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Introduction

Most mathematical theories aim at classifiying objects in a certain category.

Such classifications usually proceed in two steps:

(1) Definition of irreducible1objects.

(2) Decomposition, often unique, of arbitrary objects as (twisted) products of
irreducible objects.

Examples: Prime numbers and factorisation of integers, Finite simple groups
and Jordan-Hölder sequences.

• A third example: complex (finite-dimensional) Lie algebras L. These are
functorially decomposed in two steps: First as unique extensions: 0 → R → L →
S → 0 of a semi-simple S by a solvable R.

Then R is canonically decomposed as a sequence of extensions of Abelian alge-
bras, by means of its derived series.

Here extensions play the role of twisted products, Solvable (resp. Abelian) and
semi-simple Algebras are the irreducible objects in the first (resp. second) step.

The qualitative structure of an arbitrary L can then be understood from the
antithetic properties of its “components” R and S, the properties of R being further
deduced from its “decomposition” as a tower of abelian algebras.

1or primitive, indecomposable, etc...
1991 Mathematics Subject Classification : 14C30, 14E22,14E30, 14G05,14J20, 14J40, 32J25,

32J27, 32Q15, 32Q30,32Q45,32Q57.
Key words and phrases : Complex Projective Manifolds, Kodaira Dimension, General Type,

Rational Connectedness, Orbifolds, fibrations, Minimal Model Program, Rational points,Potential
Density, Kobayashi Hyperbolicity.

Bull. Belg. Math. Soc. 13 (2006), 827–842



828 F. Campana

• The aim of the present talk 2 is to describe a formally similar decomposition
for the category of complex projective manifolds.

This analogy rests on the following dictionary:

Lie Algebras Projective Varieties
Semi-simple hyperbolic

Solvable Special
Abelian Spherical, or flat

Extension Fibration
Kernel General Fibre

Quotient Orbifold Base

• Let us explain very briefly the rough meaning of the terms in the rightmost
column:

A fibration f : X → Y is a surjective map3 with connected fibres.
Its general fibres F are smooth, but not necessarily pairwise isomorphic as com-

plex manifolds, although they are diffeomorphic, and even real analytically iso-
morphic4. Usually, they “degenerate” to singular fibres located over a complex
codimension one subset D of the base Y .

Then X may be roughly seen as a twisted product of (the deformation class of)
F by its orbifold base.

This orbifold base (which is the main new ingredient of the constructions de-
scribed here) is a virtual ramified covering of Y .

This virtual ramified cover (see remark 1, in §4, and §6 for more details) branches
exactly over the locus of so-called multiple fibres, with order prescribed by the mul-
tiplicities, and is constructed so as to virtually eliminate them.

In the often occuring case where f has no multiple fibres, the orbifold base is
simply the actual base Y .

• We shall thus define and describe non-technically:

(1) The 3 pure geometries: hyperbolic, flat and spherical.
(2) The special geometry. It will turn out (see theorem 3 in §5) that it should

be the orbifold combination of the spherical and flat geometries.
(3) A decomposition theorem, for any X, by means of a single fibration (called

the core of X) splitting X into its antithetical parts: special (the fibres), and hy-
perbolic (the orbifold base). See theorem 2 in §5.

Conjecturally, this fibration splits X arithmetically, too (and also according to
other properties, as well).

In the last §7, we have given technically precise definitions.

2held in Gent, May 2005, on the occasion of the BeNeLuxFr mathematical meeting.
3meromorphic; for simplification assumed to be holomorphic, here.
4one says that the complex structure “deforms”.
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1 Projective varieties

The complex projective manifolds play a central role in various areas of mathe-
matics (symplectic and differential geometry, algebraic topology, partial differential
equations, algebraic groups, arithmetics) and physics.

We shall denote with X a compact connected complex analytic manifold which is
projective, that is: admits a holomorphic embedding h : X → PN in some complex
projective space PN . We let n be the complex dimension of X, half of its real
dimension. When n = 1 (resp. 2), we say that X is a curve (resp. a surface).

There are many compact complex manifolds which are not projective: this can be
due to topological obstructions (Hopf surfaces), but also to deformations of complex
structures (complex tori).

• Algebraic and Analytic Structures.

By a result of Chow, the image h(X) ⊂ PN of X is defined by homogeneous
polynomial equations : h(X) := {x = (x0 : x1 : · · · : xN ) ∈ PN |Pj(x) = 0, ∀j =
1, . . . , k}, the Pj(x)′s, j = 1, 2, . . . , k being nonzero homogeneous polynomials on
CN+1.

