

2.2.2 The enlargement property or idealization principle

Let U and V be two arbitrary sets like the preceding X and let ϕ(u, v) a formula
with two free variables representing a relation on U × V . Suppose that for every
finite set F ⊂ U there exists v ∈ V such that ϕ(u, v) for every u ∈ F . Then, the
second important property is: There exists w ∈ ∗V such that ∗ϕ(u, w) for every
u ∈ U . This is the enlargement property.

Also called the idealization principle, this last property is a tool for getting many
ideal objects in the nonstandard extension. For instance, there exists ω ∈ ∗N such
that k ≤ ω for all k ∈ N: the element ω is a nonstandard integer which is infinitely
large. In the same way, we get nonstandard real or complex numbers which are
infinitely small, i.e. ε ∈∗ R or ∗C such that ∀n ∈ N \ {0} |ε| ≤ 1/n.

2Actually, we need a nonstandard extension of the superstructure V (∗On,C) of ∗On,C and we
ask this nonstandard extension to be an enlargement [8, 9, 12].

3A third property, the Internal Definition Principle, is also useful but we do not need it in this
short introduction.
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3 Algebraic sets and weak Nullstellensatz

An algebraic set of Cn is the set of roots of a family of polynomials I ⊂ An,C.
Without loss of generality (consider the ideal generated by I), we may suppose that
I is an ideal of the ring An,C. Let Z(I) be the algebraic set defined by an ideal I

Z(I) = {x ∈ C
n ; ∀f ∈ I f(x) = 0}

There exists a finite family (f1, . . . , fp) of polynomials which generates the ideal I,
so that

Z(I) = {x ∈ C
n ; ∀i = 1, . . . , p fi(x) = 0}

The base of the study of the algebraic sets is the so called Nullstellensatz of
Hilbert. It is possible to distinguish between a weak version and a strong version of
this result.

Weak Nullstellensatz. If I is a proper ideal of An,C, then the algebraic set
Z(I) is not empty.

For each x ∈ Cn, the set

Mx = {f ∈ An,C ; f(x) = 0}

is a maximal ideal of the ring An,C. The maximal spectrum of An,C is the set
Specmax(An,C) of the maximal ideals of An,C. The spectrum of the ring An,C is the
set Spec(An,C) whose elements are the proper prime ideals of An,C. Thus, we have
Specmax(An,C) ⊂ Spec(An,C).

Equivalent version of the weak Nullstellensatz. The map θ : x 7→ Mx

from Cn to Specmax(An,C) is a bijection.

With the help of θ, it is possible to identify Cn with Specmax(An,C). Thus, the
spectrum Spec(An,C) appears as an extension of the affine space Cn. This is a way
to add a new kind of ’points’ to the affine space, namely the proper prime ideals
which are not maximal.

4 A nonstandard glance at Zariski topology

The Zariski topology on Cn is a topology only defined with the help of algebraic sets.
Hence, it is a well adapted tool for algebraic geometry. In this topology, a subset U
of Cn is open if and only if Cn \ U is an algebraic set. An equivalent condition is
that there exists a finite family of polynomials f1, . . . , fp ∈ An,C such that

U = {x ∈ C
n ; ∃i = 1, . . . , p fi(x) 6= 0} =

p⋃

i=1

C
n \ f−1

i ({0})

Thus, the family
(
C

n \ f−1({0})
)

f∈An,C

is a basis for the Zariski topology. For each

f ∈ An,C, the open set Cn
f = Cn \ f−1({0}) is called a distinguished open subset.

The Zariski topology is less fine that the usual one: every non empty Zariski open
set is an usual open set which is dense. For this reason, a property Q(x) is called
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generic on C
n whenever Q(x) is true at every point x belonging to a nonempty

Zariski open set of Cn. The space Cn is not separated in the Zariski topology ;
nevertheless, the points of Cn are closed.

Let X be a set on which a topology T is defined. Given a point a of X, the
nonstandard point of view introduces a kind of universal neighbourhood of a for T :
the halo (also named the monad) of a. This is the subset of a nonstandard extension
∗X of X defined by

halT (a) =
⋂

U∈V(a)

∗U

which is the intersection of the nonstandard extension ∗U of the elements U be-
longing to the set V(a) of open neighbourhoods of a in X for T . We say that each
point x in hal(a) is infinitely close to a and we write x ≃T a this relation. A general
observation is that the local properties of the topological space X at a are condensed
in halT (a) [19, 22].

Now, our purpose is to apply this tool to the Zariski topology on the affine space.
According to the general definition, the halo of an element a of C

n in the Zariski
topology is the set

halZ(a) = {x ∈ ∗
C

n ; x ≃Z a} =
⋂

U∈VZ(a)

∗U

where VZ(a) is the set of open neighbourhoods of a in Cn for the Zariski topology.

It is clear that VZ(a) can be replaced by the set of all U in the basis
(
C

n
f

)

f∈An,C

such that a ∈ U . Hence we get

halZ(a) =
⋂

f∈An,C

f(a)6=0

∗(Cn \ f−1({0}))

In other words, we have the following characterization

x ≃Z a ⇐⇒ ∀f ∈ An,C (f(a) 6= 0 =⇒ f(x) 6= 0)

or equivalently

x ≃Z a ⇐⇒ ∀f ∈ An,C (f(x) = 0 =⇒ f(a) = 0)

This property brings to light a family of subsets of the ring An,C : for each x ∈ ∗C
n

we consider the set {f ∈ An,C ; f(x) = 0} which is similar to the maximal ideal My

for y ∈ Cn

My = {f ∈ An,C ; f(y) = 0}
We see that this set is a prime and proper ideal of An,C. If x is a standard element
of ∗Cn (i.e. if x ∈ Cn) then, this set is equal to the maximal ideal Mx.

Definition 1. Given x ∈ ∗
C

n, the standard ideal null at x is the prime proper ideal
Px of An,C defined by Px = {f ∈ An,C ; f(x) = 0}.

We now return to the study of halZ(a) = {x ∈ ∗C
n ; x ≃Z a} for the Zariski

topology.