When X is defined by a single homogeneous equation of degree d ≥ 1, we say that
X is a (smooth) hypersurface of degree d, and write X = Hd

5. When d = 1, X ≡ Pn,
when d = 2, we say that X is an (n-dimensional) quadric, and a cubic, quartic,
quintic,· · · , when d = 3, 4, 5, · · · .

Then X becomes an algebraic variety. The algebraic structure being indepen-
dent of h, by Serre’s GAGA principle: the global analytic objects on X(defined by
holomorphic or meromorphic functions) coincide with the algebraic objects (defined
by polynomials or rational functions). Thus complex projective manifolds can be
studied both by analytic (or “transcendental”), and algebraic methods. Some results
being known only by one of the two methods.

One remarkable example of results obtained by algebraic methods (with a strong
arithmetic flavour), and entirely inaccessible by known analytic or characteristic zero
algebraic methods is the construction in 1981 by S. Mori of rational curves on pro-
jective manifolds with non-semipositive canonical bundle. The proof proceeds by
reduction modulo p (all suitable primes), using the fact that the iterated Frobenius
automorphism produce covers of curves of arbitrarily large geometric degrees with-
out increasing the genus. The rational curves so produced have now become the
main tool for the study of manifolds of spherical geometry mentioned above.

When X is described by equations, its intrinsic geometric properties are not
apparent at all. The immediate invariants, such as number and degrees of equations,
are extrinsic (depend on the embedding) and usually give few or no insight on the
structure of X, except for the rough impression that the complexity of the structure
of X increases with the degrees (but even this is not always true (rational normal
curve of degree d in Pd): the embedding may be complicated even if X is simple).

5These are not biholomorphic when n ≥ 3, but form one deformation family.
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Centuries (or rather two and half millenia) of experience led to extract one
single invariant which seems to governs the entire geometry of X. And not only its
qualitative geometry (what is understood by this is particularly difficult to describe
precisely, and we shall not attempt to do it), but also conjectural aspects, at first
sight totally unrelated: its arithmetics and its complex hyperbolicity properties.
This single invariant is the canonical bundle KX and its positivity or negativity
properties (in rough terms, made precise below).

• Arithmetic Structure.
If Pj(x) ∈ k[x], j = 1, . . . , k, k a number field (ie: a finite extension of Q,

generated by an algebraic number α)6 , X gets an arithmetic structure. Its object of
study is the set X(k) of points of X with all coordinates in k (the so-called k-rational
points of X).

This set X(k) depends considerably on the coefficients of the equations defining
X (even when then remain in k), and its determination is a problem of arithmetic
nature7.

But things change drastically if we allow finite extensions k′/k of k: X is po-
tentially dense if X(k′) is dense in X for some finite extension k′/k. This property
seems to be of geometric nature. We shall give below a conjectural geometric char-
acterisation of potentially dense projective manifolds.

Simplest example of potentially dense X with X(k) = ∅: the conic: x2+y2+z2 =
0, defined over k = Q. Then X(Q) = ∅, while X(Q[i]) is dense.

Another less trivial example is given by the Fermat curves Xd: it was shown by
Euler that X3(Q) = {(1 : −1 : 0), (1 : 0 : 1), (0 : 1 : 1)}, however X3 is potentially
dense. By contrast, Xd is not potentially dense for d ≥ 4. See §2 below.

• Complex hyperbolicity.
If V is any complex connected manifold the Kobayashi pseudometric dV is a

metric (in general degenerated in the sense that dV (x, y) may vanish for two dis-
tinct points on V ) defined as the largest pseudometric d on X such that for any
holomorphic map h : D → X, and any u, v ∈ D, one has: dD(u, v) ≥ d(h(u), h(v)),
where dD is the Poincaré’s metric on the unit disc D. (The two meanings for dD are
shown then to coincide). Any holomorphic f : V → W is then distance decreasing:
f ∗(dW ) ≤ dV .

A fundamental (although trivial) fact is: dC ≡ 0: because D can be mapped to C

by u → n.(u+a), for any n > 0, a ∈ C, which shows that dC(z, z′) ≤ n−1.|z′−z|, ∀n >
0.

Thus dV (a, b) = 0 if a, b ∈ V lie in some entire curve h(C), where h : C → X is
any holomorphic map. If two arbitrary points in V can be joined by an entire curve
h : C → V , then dV ≡ 0. (The converse for V = X projective is not known, but

6But one could take any finitely generated extension of Q, and this would apply to any projective
X .