Proposition 1. Given a ∈ Cn, for every x ∈ ∗C
n, we have

x ≃Z a ⇐⇒ Px ⊂ Pa ⇐⇒ Px ⊂ Ma ⇐⇒ a ∈ Z(Px)

where Z(Px) is the algebraic set of Cn defined by the standard ideal Px null at x.
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5 Strong Nullstellensatz and nonstandard generic points

5.1 The classical strong Nullstellensatz

For each subset F of Cn, we define the ideal I(F ) of An,C by

I(F ) = {f ∈ An,C ; ∀x ∈ F f(x) = 0}

The algebraic set Z(I(F )) is obviously the closure of F for the Zariski topology.

Now we can state the strong version of the Nullstellensatz in the case of a prime
ideal.

Strong Nullstellensatz. If P is a prime ideal of An,C, then I(Z(P)) = P.

An algebraic set F of Cn is irreducible if it is impossible to have F = F1 ∪ F2

where F1 and F2 are algebraic sets such that F 6= F1 or F 6= F2. It is well known that
an algebraic set F is irreducible if and only if I(F ) is a prime ideal, or equivalently,
if there exists a prime ideal P such that F = Z(P).

The Strong Nullstellensatz is linked to a nonstandard concept of generic point.

5.2 Introduction of nonstandard generic points

Definition 2. A nonstandard generic point of a prime ideal P of An,C is a point x
of ∗Cn such that

∀f ∈ An,C (f(x) = 0 ⇐⇒ f ∈ P)

In other words, x ∈ ∗Cn is a generic point of a prime ideal P if and only if
P = Px where Px is the standard ideal null at x introduced in the previous section.

We choose the name ’nonstandard generic point’ to avoid confusion with an-
other already existing notion of generic point. However, this appellation has the
inconvenience to let believe that a nonstandard generic point x is a nonstandard
point, i.e. x ∈ ∗C

n \ Cn. This is not always the case. We get at once the following
characterization of ‘standard nonstandard generic points’.

Proposition 2. Let P be a prime proper ideal of An,C and let x ∈ ∗C
n be a non-

standard generic point of P. Then, the following conditions are equivalent.

1. The point x is standard.

2. The ideal P is a maximal ideal of An,C.

3. The algebraic set Z(P) of Cn defined by P has only one element.

From the definition, we see that a nonstandard generic point x of a prime proper
ideal P of An,C is a point of the subset Z∗C(P) of the nonstandard affine space ∗

C
n

defined by the ideal P

Z∗C(P) = {y ∈ ∗
C

n ; ∀f ∈ P f(y) = 0}
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Hence, an element x ∈ ∗
C

n is a non standard generic point of a prime ideal P of
An,C if and only if the following two conditions are satisfied

{
x ∈ Z∗C(P)
∀f ∈ An,C \ P f(x) 6= 0

Thus a nonstandard generic point of P is a solution in ∗Cn of the equations
belonging to P which is not solution of other equations in An,C: a nonstandard
generic point of a prime proper ideal P characterizes P.

Since the field ∗C is an extension of the field C of the standard complexe num-
bers, we remark that the framework of nonstandard generic points is in accordance
to the usual situation in Galois theory and algebraic geometry in which solutions
of polynomial equations are studied in an extension of the field which contains all
coefficients of the equations.

Furthermore, for every ideal I of An,C, we can defined three ‘algebraic sets’. The
first one is the usual algebraic set

Z(I) = {x ∈ C
n ; ∀f ∈ I f(x) = 0}

The second one is the nonstandard extension ∗Z(I) of Z(I). From the transfer
principle, we deduce that

∗Z(I) = {x ∈ ∗
C

n ; ∀f ∈ ∗I f(x) = 0}

The last one is

Z∗C(I) = {x ∈ ∗
C

n ; ∀f ∈ I f(x) = 0}

But, there exists a finite set {f1, . . . , fp} ⊂ I such that I = (f1, . . . , fp). Hence,

∀x ∈ C
n(∀f ∈ I f(x) = 0 ⇐⇒ ∀k = 1, . . . , p fk(x) = 0)

Thus

∀x ∈ ∗
C

n(∀f ∈ ∗I f(x) = 0 ⇐⇒ ∀k = 1, . . . , p fk(x) = 0 ⇐⇒ ∀f ∈ I f(x) = 0)

which means that ∗Z(I) = Z∗C(I).

Hence, for every nonstandard generic point x of a prime proper ideal P of An,C,
we have not only f(x) = 0 for every f ∈ P but also f(x) = 0 for every f ∈ ∗P.

Returning to the description of the halo of a given point a ∈ ∗C
n for the Zariski

topology, we can now assert that halZ(a) is the set of all generic points of all prime
proper ideals P of An,C such that a ∈ Z(P).

Remark Every element of the localization (An,C)P of An,C in P is written ϕ =
f/g where (f, g) ∈ An,C × ((An,C) \ P) ; thus, ϕ is a function defined at some point
x ∈ ∗C

n if g(x) 6= 0. Then, all the elements of the localisation (An,C)P are defined
at some x ∈ ∗

C
n if and only in x is a nonstandard generic point of P. That is to

say, in ∗Z(P), the set of definition of all elements of (An,C)P is equal to the external
set of nonstandard generic points of P.
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5.3 Existence of nonstandard generic points

The existence of nonstandard generic points is a consequence of the strong Nullstel-
lensatz.

Theoreme 1. Every prime and proper ideal of An,C has a nonstandard generic
point.

Proof. Let P a prime and proper ideal of An,C. Given a finite subset F = {f1, . . . , fp}
of An,C \P the product f1 · · · fp does not belong to P. From the strong Nullstellen-
satz, we deduce that f1 · · · fp 6∈ I(Z(P)), i.e.

∃y ∈ Z(P) ∀k = 1, . . . , p fk(y) 6= 0

From the idealization principle we get

∃x ∈ ∗Z(P) ∀f ∈ An,C \ P f(x) 6= 0

that is to say, x is a nonstandard generic point for P. �

Conversely, this last result implies at once the strong Nullstellensatz: if f ∈
I(Z(P)), then f(y) = 0 for every y ∈ Z(P); the transfer principle implies that
f(x) = 0 for every point x of ∗Z(P) and thus also for a nonstandard generic point
x of P, hence f ∈ P.

5.4 A new version of the strong Nullstellensatz

From the existence of nonstandard generic point we deduce an equivalent version of
the strong Nullstellensatz similar to the one of the weak Nullstellensatz.

Equivalent version of the strong Nullstellensatz. The map Θ : x 7→ Px

from ∗C
n to Spec(An,C) is onto.

This map Θ is an extension of

θ : Cn −→ Specmax(An,C)
x 7−→ Mx

Thus we get the commutative diagram

Cn θ−−−→ Specmax(An,C)
y

y
∗C

n Θ−−−→ Spec(An,C)

in which the vertical arrows are canonical injections. The map θ is one to one
and the map Θ is onto. With the help of the maps θ and Θ, the set Spec(An,C)
may be interpreted as a kind of nonstandard extension of the space Cn similar to
the extension ∗Cn. From this point of view, the prime proper ideals of An,C which
are not maximal are similar to nonstandard points of ∗

C
n. Since the map Θ is onto,

the nonstandard points in ∗Cn are more numerous than the prime proper ideals in
Spec(An,C).
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5.5 Local existence of nonstandard generic points

Let a be a point of Cn and P be a prime proper ideal of An,C such that a ∈ Z(P)
(i.e. P ⊂ Ma). From the description of halZ(a) we deduce that every nonstandard
generic point x of P is infinitly close to a for the Zariski topology. This does not
means that x is near a for the usual topology. We want to rule on the local existence
near the point a of nonstandard generic points for the usual topology of Cn and its
extension to ∗

C
n. Hence, for x ∈ ∗

C
n, we introduce the usual nonstandard relation

x ≃ a (we say that x is infinitely close to a for the usual topology) defined by

x ≃ a ⇐⇒ ∀k ∈ N \ {0} ‖x − a‖ <
1

k

where ‖ ‖ is a norm on Cn and also its extension to ∗Cn.

Theoreme 2. Let P be a prime proper ideal of An,C and a ∈ Cn a point of the
algebraic set Z(P). Then, there is a nonstandard generic point x ∈ ∗C

n of P such
that x ≃ a.

Proof. Due to the idealization principle, it is sufficient to prove that, for every finite
subset F of An,C\P and every k ∈ N∗, there exists y ∈ Z(P) such that ‖y−a‖ < 1/k
and f(y) 6= 0 for every f ∈ F .

Let F be a finite subset of An,C\P. For every f ∈ F , the set F = f−1({0})∩Z(P)
is a Zariski-closed subset of Z(P). Furthermore, the Nullstenllensatz implies that
F 6= Z(P). We know that a closed subset F of an irreducible algebraic subset V of Cn

has an empty interior in V or is equal to V . Thus, the set Cn
f ∩Z(P) is a dense subset

of Z(P) for the Zariski topology. Since the Zariski closure of a constructible set in
an algebraic variety is equal to its closure for the usual (transcendant) topology, we
get that Cn

f ∩Z(P) is an open dense subset of Z(P) for the usual topology. Because
a finite intersection of open dense subsets is a dense subset, we get the result. �

Let hal(a) be the halo of a in ∗Cn for the usual topology, that is to say the set
whose elements are the points x ∈ ∗C

n such that x ≃ a. For each x ∈ hal(a), the
standard ideal Px null at x is such that a ∈ Z(Px) since each f ∈ Px is continuous
at a, so f(a) ≃ f(x) = 0. Thus, Px belongs to the set

HZ(Ma) = {P ∈ Spec(An,C) ; P ⊂ Ma}

Consequently, the following map

{
Θa : hal(a) −→ HZ(Ma)

x 7−→ Px

is onto.

5.6 The status of the map Θ

The author has the deep conviction that the map Θ is very natural. Nevertheless,
in the framework of nonstandard analysis, this map is external. Actually, we can
distinguish three kind of objects.
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A standard object is an element of a set X which appears initially in our work
before we consider a nonstandard extension of X. For instance, any x ∈ Cn, any
f ∈ An,C or any P ∈ Spec(An,C) are standard. A standard map is a map between
two standard sets.

An internal object is an element of one of the nonstandard extension ∗X which
appears in our work. For instance, any f ∈ ∗An,C is an internal polynomial. An
internal map is a map g : ∗X → ∗Y such that g ∈ ∗(P(X × Y )) (the nice properties
of nonstandard extensions imply that ∗(P(X × Y )) ⊂ P(∗X × ∗Y )).

An external object is one which is neither standard nor internal. In some way,
standard and internal objects are simpler and more natural than external one. How-
ever, the introduction of exernal objects is one of the interesting contributions of
nonstandard analysis. We see that our map Θ is external because it is a map from
the internal set ∗Cn to the standard set Spec(An,C).

6 A link between two kinds of generic points

In the perspective of constructing the deep concepts of prescheme and scheme at the
basis of algebraic topology, the set Spec(An,C) is provided with a Zariski topology.
As we shall see, all the points of this topological space are not closed. This last
property is connected to the ’standard’ notion of generic point.

For each ideal I of the ring An,C, let V (I) be the subset of Spec(An,C) defined
by

V (I) = {P ∈ Spec(An,C) ; I ⊂ P}
Since

x ∈ Z(I) ⇐⇒ I ⊂ Mx ⇐⇒ Mx ∈ V (I)

we can conceive the set V (I) as a natural extension of the algebraic set Z(I) in the
set Spec(An,C).

The sets Z(I) are the closed subsets for a topology: the Zariski topology on
Spec(An,C). For each f ∈ An,C, let

Spec(An,C)f = {P ∈ Spec(An,C) ; f 6∈ P}

Since Spec(An,C)f = Spec(An,C)\V ((f)), this set is open and called a distinguished
open set. The family (Spec(An,C)f)f∈An,C

is a basis of the Zariski topology on
Spec(An,C).

For each P ∈ Spec(An,C), the closure of {P} is equal to V (P) ; thus, a point
{P} is closed if and only if the ideal P is maximal.

A closed subset F of Spec(An,C) is irreducible if there does not exist closed subset
F1 and F2 different from F such that F = F1 ∪ F2.

Then, the classical definition of a generic point of a closed irreducible subset F
of the space Spec(An,C) is the following : it is an element P of Spec(An,C) such that
F is the closure of {P}. Thus, this is a point which is dense in F .

We verify than a closed subset F is irreducible if and only if there exists P ∈
Spec(An,C) such that F = V (P), in which case P is the unique generic point of F .

The two kinds of generic points appear to be closely linked. The bridge between
the two notions is the map Θ.
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Proposition 3. Each x ∈ ∗
C

n is a nonstandard generic point of Px = Θ(x) and
Θ(x) is the unique generic point of V (Px) in Spec(An,C). Each P in Spec(An,C)
is the unique generic point of V (P) in Spec(An,C), and Θ−1(P) is the set whose
elements are the nonstandard generic points of P.