7Fermat’s last theorem is the statement that Xd(Q) = {(1 : −1 : 0), (1 : 0 : 1), (0 : 1 : 1)} for
any d > 2, Xd ⊂ P2 the Fermat curve defined by xd + yd − zd = 0.
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quite adequately provides a seemingly good intuitive feeling for this pseudometric,
in the complex projective case, at least). For example: dPN ≡ 0, and dT ≡ 0, if T is
a complex torus Cn/Λ, with Λ ∼= Z⊕2n a lattice in Cn.

In the opposite direction, if dV > 0 (meaning that dV (a, b) > 0 for any two
distinct points a, b ∈ X, one says that V is complex hyperbolic. The distance dV

then defines the same topology as the metric topology on V . This property has been
investigated by S. Kobayashi, who showed that holomorphic maps to complex hy-
perbolic manifolds behave like maps to bouded domains of Cn (which are particular
examples, as well as their compact quotients, all projective).

A theorem of Brody asserts that X, compact complex, is complex hyperbolic if
and only if all holomorphic maps from C to X are constant. In particular, a complex
hyperbolic projective manifold X does not contain any rational curve (ie: a curve
isomorphic to P1).

The Kobayashi pseudometric, transcendentally defined, and qualitatively deter-
mined only in very rare cases (such as curves, see below), will be given below a
conjectural simple description of algebro-geometric nature in arbitrairy dimension
n, by means of the above core.

• This description, and its arithmetic analogue, are inspired by, and extend,
the conjectures of S. Lang, who formulated them for manifolds of general type.
They establish an equivalence between geometry (positivity of KX), arithmetics,
and complex hyperbolicity.

To give an example: it is conjectured that X being special (in the precise sense
defined below) is equivalent to being potentially dense, and also to have dX ≡ 0.
This last condition may also mean that two arbirary points are joined by an entire
curve on X).

2 Curves

Let X be a curve (projective complex). Differentiably, X is an orientable surface
X∞, ie: a sphere with g handles, for some unique g(X) = g, where g ≥ 0 is an
integer called the genus of X. The 3 pure geometries are determined by the genus.

One has: g = 0 : X∞ = S2, g = 1 : X∞ = S1 × S1, g ≥ 2 : X∞ = ♯g
1(S

1 × S1)

g X deg(KX) π1(X) dX X(k′)
0 P1 < 0 {1} ≡ 0 dense
1 C/Λ 0 Λ ∼= Z2 ≡ 0 dense

≥ 2 D/Γ > 0 Γ=Fuchsian group > 0(Liouville′stheorem) finite

• The degree of the canonical bundle KX : deg(KX) := Z − P ; where Z is the
number of zeros, P is the number of poles of w, and w is any nonzero differential
meromorphic 1-form on X, written w(z) = f(z)dz, f meromorphic nonzero, in any
local complex coordinate z.

For example, if X = P1, then w(z) = dz = −du/u2, has no zero, and a double
pole at infinity (u = 0). The degree of KP1 is thus −2.
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If X = C/Λ is an elliptic curve, the translation invariant form dz on C descends
to a 1-form of X without zero and pole. Thus degree of KC/Λ is 0.

More generally, if X ⊂ P2 is a curve (hypersurface) of degree d, one shows that
deg(KX) = d(d− 3). Because the degree of KX is also equal to 2g − 2, the genus of
X is given by g = (d− 1)(d− 2)/2. In particular, we recover the fact that g = 0 for
d = 1, 2, and g = 1 for d = 3. And that g = 3, 6, 10 for d = 4, 5, 6.

Z The sign of the canonical bundle is the opposite of the sign of the Ricci
curvature (of an hermitian metric of constant curvature).

• Arithmetic Structure. Potentially dense curves (see Section 1) are thus exactly
those with genus 0 or 1. For g = 0, this is easy. But for elliptic curves, one has
already to produce points with algebraic coordinates of infinite order. The set X(k)
for k a number field is then an abelian group (for the addition law, once an origin
has been fixed) shown to be of finite rank by Mordell-Weil (this rank was introduced
by Poincaré, who seemed to have considered its finiteness as self-evident).

When g(X) ≥ 2, X(k) is a finite set, for any number field over which X is
defined. This is Mordell’s conjecture, showed by G. Faltings in 1983.

• Complex hyperbolicity. Again, the situation is entirely similar: the curve X is
complex hyperbolic if and only if g(X) ≥ 2. This is an immediate consequence of
the Poincaré-Koebe uniformisation, and Liouville’s theorem.