We provide every subset of Cn or Spec(An,C) with the corresponding Zariski
topology. For each f ∈ An,C, the map θ : x 7→ Mx sends the distinguished open set
Cn

f on Spec(An,C)f ∩ Specmax(An,C). Consequently, θ is a homeomorphism of Cn on
Specmax(An,C).

Despite the fact that it is an external object, it is natural to hope that the map
Θ : x 7→ Px is continuous in some natural meaning.

To this aim, we consider on the set ∗Cn the C-Zariski topology which is the
Zariski topology defined by polynomials with coefficients in C (and not in ∗C). The
closed sets for this topology are

Z∗C(I) = {x ∈ ∗
C

n ; ∀f ∈ I f(x) = 0}
where I is an ideal of An,C. For each f ∈ An,C the open set

∗
C

n
f = {x ∈ ∗

C
n ; f(x) 6= 0}

is called a distinguished open set; the family of the distinguished open sets is a basis
of the C-Zariski topology on ∗Cn.

It is a powerful point of view in Galois theory to consider this kind of topology
when we are looking at a field extension. It is amusing to remark that this is also
a particular case of a general construction for a nonstandard extension ∗X of a
topological space X: if T is the family of open sets of X, we can consider on ∗X two
interesting topology: firstly the internal topology whose open sets are the U ∈ ∗T
and secondly the external topology whose open sets are the ∗U for U ∈ T . In the case
of the space ∗

C
n interpreted as the nonstandard extension of the Zariski topological

space Cn, the C-Zariski topology is exactly the external topology.

Proposition 4. For the C-Zariski topology on ∗Cn and the Zariski-topology on the
space Spec(An,C), the surjective map

Θ : ∗C
n −→ Spec(An,C)

x 7−→ Px

is continuous, open and closed.

Proof. From the definition of the map Θ and of a generic point, we see that for every
f ∈ An,C and for every x ∈ ∗C

n

f ∈ Θ(x) ⇐⇒ f(x) = 0

from which we deduce that

Θ(x) ∈ Spec(An,C)f ⇐⇒ x ∈ ∗
C

n
f

and, for every ideal I of An,C

Θ(x) ∈ V (I) ⇐⇒ x ∈ Z∗C(I)

Thus, we have Θ−1(Spec(An,C)f) = ∗C
n
f , Θ(∗Cn

f ) = Spec(An,C)f and also Θ(Z∗C(I)) =
V (I). �
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Remark This situation suggests the following definition which is verified by
the map Θ. An affine unfolding of the geometric space Spec(An,C) is a map Ψ :
kn → Spec(An,C) such that

• k is a field extension of C;

• Ψ is the natural map kn → Spec(An,C) defined by

∀x ∈ kn Ψ(x) = {f ∈ An,C ; f(x) = 0}

which is an extension of the canonical bijection θ : Cn → Specmax(An,C);

• Ψ is onto.

Then, the map Ψ is continuous, open and closed for the C-Zariski topology on kn.
Furthermore, for every P in Spec(An,C) and for each sP in the stalk of P for the
Grothendieck structure sheaf over Spec(An,C), the function sP is defined on Ψ−1(P).

7 Nonstandard generic points are nonsingular and generic

Let P be a prime proper ideal of An,C and let {f1, . . . , fp} be a finite subset of
An,C such that P = (f1, . . . , fp). We know that every nonstandard generic point x
of P belongs to the set Z∗C(P) = ∗Z(P). From the transfert principle we deduce
that this set is an internal algebraic set associated to the internal prime ideal ∗P
of ∗An,C. Actually, we have more: the set Z∗C(P) is an usual algebraic set of the
affine space ∗Cn defined by the ideal (f1, . . . , fp) of ∗C[X1, . . . , Xn]. Furthermore,
this last algebraic set is irreducible. Thus the set ∗Z(P) may be interpreted in three
ways: it is a closed set of the C-Zariski topology of ∗Cn, it is an internal closed set
of the internal Zariski topology of ∗Cn and it is a closed irreducible set of the Zariski
topology of ∗Cn.

We want to examine some properties of nonstandard generic points of P with
regard to the set ∗Z(P).

The dimension of the affine variety Z(P) is a number d ∈ N such that

1. ∀ξ ∈ Z(P), the rank of the matrix (∂fi/∂Xj(ξ)) is ≤ n − d;

2. ∃ξ ∈ Z(P) such that the rank of the matrix (∂fi/∂Xj(ξ)) is n − d.

A point ξ of Z(P) is nonsingular if the second condition is satisfied.
By transfer, we see that ∗Z(P) is also of dimension d in ∗Cn and that a point

ξ ∈ ∗Z(P) is nonsingular when the rank over ∗C of the matrix (∂fi/∂Xj(ξ)) is n−d.

Proposition 5. A nonstandard generic point of P is a nonsingular point of ∗Z(P).

Proof. From the definition of the dimension of Z(P), we deduce the existence of a
(n − d)× (n− d) submatrix ∆ of (∂fi/∂Xj) such that the polynomial det(∆) takes
non zero value at some point of Z(P). Hence det(∆) does not belong to P. Thus,
a nonstandard generic point x of P cannot be a root of the polynomial det(∆). �
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Let Pgen be the subset of ∗
C

n whose elements are the nonstandard generic points
of P:

Pgen = Θ−1(P) = {x ∈ ∗
C

n ; ∀f ∈ An,C f(x) = 0 ⇔ f ∈ P}.
This is a subset of the algebraic set ∗Z(P) generally different from ∗Z(P).

Proposition 6. The following conditions are equivalent:

1. ∗Z(P) = Pgen;

2. the ideal P is maximal;

3. ∃x ∈ Cn Z(P) = {x}.
Proof. The last two conditions are equivalent and they obviously imply the first
conditions. The standard set Z(P) is not empty. Thus, there exist standard elements
in ∗Z(P). If ∗Z(P) 6= {x} for every standard x ∈ ∗Z(P), then any nonstandard
generic point of P is not standard. �

The following result expresses a topological property of Pgen in ∗Z(P).

Proposition 7. Let x ∈ ∗C
n be a generic nonstandard point of a prime proper

ideal P of An,C. Then, there exists an open neighbourhood U of x in ∗Z(P) for
the internal Zariski topology such that every element of U is a nonstandard generic
point of P.

Proof. A set F is called hyperfinite if there exists N ∈ ∗N and an internal bijection
of F on {n ∈ ∗N ; n ≤ N}. From the idealization principle we deduce the existence
of an hyperfinite subset F of ∗(An,C \ P) = ∗An,C \ ∗P such that f ∈ F for every
f ∈ An,C \ P. Given a nonstandard generic point x ∈ ∗

C
n of P, we have f(x) 6= 0

for every f ∈ An,C \ P. Thus, the set G = {g ∈ F ; g(x) 6= 0} is an hyperfinite
subset of ∗(An,C \ P) which contains An,C \ P.

Consequently, the point x belongs to the internal open Zariski subset of ∗Cn:

V = {z ∈ ∗
C

n ; ∀g ∈ G g(z) 6= 0}.
Every point y ∈ U = V ∩ ∗Z(P) is such that

(y ∈ ∗Z(P)) ∧ (∀f ∈ (An,C \ P) f(y) 6= 0)

that is to say, y is a nonstandard generic point of P. �

From this proposition we cannot deduce that Pgen is an open set for the internal
Zariski topology on ∗Z(P) because Pgen is generally an external set. Nevertheless,
we say that Pgen is an external open subset of ∗Z(P) for the internal Zariski topology.

We know that a closed subset W of an irreducible set F has an empty interior in
F or is equal to F . Thus, the neighbourhood U of x given in the last proposition is
dense in ∗Z(P) for the internal Zariski topology. Hence, the external open set Pgen

is dense in ∗Z(P). In other words, the property ‘x is a nonstandard generic point
of P’ is generic in ∗Z(P) for the internal Zariski topology.

Remark The set Pgen is clearly external. We have

Pgen = ∗Z(P) ∩
⋂

f∈(An,C\P)

∗
C

n
f

Therefore, among the external sets, Pgen has the structure of a generalized prehalo
[23].
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8 Algebraic and analytic points of ∗
C

n

Let (0) be the null ideal of An,C. Since Z((0)) = Cn, we have ∗Z((0)) = ∗C
n and

the set (0)gen of nonstandard generic points of (0) is an external open dense in ∗Cn.
Thus, we can say that a generic point of ∗Cn for the internal Zariski topology is a
nonstandard generic point of (0). A point x of ∗Cn belongs to (0)gen if and only if
f(x) 6= 0 for all polynomial f ∈ An,C different from zero. Therefore, (0)gen is the set
of x ∈ ∗

C
n such that x 6∈ ∗F for every algebraic set F of C

n different from C
n. This

leads to the following definition.

Definition 3. An algebraic point of ∗Cn is an element of ∗Cn which belongs to at
least one nonstandard extension ∗F of an algebraic set F of Cn different from Cn.

From the previous discussion, we get at once the next result.

Proposition 8. Given x ∈ ∗C
n, the following conditions are equivalent.

1. x is an algebraic point.

2. There exists f ∈ An,C \ {0} such that f(x) = 0.

3. The prime proper ideal Θ(x) of An,C is different from (0).

Given a standard a ∈ Cn, we know that Pa = Ma and Z(Ma) = {a}. Thus,
every standard element of Cn is an algebraic point of ∗Cn.

Finally, the nonstandard affine space ∗
C

n is decomposed in an external disjoint
union

∗
C

n =
⋃

P∈Spec(An,C)

Pgen

in which we find one ‘big’ external set (0)gen. The complementary set ∗Cn \ (0)gen is
the set ∗Cn

alg of the algebraic points of Cn. Then we have

∗
C

n
alg =

⋃

P∈Spec(An,C)\{(0)}

Pgen

which is the disjoint union of the ’thin’ external sets Pgen for P 6= (0). Every set
Pgen is an external open dense subset of ∗Z(P) for the internal Zariski topology.
Furthermore, for every prime proper ideal P of An,C, we have the following external
union

∗Z(P) =
⋃

Q∈Spec(An,C) and P⊂Q

Qgen

Few points of ∗Cn are algebraic. One can widen the class of algebraic points by
including points which are in a similar way analytics. A first difficulty is that an
analytic function is not generally defined everywhere on the affine space.

Definition 4. An element x ∈∗ Cn is an analytic point if there exists an analytic
function f : U → C defined on an open subset U of Cn such that x ∈ ∗U and
f(x) = 0.

In the next sections, one suggests to establish a link between this notion and the
usual frame of the Nullstensatz in the analytic case.
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9 Convergent power series and the Rückert Nullstellensatz

This section is devoted to the description of the classical background of the Null-
stellensatz in the space of convergent power series. A good reference for the reader
not familiar with these topics is the book [21] of Jesús M. Ruiz.

9.1 The algebra On,K

We denote by K[[X]], where X is a multi-indeterminate X = (X1, . . . , Xn), the set
of formal power series with coefficients in K and n indeterminates. A formal power
series f ∈ K[[X]], written f =

∑
ν aνX

ν where ν = (ν1, . . . , νn) ∈ Nn , aν ∈ K and
Xν = Xν

1 . . .Xν
n , converges at x ∈ K

n to s ∈ K if, for all ε > 0 in R, there exists
a finite set Iε ⊂ Nn such that |∑ν∈J aνx

ν − s| < ε for any finite set J such that
Iε ⊂ J ⊂ Nn. A formal power series f always converges at x = 0 to its constant
term a0.

Let D(f) be the interior of the set of points x ∈ Kn at which the formal power
series f is convergent. We say that f is convergent if D(f) 6= ∅. Then 0 ∈ D(f).
For n = 1, we know that D(f) is an open disk. More generally, D(f) is the union
of the polycylinders

Du = {x = (x1, . . . , xn) ∈ K
n ; xi < |ui| i = 1, . . . , n}

for all u ∈ Kn such that every ui 6= 0 and f(u) is convergent.

Let On,K = K {X1, . . . , Xn} = K {X} be the set of convergent power series with
n indeterminates. For the usual operations of sum and product, the set K[[X]] is an
integral domaine and a K-algebra with On,K as a subalgebra. Furthermore, On,K is
a local noetherian ring which is factorial.

In order to get most algebraic properties of On,K, two important tools are usually
needed: the Division Theorem and the Preparation Theorem. Before giving these
results, we have to introduce a new notion : a power series f ∈ K[[X]] with X =
(X1, . . . , Xn) is regular of order p with respect to Xn if f(0, . . . , 0, Xn) = Xp

ng(Xn)
with g(0) 6= 0.