• The trichotomy. We see the appearance of three geometries, clearly distinct at
the level of fundamental group, arithmetics and Kobayashi pseudometric.

g deg(KX) Geometry
0 < 0 Spherical Special
1 0 Flat Special

≥ 2 > 0 Hyperbolic

The first two geometries KX < 0, KX ≡ 0, respectively termed here spherical and
flat, differ in a relatively minor way, and define in dimension 1 the special geometry,
antithetical of the third one (KX > 0), termed hyperbolic.

3 The three pure geometries: numerical version

• Intersection numbers.

The sign of KX will be used to define the 3 pure geometries in higher dimensions
also.

The canonical bundle KX := det(Ω1
X) is the (complex) line bundle on X whose

meromorphic sections are the global meromorphic volume forms w, written in local
complex coordinates z = (z1, . . . , zn): w(z) = f(z).(dz1 ∧ · · · ∧ dzn), f(z) meromor-
phic.
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For any projective complex curve C traced on X, define: KX .C := Z−P , where
Z (resp. P ) is the number of zeros (resp. poles) of w restricted to C, (provided w
does not vanish identically on C, and C is not contained in the locus of poles of w
(for a given C, there are lots of such w′s, and the resulting number does not depend
on the choice of w)).

In general, the restriction to C of w is not a 1-form on C, and so KX .C 6=
deg(KC).

The difference is the degree of the normal bundle to C in X, analogue of the
second fundamental form of Riemannian geometry.

• The sign of the canonical bundle.

The 3 pure geometries are then defined by the fact that the sign of KX .C be
constant, independent on the curve C traced on X.

This condition is, of course, satisfied if X is a curve (since X = C is the only
choice!), but turns out to be very restrictive if n ≥ 2.

We thus obtain the 3 possible signs 8, generalising directly the case of curves:

Sign of KX Definition Examples
KX < 0: Spherical KX .C < 0 Pn; (G/P ); Hd, d ≤ n + 1

KX ≡ 0: Flat KX .C = 0 (Cn/Λ); Hn+2

KX > 0: Hyperbolic KX .C > 0 (B/Γ); Hermit.Loc.Symmetric Spaces; Hd, d ≥ n + 3

Notations: Hd is a smooth n-dimensional hypersurface of degree d > 0 in Pn+1,
defined by one homogeneous polynomial equation of degree d.

And (G/P ) is a rational homogeneous manifold (such as Pn, a Quadric, or a
Grassmannian).

B is the unit ball in Cn.

• Known and expected similarities with curves are summarised in the following
tableau:

Sign of KX Fundamental group dX X(k′)
KX < 0 (spherical) {1} ≡ 0 dense ?

KX ≡ 0 (flat) Virtually abelian ≡ 0? dense?
KX > 0 (hyperbolic) No structure form. gen. > 0? (Lang) gen.finite? (Lang)

Notation: On the last line, the symbols: gen. > 0 and gen.finite mean that the
property holds on the complement U := X − S of some suitable proper algebraic
subset S of X. The symbol ? means that the property is conjectured.

Fundamental groups of arbitrary hyperbolic manifolds are completely unknown.
No general pattern emerges from the known examples, although there are many
restrictions, mainly derived from Hodge theory.

8Omitting a condition on the top intersection number of KX , conjecturally always satisfied,
and easy to check in practice
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More on the Spherical geometry.

This is the simplest geometry, the results on the first line of the above table
(when KX < 0) are obtained using the characteristic p > 0 methods introduced by
S. Mori, and more precisely using the following:

Theorem 1. If KX < 0 , then X is rationally connected (RC, for short).

Definition 1. We say X is rationally connected if, for any x, y ∈ X, there exists a
holomorphic map h : P1 → X such that h(0) = x, and h(∞) = y.

For example, Pn is RC, since two points are connected by a projective line. Thus
RC manifolds (and so manifolds with K < 0) contain many lines, which let them
look like Pn (up to a certain limited extent), and strongly influence their geometry.

Proposition 1. Assume X is RC. Then:

1. π1(X) = {1}.

2. dX ≡ 0.

(The second assertion is obvious).
We see here how the hypothesis of negativity of KX translates into a strong

geometric information (the rational connectedness) which dictates essentially all the
qualitative geometry of X. Even more is true: Kollàr-Miyaoka-Mori could prove in
1992 the finiteness of the number of deformation families of spherical9 manifolds in
every dimension n, using quantitative versions of the rational connectedness state-
ment above.