Rückert’s Division Theorem. Let ϕ ∈ On,K be a regular element of order
p with respect to Xn and f ∈ On,K. Then, there exists a uniquely defined (q, r) ∈
On,K×On−1,K [Xn] such that f = qϕ+r with degree of r less than p (i.e. do(r) < p).

We can obtain this last result with the help of the fixed point theorem for a
suitable contractive map [21]. Taking Xp

n for f and ϕ a regular element of order p
with respect to Xn, we get the following property.

Weierstrass’s Preparation Theorem. Let ϕ ∈ On,K be a regular element
of order p with respect to Xn. Then there exists a polynomial P = T p + a1T

p−1 +
· · · + ap ∈ On−1,K [T ] with a1(0) = . . . = ap(0) = 0 and a unit u de On,K such that
ϕ = uP (Xn).



1048 G. Wallet

9.2 Germ of analytic sets

The set On,K is identified with the set of germs at 0 of K-valued analytic functions
defined on a neighbourhood of 0 in Kn.

Given an ideal I of On,K, the definition of the zero set Z(I) is not elementary
because, interpreted as functions, the elements of On,K have not a good common
domain of definition. In fact

⋂

f∈On,K

D(f) = {0}.

We choose a generator system F = {f1, · · · , fq} of I and introduce the set

Z(F) = {x ∈ K
n ; f1(x) = . . . = fq(x) = 0} .

Then, the zero set Z(I) of I is the germ at 0 of the set Z(F). That is to say Z(I)
is the equivalence class of Z(F) for the relation between subsets of K

n

A ∼ B ⇐⇒ ∃U ∈ V0 A ∩ U = B ∩ U

where V0 is the set of neighbourhoods of 0 in K
n. Obviously, this definition is

independant of the choice of the generator system F .
Now we can define the annulator ideal of Z(I) in the following way

I(Z(I)) = {f ∈ On,K ; ∀x ∈ Z(I) f(x) = 0}

where the assertion ∀x ∈ Z(I) f(x) = 0 has to be interpreted in terms of germs of
sets and functions.

It is clear that I ⊂ I(Z(I)). In the complex case, the relation between I and
I(Z(I)) is given by the following well known result.

Rückert Complex Nullstellensatz. Let P be a prime ideal of the ring On,C.
Then P = I(V (P)).



Nonstandard Generic Points 1049

10 Nonstandard generic points for complex analytic germs

10.1 Analytic germs from a nonstandard point of view

As we can expect, the nonstandard point of view allows us to consider that, in some
sense, the elements of On,K have a kind of infinitesimal common domain of definition.
This conception was firstly introduced by A. Robinson [19, 20].

The point is that, for each standard element f of On,K, every x ∈ ∗K
n such

that x ≃ 0 is contained in the nonstandard extension ∗D(f) of the domain D(f) of
f , so that the nonstandard extension of f (also denoted f) is defined at x. Thus,
we can consider that the halo of 0, hal(0) = {x ∈ ∗K

n ; x ≃ 0}, is an external
neighbourhood of 0 on which every element of On,K is defined.

Given an ideal I of On,K, this property leads to a more direct definition of Z(I)

Z(I) = {x ∈ hal(0) ; ∀f ∈ I f(x) = 0}

and of I(Z(I))

I(Z(I)) = {f ∈ On,K ; ∀x ∈ Z(I) f(x) = 0}.

It is a basic exercise of nonstandard analysis to prove that this last definition of
I(Z(I)) is equivalent to the classical one. This change of viewpoint lead A. Robinson
to introduce a new concept of generic point.

10.2 Definition and examples of nonstandard generic points

Definition 5. A nonstandard generic point of a prime ideal P of On,K is an element
x ≃ 0 of ∗K

n such that 4

∀f ∈ On,K (f ∈ P ⇐⇒ f(x) = 0)

For instance, zero is a nonstandard generic point of the maximal ideal of power
series without constant term M = (X1, . . . , Xn).

The concept of nonstandard generic point is related to the uniqueness theorem
for power series. In fact, a nonstandard version of this last result is the following:
if x ∈ hal(0) \ {0} and f ∈ O1,C we have

f(x) = 0 ⇐⇒ f = 0.

So, every x ≃ 0 in ∗C \ {0} is a nonstandard generic point for the null ideal (0) of
O1,C.

Does the null ideal of On,C have a nonstandard generic point? It is possible to
answer this question using the idealization principle. For that purpose, we consider
a hyperfinite subset F of ∗On,C \{0} which contains every element of On,C. As ∗On,C

is an integral domain, the product of all the elements of F is not equal to zero.
Hence, we can find x ≃ 0 in ∗C

n \ {0} such that f(x) is different from 0 for every
f ∈ F . So, x is a nonstandard generic point for the null ideal (0) of On,C.

4A. Robinson’s definition was only given in the complex case: K = C.
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But it is more interesting to answer the same question in a quite constructive
manner, more in the spirit of the uniqueness theorem. Given ε1 ≃ 0 in C∗, let ε2 ≃ 0
in C∗ be in the micro-halo of ε1, that is to say

∀k ∈ N \ {0} ε2

εk
1

≃ 0

(for instance ε2 = εN
1 with N an infinitely large integer). Thus, for all g ∈ O1,C\{0},

we have
ε2

g(ε1)
≃ 0.

If f is a standard element of O2,C\{0}, we can write f =
+∞∑

k=m

ak(X1)X
k
2 with m an

integer and am an element of O1,C\{0}. Thus we have f(ε1, ε2) = εm
2 (am (ε1) + ε2L)

where L is a limited complex number (i.e. non infinitely large); hence f(ε1, ε2)
cannot be equal to zero. Consequently, (ε1, ε2) is a nonstandard generic point of the
null ideal of O2,C.

More generally, let ε1, . . . , εn ∈ ∗
C \ {0} be such that εk+1 is in the micro-halo of

εk for each k = 1, · · · , n − 1. Then, (ε1, . . . , εn) is a nonstandard generic point for
the null ideal of On,C.

From this we get a general formulation independent of the choice of the basis of
Cn.

Let x ≃ 0 in ∗
C

n \ {0} with a Goze decomposition [4, 5] x = ε1v1 + ε1ε2v2 + · · ·+
ε1 . . . εnvn such that εk+1 is in the micro-halo of εk for each k = 1, · · · , n− 1. Then
x is a nonstandard generic point for the null ideal {0} of On,C.

10.3 The Robinson theorem

The general result about existence of nonstandard generic point in the complex
analytic case is the following [20].

Robinson Theorem. Every prime and proper ideal P of On,C has a nonstan-
dard generic point.

Given a ∈ Cn, we introduce the ring On,C(a) of complex analytic germs at a.
For x ≃ a let

P̃x = {f ∈ On,C(a) ; f(x) = 0}.
Then P̃x is a prime and proper ideal of On,C(a). Let Spec(On,C(a)) be the

spectrum of the ring On,C(a). We can formulate Robinson’s result in the following
way.

Equivalent version of Robinson Theorem. The map Θ̃a : x 7→ P̃x from
hal(a) to Spec(On,C(a)) is onto.

For each prime and proper ideal P of On,C(a), let Pgen be the external set whose
elements are the nonstandard generic points of P. From the last result, we see that
hal(a) is decomposed in an external disjoint union

hal(a) =
⋃

P∈Spec(On,C(a))

Pgen

and the analytic points of Cn which are infinitly close to a are the elements of

hal(a)an = hal(a) \ (0)gen.
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11 The case of real analytic germs

11.1 A radically different situation

The situation is radically different in the real case because there exist prime and
proper ideals of On,R without any nonstandard generic point.

For instance, let P be the ideal (X2
1 + X2

2 ) of O2,R = R {X1, X2}. It is clear that
P is a prime and proper ideal which cannot have a nonstandard generic point. The
basic property which leads to the nonexistence of a generic point for P is

ξ2
1 + ξ2

2 = 0 =⇒ ξ1 = ξ2 = 0

which is true for ξ1, ξ2 ∈ R and also for ξ1, ξ2 ∈ ∗
R. In fact, in the quotient ring

O2,R/P, the elements X1 and X2 are not null but X2
1 + X2

2 = 0. As a consequence,
there is no order relation on the set O2,R/P which is compatible with its ring struc-
ture.

11.2 Ordered ring structure and generic points

Definition 6. An order structure on an integral domain A is a partition A =
A+ ∪ {0} ∪ A− such that

• A− = −A+ = {−a ; a ∈ A+}

• (a, b) ∈ A+ =⇒ (a + b ∈ A+ and ab ∈ A+)

We put a ≻ 0 for a ∈ A+, a ≺ 0 for a ∈ A− and a ≺ b for b − a ≻ 0. If such an
order structure exists, we say that A is an ordered ring (an ordered field if A is a
field).

For instance, R is an ordered field for the usual order relation < and there is no
other order relation on it.

Proposition 9. Let P be a prime and proper ideal of On,R which has a nonstandard
generic point. Then, the quotient ring On,R/P is an ordered ring.

Proof. Let ξ ≃ 0 in ∗Rn be a nonstandard generic point of P and let A+ be the
subset of A = On,R/P defined by

A+ = {f ∈ A ; f(ξ) > 0}

and let A− = −A+. It is clear that

∀f ∈ On,R/P (f ∈ A+ or f ∈ A− or f = 0)

∀(f, g) ∈ (On,R/P)2
(
(f, g) ∈ A2

+ =⇒ f + g ∈ A+ and fg ∈ A+

)

Hence A = A+ ∪ {0} ∪ A− is an order structure on the ring A. �

Given a standard prime and proper ideal P of On,R, the existence of an or-
der relation on the quotient On,R/P is a necessary condition for the existence of a
nonstandard generic point. Is this condition sufficient?
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11.3 Another example: the cusp

Now we consider the prime ideal P = (X2
2 − X3

1 ) of O2,R = R {X1, X2} generated
by the polynomial X2

2 − X3
1 . The zero set Z(P) is the germ at 0 of a cusp.

As X2
2 − X3

1 is regular of order 2 with respect to X2, for every f ∈ O2,R, there
exists in a unique way (q, f0, f1) ∈ O2,R ×O1,R ×O1,R such that f = (X2

2 − X3
1 )q +

f0 + X2f1. Thus the ring O2,R/P is isomorphic to R {X1} [X2] / (X2
2 − X3

1 ). Every
element α of this last ring can be written

α =
∑

n≥0

anXn
1 + X2

∑

n≥0

bnXn
1

and thus also
α = a0 +

∑

n≥0

an+1X
n+1
1 + bnX2X

n
1 .

We agree that α ≻ 0 when the first nonzero element in the sequence

(a0, a1, b0, . . . , an+1, bn, . . .)

is > 0 in R. In this way we get an order structure on the ring R {X1} [X2] / (X2
2 − X3

1 )
and also on O2,R/P.

We choose ξ = (ξ1, ξ2) ≃ 0 in ∗R2 such that ξ2 > 0 and ξ2
2 = ξ3

1 . Every element
f of P is defined at ξ and satisfies the condition f(ξ) = 0. Conversely, we consider
a standard f ∈ P such that f(ξ) = 0. From the Rückert’s Division Theorem, there
exists (q, f0, f1) ∈ O2,R×O1,R×O1,R such that f = (X2

2 −X3
1 )q+f0 +X2f1. Writing

f0 =
∑

n≥0 anXn
1 and f1 =

∑
n≥0 bnXn

1 we get

∑

n≥0

anξ
n
1 +

∑

n≥0

bnξn
1 ξ2 = 0.

Let ε be the infinitesimal
√

ξ1 (also equal to 3
√

ξ2). We thus obtain the relation a0 +∑
n≥1 anε2n + bn−1ε

2n+1 = 0. Then, the standard power serie with one indeterminate
Z

ϕ = a0 +
∑

n≥1

anZ
2n + bn−1Z

2n+1

is convergent and ε is a nonstandard zero of its sum. By the Uniqueness Theorem for
analytic functions, we deduce that ϕ = 0. Returning to f , we get f = (X2

2 − X3
1 )q,

that is to say f ∈ P. Hence, we have proved that ξ is a generic point for P.
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11.4 The main theorem in the real case

First we need a more accurate notion of nonstandard generic point.

Definition 7. Let P be a prime and proper ideal of On,R and an order structure ≺
on the ring On,R/P. A nonstandard generic point of (P,≺) is an element ξ ≃ 0 of
∗Rn such that, for all f ∈ On,R, the sign of f(ξ) in ∗R is equal to the sign of the
class of f in On/P.