The proof of the rational connectedness theorem roughly goes as follows (to
produce the initial step: one rational curve): take any curve C on X. Then deform
it remaining isomorphic to itself through one base point a ∈ C fixed. The existence of
non-trivial deformations requires two properties: KX .C < 0 (here our assumption
comes in: it may be seen as saying, in much weaker, that there are infinitesimal
vector fields along C pointing in some direction). But actual deformations will exist
only after reduction modulo p. Then a degeneration of the deformed C will contain
a rational curve R through a. One has still to lift to characteristic zero. Which can
be made because the rational curve R can be splitted (bent and broken) as long as
(−KX).R > (n + 1), which is optimal (lines on Pn).

• When n ≥ 3, the geometry of spherical manifolds can however be very different
from the geometry of Pn: they do not need to be rational (ie: birational to Pn), or
even maybe to be unirational: dominated meromorphically by Pn. This last question
is open.

On the arithmetic side, it has been shown by Harris-Tschinkel that quartics in
P4 are potentially dense, which is very interesting, because these are known to be
nonrational (Fano-Iskovskih-Manin), and are even expected to be non-unirational.

9Their usual name is Fano manifolds, introduced by V. Iskovskih.
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4 Special manifolds

Our approach to the special geometry will be based on the following one-dimensional:

• Observation: If f : X → Y is a holomorphic surjective map between pro-
jective curves X and Y , then deg(KX) ≥ deg(KY ). (Because f is then a ramified
cover of Y of a certain degree d ≥ 1. If w is a (generic) nonzero meromorphic 1-form
on Y , with Z zeros and P poles, then f ∗(w) is such on X. And it has at least d.Z
zeros, and at most d.P poles on X).

This reflects a general principle: the positivity of KY restricts the existence of
(meromorphic) maps to Y .

In particular: if X is a special curve, there is no surjective holomorphic map
from X onto a hyperbolic curve.

Definition 2. X is said to be special if there exists no fibration f : X → Y with
base orbifold hyperbolic, and with dim(Y ) > 0.

(A precise definition of the orbifold base is given in in §. 7.)

Example 1.
1. If KX > 0, then X is not special (if n > 0): take f = idX : X → Y = X.

2. If KX < 0, or if KX ≡ 0, then X is special (more difficult when n ≥ 2: the
proof depends on an orbifold version of particular case of conjecture Cn,m).

3. Conversely, any special X can be canonically decomposed10 as a tower of
fibrations with fibres having either KX < 0, or KX ≡ 0, in a suitable orbifold
birational sense. This decomposition should permit to reduce the conjectures below
to the two particular cases K < 0 and K ≡ 0.

Remark 1. The orbifold base of f : X → Y was said to be a virtual ramified
covering ρ : Y ′ → Y branching over the locus of so-called multiple fibres of f . See
§. 7 for details.

This role played by the orbifold base consists in replacing everywhere KY by
KY + ∆(f) (which increases the positivity of KY ), with ∆(f) being the ramification
divisor of the (virtual, not existing, in general) ρ : Y ′ → Y which would by base
change, eliminate the multiple fibres of f .

The special manifolds should be viewed as higher dimensional analogues of ra-
tional and elliptic curves.

Conjecture 1.
1. If X is special, then π1(X) is virtually abelian.

2. X is special if and only if dX ≡ 0.
3. X is special if and only if X is potentially dense (replacing number fields by

fields finitely generated over Q)

4. If X is special, so are any of its deformations and specialisations.

10conditionally, under an orbifold version of Cn,m conjecture
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Some (of the few) known cases:

The property 1. is known when n = 2, also when π1(X) has a faithful repre-
sentation in some Gl(N, C), and also when KX < 0 or KX ≡ 0. In fact, it can be
shown that a surface is special if and only if it is not hyperbolic, and has virtually
abelian fundamental group. This last result does not extend to n ≥ 3.

Except for very few cases, 2. is known only when n ≤ 2, except maybe when
X is a hyperbolic surface (in which case it is equivalent to Lang’s conjecture), and
also for submanifolds of complex tori. It is known in particular for K3 surfaces (eg:
quartics in P3).

A partial result in this direction is the following: assume that there exists a
meromorphic map: h : Cn → X which has rank n at some point of Cn. Then X is
special. The link with dX is that dX then vanishes on the closure of h(Cn), which
contains a nonempty open subset of X.