It is clear that, if P is a prime and proper ideal of On and ≺ an order structure
on the ring On,R/P, a nonstandard generic point for (P,≺) is also a nonstandard
generic point for P in the sense of the preceding sections.

The following result was obtained by the author in 1978 [24] but never published.
It is an application of the theory of Artin-Schreier on ordered fields [1, 10, 11] and
of course, of nonstandard analysis.

Theoreme 3. Let P be a prime and proper ideal of On,R and ≺ an order structure
on the ring On,R/P. Then (P,≺) have a nonstandard generic point.

Then, we get a Real Nullstellensatz for a prime ideal.

Corollary 1. Let P be a prime ideal of On,R such that there exists an order structure
on the ring On/P. Then P = I(Z(P)).

Then, classical algebraic arguments lead us to a general Real Nullstellensatz,
first obtained by J.J. Risler [18, 21].

Risler Real Nullstellensatz. Let I an ideal of On,R. Then

I(Z(I)) = {f ∈ On,R ; ∃p ∈ N
∗ ∃g1, . . . , gs ∈ On,R f 2p + g2

1 + · · ·+ g2
s ∈ I}

11.5 Proof of theorem 3

11.5.1 The case of the null ideal (0) of On,R

We consider a standard order structure on On,R and a hyperfinite subset F of ∗On,R

which contains all its standard elements. From a generalization of a theorem of
Artin ([10] page 290) proved by Risler [18], we know that there exists a point ξ ∈
∩f∈F

∗D(f) such that, for all f ∈ F , the sign of f(ξ) in ∗R is equal to the sign of f
in On,R. Such a ξ is clearly a generic point for (0).

11.5.2 The case of O1,R

The only prime ideal of O1,R different from (0) is the maximal ideal (X). By the
evaluation map f 7→ f(0), the quotient O1,R/(X) is isomorphic to R on which there
exists a unique order structure. Hence, there exists a unique order structure ≺ on
O1,R/(X) and 0 ∈ R is a generic point for ((X),≺).
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11.5.3 The general case

We will now argue by induction on the number n of indeterminates. So we suppose
the theorem is true for On−1,R. Let P 6= (0) be a prime and proper ideal of On,R

and ≺ an order structure on On,R/P. After a possible change of variables, and
using the Preparation Theorem, we may suppose that there is, in P, an element
h = Xk

n + a1X
k−1
n + · · ·+ ak ∈ On−1,R [Xn] with a1(0) = . . . = ak(0) = 0.

The relation ≺ defines in a unique way an order structure on the fraction field
Kn(P) of On,R/P. The set P ′ = P ∩ On−1,R is a prime and proper ideal of On−1,R

and ≺ defines an order structure on the fraction field Kn−1(P ′) of On−1,R/P ′. Thus,
Kn(P) is an ordered extension field of Kn−1(P ′).

Lemma 1. The field Kn(P) is a simple algebraic extension of Kn−1(P ′).

Proof. Denote by π : On,R → On,R/P and π′ : On−1,R → On−1,R/P the canonical
projections. In On,R/P we get

π (Xn)k + π′ (a1) π (Xn)k−1 + · · · + π′ (ak) = 0.

Thus π (Xn) is an element of Kn(P) which is algebraic on Kn−1(P ′). Using the
Division Theorem, we see that for every f in On,R, there exists a polynomial P with
coefficients in Kn−1(P ′) such that π(f) = P (π (Xn)). �

By induction, (P ′,≺) has a generic point ξ′ = (ξ1, . . . , ξn−1). The evaluation
map f 7→ f(ξ) defines an external morphism τ ′ of ordered field from Kn−1(P ′) to
∗
R. Furthermore, the transfer principle implies that ∗

R is a real closed field. By the
lemma and using the theory of real fields of Artin-Schreier[11], we can see that τ ′

has an extension τ from Kn(P) to ∗R which is also a morphism of ordered field. Let
ξn = τ (π (Xn)). We are going to show that ξ = (ξ1, . . . , ξn−1, ξn) is a generic point
for (P,≺).

From the definition of ξ we obtain

ξn = −a1(ξ
′) − a2(ξ

′)ξ−1
n − · · · − ak(ξ

′)ξ1−k
n

As ai(0) = 0 and ξ′ ≃ 0, we see that ξn must be infinitesimal.

For all f ∈ On,R, the sign of τ(π(f)) is equal to the sign of π(f). Furthermore,
we can suppose that f = hq + P where h ∈ P ∩ On−1,R [Xn] and P ∈ On−1,R [Xn].
Thus, h(ξ) = τ(π(h)) = 0, τ(π(f)) = τ(π(P )) = P (ξ) and f(ξ) = P (ξ). Hence, ξ is
a generic point for (P,≺).

11.6 Equivalent version of theorem 3

Given a ∈ Rn we introduce the ring On,R(a) of real analytic germs at a and the halo
hal(a) of a in ∗

R
n. For each x ∈ hal(a), we consider the set

P̂x = {f ∈ On,R(a) ; f(x) = 0}.

Then P̂x is a prime and proper ideal of On,R(a). Furthermore, there exists on
the quotient ring On,R(a)/P̂x an order relation ≺x defined by 0 ≺x f if and only if
0 < f(x).
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Let SpecRe(On,R(a)) be the set whose elements are the pairs (P,≺) where P
is a prime proper ideal of On,R(a) and ≺ an order relation on the quotient ring
On,R(a)/P. Then, we can formulate our last result in the following way.

Equivalent version of theorem 3. The map Θ̂a : x 7→ (P̂x,≺x) from hal(a)
to SpecRe(On,R(a)) is onto.

For each standard (P,≺) in SpecRe(On,R(a)), let Gen(P,≺) be the external
set whose elements are the nonstandard generic points of (P,≺). Thus hal(a) is
decomposed in an external disjoint union

hal(a) =
⋃

(P,≺)∈SpecRe(On,R(a))

Gen(P,≺)

Let R(On,R(a)) be the set of order relation on the ring On,R(a)). It is natural to say
that elements of

hal(a)Re-an = hal(a) \
⋃

≺∈R(On,R(a))

Gen((0),≺)

are real analytic points of ∗Rn which are infinitely closed to a.

The author thanks M. Berthier, P. Cartier, A. Fruchard and J.P. Furter for their
remarks and suggestions.
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