Except for some very particular and isolated cases, 3. is known for curves,
complex tori, again K3 surfaces (provided their Néron-Severi group is not cyclic),
and also some specific elliptic surfaces with canonical dimension κ = 1 (see below).

. Remark The condition dX ≡ 0 can be geometrically interpreted as follows if
one accepts that dX(a, b) = 0 if and only if a and b are joined by some entire curve
on X. Then dX ≡ 0 means that two arbitrary points can be joined by such an entire
curve. This is a transcendental analogue of rational connectedness. The example of
simple Abelian varieties shows that this property might not be seen algebraically.

5 Decomposition: the core

Theorem 2. For any X, there exists a unique fibration

cX : X → C(X), called the core of X, such that:

1. Its general fibres are special, and

2. Its orbifold base is hyperbolic.

This is analogous to Levi-Malčev (semi-simple by solvable) for Lie algebras. The
core splits the geometry of X into its two antithetical components: special (the
fibres), and hyperbolic (the orbifold base). And X is special if and only if C(X) is
a point, while X is hyperbolic if and only if C(X) = X.

Examples.

• For curves, the core is either constant (if g = 0, 1), or the identity map (if
g ≥ 2).

• When n = 2, there are several cases: either X is special, or dim(C(X) = 1,
or dim(C(X)) = 2, which happens if and only if X is hyperbolic. The second case
dim(C(X)) = 1 happens if and only if (after a finite unramified cover), X admits
an elliptic fibration J : X → C over a curve C with g(C) ≥ 2.

• The core is functorial for surjective holomorphic maps f : X → Y ; ie: it induces
functorially a map cf : C(X) → C(Y ) such that cY ◦ f = cf ◦ cX . If u : X ′ → X
is a finite unramified cover, then cu : C(X ′) → C(X) is finite (ramified, in general).
This fact is surprisingly hard to show.
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The core is expected to split X also at the arithmetic and complex hyperbolic
level, which yields the following conjectural description of the Kobayashi pseudo-
metric, and of the distribution of k-rational points of any X.

Conjecture 2. There exists a proper algebraic subset S ⊂ C(X) such that for any k
(finitely generated over Q), cX(X(k))∩U is finite, if U := X−S ′, and S ′ := c−1

X (S).

Conjecture 3. There exists a (unique) pseudometric δ on C(X) such that dX =
c∗X(δ), and δ > 0 on U (the same as in conjecture 2).

Moreover, δ is the (naturally defined) Kobayashi pseudometric of the base orbifold
of cX .

This conjecture combines the conjecture 1 and an orbifold version of Lang’s
conjectures. One can formulate these conjectures more precisely.

Remark Again if one assumes that dX(a, b) = 0 if and only if some entire curve
on X joins a and b, one gets a more geometric picture of the complex hyperbolicity
conjecture above: any entire curve on X is contained either in some fibre of cX , or
in S ′ := c−1

X (S).

6 The decomposition of the core

Finally, we have the following conditional decomposition of the core; assuming
that the orbifold conjecture Corb

n,m holds11:

Theorem 3. cX = (J ◦ r)n is canonically composed of fibrations J (resp. r) with
fibres flat (resp. spherical), in a suitable orbifold sense.

In particular, special geometry is the orbifold combination of flat and spherical
geometries.

This second result should permit to inductively reduce the proofs of properties
of special manifolds (such as the ones conjectured above) to their orbifold versions
in the flat and spherical cases.

CAUTION: The above two theorems 2 and 3 are proved, not for the pure
numerical geometries as defined in Section 3, but for weaker birational variants (de-
rived from the asymptotic behaviour of the pluricanonical linear systems). However,
the aim of the so-called Log Minimal Model Program is (or should be) to prove that
the two notions actually coincide, after suitable birational transformations.

On the other hand, the results presented here are, more generally, valid for
compact Kähler manifolds. The conjectures stated (except those concerned with
arithmetics) can be maintained for this larger class.

11See section 7.6 below for its statement.
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7 Base orbifolds

We shall give some more precise definitions of the notions introduced, assuming
from the reader some notions of complex geometry (Kodaira Dimension,for exam-
ple). We start with:

7.1 A simple motivating example

Let E, C be an elliptic (resp. a hyperelliptic) curve.

Let t : E → E (resp. h : C → C) be a translation of order 2 (resp. the
hyperelliptic involution).

Thus C/ < h >∼= P1, and the natural quotient v : C → C/ < h > ramifies at
order 2 above N = 2(g(C) + 1) points p1, . . . , pN ∈ P1.

Thus, t × h : X ′ := E × C → X ′ is a fixed-point free involution.

Let u : X ′ → X := X ′/ < t × h > be the (étale, of degree 2) quotient map.

We thus get a commutative diagram:

E × C = X ′ u
//

J ′

��

X

J
��

C
v

// P1

Notice that J ′, J are the natural projections, but also the Moishezon-Iitaka fi-
brations of X ′, X respectively.

Now u is étale, so X ′ and X possess all the same qualitative properties (arith-
metic, Kobayashi pseudometric, fundamental group). However, X ′ has a quotient
of general type (C), while X has no such quotient.

Or, better said, we should consider P1 here as being of general type, by looking
at X only.

• One object remains, which keeps track of the construction made: the multiple
fibres of J . These are double fibres lying exactly above the points p1, . . . , pN .

If we “enrich” the canonical bundle of P1 by the orbifold divisor

∆(J) :=
N∑

1

(1 − 1/2).pj,

we get: v∗(KP1 + ∆(J)) = KC .

In other words, due to the multiple fibres of J , we should consider that the
canonical bundle of P1 has been increased by the ramification term ∆(J). This is
the process of virtual elimination of multiple fibres that we shall now generalise.
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7.2 Orbifold base of a fibration

• Orbifolds

Let Y be projective smooth, connected.

An orbifold divisor (on Y ) is any ∆ :=
∑

J(1 − 1/mj).Dj, J finite, mj > 0
integers, Dj distinct prime divisors. Notice: if mj = 1, Dj does not appear.

Orbifold:=pair (Y/∆). Canonical bundle: K(Y/∆) := KY + ∆ (on Y ).

Canonical (or Kodaira) dimension: κ(Y/∆) := κ(Y, KY + ∆) (lies between
dim(Y ) and κ(Y )).

• Orbifold Base of a fibration

f : X → Y a fibration onto, connected, regular, Y, X smooth connected.

• Let D ⊂ Y be a prime divisor. f ∗(D) =
∑

H mh.Dh+R, where: f(Dh) = D, ∀h,
while f(R) has codimension 2 or more in Y .

Define: m(f, D) := inf{mh, h ∈ H}.
This differs from the classical multiplicity m∗(f, D), in which inf is replaced by

gcd.

Notice: m(f, D) = 1 for all but finitely many D′s.

Define: ∆(f) :=
∑

D(1 − 1/m(f, D)).D.

The sum is finite, and defines an orbifold divisor on Y .

The orbifold base of f is (Y/∆(f)).

Main invariant: κ(Y/∆(f)) := κ(Y, KY + ∆(f)).

Remark: When, in addition, X is equipped with an orbifold divisor ∆X , we
also define an orbifold divisor ∆(f, ∆X)) on Y in such a way that if ∆X = ∆(g), for
a fibration g : Z → X, then ∆(fg) = ∆(f, ∆(g)) (in nice situations at least).

7.3 Birational equivalence

• The birational equivalence of fibrations f, f ′ is the one generated by commu-
tative diagrams:

X ′ u
//

f ′

��

X

f

��

Y ′ v
// Y

in which u, v are birational.

We write: f ∼ f ′.

• In this situation: κ(Y ′/∆(f ′)) ≤ κ(Y/∆(f)).

Strict inequality may occur (but only when κ(Y ) = −∞).
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f ′ can be constructed explicitely such that: f ′ ∼ f , and κ(fY ′/∆(f ′)) is min-
imum: flatten f by birational base change, and smoothen the main component of
the fibre product.

• We define: κ(f) := inf{κ(f ′), ∀f ′ ∼ f}.
This is now a birational invariant, defined for f : X → Y meromorphic, and

X, Y arbitrary irreducible varieties.

• We say that f is a fibration of general type if κ(f) = dim(Y ) > 0. These will
play a central role in our constructions.

7.4 Fibrations of general type and Bogomolov Sheaves

A Bogomolov Sheaf on X is a rank-1 coherent subsheaf L ⊂ Ωp
X , p > 0, such that

κ(X, L) = p.
(This is the maximum possible, after Bogomolov’s theorem). One defines κ(X, L)

by making L free on some birational model of X.
Let Bog(X) the (possibly empty) set of Bogomolov sheaves on X.

Theorem 4. There exists a natural bijection between Bog(X) and (equivalence
classes of) meromorphic fibrations f : X → Y which are of general type.

Idea (from f to Bog(X): if f : X → Y is of general type, with p := dim(Y ) > 0,
define Lf to be the saturation of f ∗(KY ) ⊂ Ωp

X . It will contain f ∗(KY )+⌈f ∗(∆(f))⌉,
and will so belong to Bog(X).

• This correspondance works for the inf -multiplicities, but not for the classical
gcd-multiplicities, and is one of the main reasons for the introduction of the former
ones).

7.5 Orbifold additivity

Theorem 5. Let f : X → Y be a regular fibration; X, Y smooth. Let ∆X be an
orbifold divisor on X. Assume some snc conditions, and that: κ(Y/∆(f, ∆X)) =
dim(Y ).

Then: κ(X/∆X) = dim(Y ) + κ(Xy/(∆X)|Xy
), for general y ∈ Y .

This (together with its proof) is an orbifold extension of the famous result of E.
Viehweg, in which ∆X = ∅, and Y is of general type. But its range of application is
much larger, since it allows cases when κ(Xy), or κ(Y ) are −∞.

If ∆X = ∅, we get:

Corollary 1. Let f : X → Y be a fibration of general type. Then κ(X) = dim(Y )+
κ(Xy), for y ∈ Y general.

In particular, if κ(X) = 0, then dim(Y ) = 0.

Central here is the following, which motivated Theorem 2:
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Corollary 2. Let f : Z → X and g : X → Y be (meromorphic) fibrations. Assume
that:

1. gf : Z → Y is of general type.
2. fy : Zy → Xy is of general type for y ∈ Y general.
Then: f : Z → X is of general type.

Idea: Apply (on suitable models) Theorem 5 to ∆X := ∆(f), considering the
diagram:

Z
f

//

gf
  @

@

@

@

@

@

@

X

g

��

Y

7.6 The orbifold conjecture C n,m:

This is the statement of theorem 5, but without assuming that κ(Y/∆(f, ∆X)) =
dim(Y ), and with the conclusion replaced by: κ(X/∆X) = κ(Y/∆(f, ∆X))+κ(Xy/(∆X)|Xy

),
for general y ∈ Y .

Without orbifolds, it was formulated by S. Iitaka, and remains open in general.
Theorem 2 of §5 depends on it (but might be approached also from the geometry of
orbifold rational curves).

7.7 Special manifolds II.

Definition: A (connected projective) manifold (or variety) X is said to be spe-
cial if there is no meromorphic fibration f : X → Y of general type (or, equivalently,
if Bog(X) = ∅).

This property is birational.

Examples:
• If Xis of general type, then X is not special (f = idX).
• If X is RC, then X is special (κ(X, L) = −∞ for any rank one L ⊂ Ωp

X , p > 0).
• If κ(X) = 0, then X is special (corollary 1 of theorem 2).
• Caution! Being special does not depend on the Canonical (“Kodaira”)-

dimension alone. For example, for any n > 0, and κ ∈ {−∞, 0, 1, . . . , (n − 1)},
there exists X special, n-dimensional, with κ(X) = κ.

• If X is special, so is Y if there exists a dominating rational f : X → Y . So is
also any finite étale cover X ′ of X.

• If any two generic points of X, smooth, can be connected by a connected
chain of special subvarieties, then X is special. (The cone over a curve of general
type gives a couterexample in the singular case).
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• If X is special, its Albanese map is surjective, has connected fibres, and no
multiple fibre in codimension one. (When κ(X) = 0, this slightly strengthens a
result of Y. Kawamata).

7.8 The core II.

Recall the statement:

Theorem 6. For any projective (connected) manifold X, there exists a unique
(meromorphic, almost holomorphic) fibration cX : X → C(X), called the core
of X, such that:

1. its (general) fibres are special.
2. it is either of general type, or constant (this if and only if X itself is special).

• Idea of proof:
The existence is a consequence of orbifold additivity:
Take f : X → Y be of general type with dim(Y ) maximum. This is the core

of X. Indeed: if not, the fibres of f are not special, and one can construct (using
Chow Schemes) a factorisation f = gh of f , by fibrations h : X → Z and g : Z → Y
such that: dim(Z) > dim(Y ), and the restriction: hy : Xy → Zy is of general type
for y ∈ Y general. But then corollary 2 of orbifold additivity shows that h : X → Z
is of general type, contradicting the maximality of dim(Y ).

The uniqueness is a consequence of:

Lemma 1. Let f : X → Y and g : X → Z be (meromorphic) fibrations. Assume
that f has general fibres special, and that g is of general type. There exists a (unique)
fibration h : Y → Z such that: g = hf .
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