
Subharmonicity of Powers of Octonion-Valued

Monogenic Functions and Some Applications

Alexander Kheyfits David Tepper

Abstract

It is proven that for an octonion-valued monogenic function f(x), x ∈ R
8,

its powers |f |p are subharmonic for any p ≥ 6/7. This implies, in particular,
Hadamard’s three circles and three lines theorems and a Phragmén-Lindelöf
theorem for monogenic functions.

1 Introduction

Let
∑7

j=0 xjej be a generic octonion, where e0 ≡ 1, e1, . . . , e7 are the basis octonion
(imaginary) units; we identify it with a vector x = (x0, . . . , x7) ∈ R8. In notation
we follow [3]. Let

f(x) =
7
∑

j=0

ejfj(x)

be an octonion-valued left-monogenic function in a domain Ω ⊂ R8, where f0(x), . . .,
f7(x) are real-valued C1 functions. That means Df = 0, where D =

∑7
k=0 ek

∂
∂xk

is

the Dirac (or Cauchy-Riemann) operator. It is known that all the components
f0, . . . , f7 of a left-monogenic function are harmonic functions, that is, ∆f0 = · · · =
∆f7 = 0 in Ω. The equation Df = 0 is a system of eight first-order linear par-
tial differential equations with constant coefficients. It can be written as a matrix
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F = 0,

where F = [f0, . . . , f7]
T is the unknown column vector-function. It can also be

rewritten as a matrix equation

7
∑

j=0

Aj
∂F

∂xj

= 0. (1.1)

Here A0 is the identity matrix of order 8 and 8× 8 antisymmetric matrices A1 −A7

are given by

A1 =































0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0































A2 =































0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0































A3 =































0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
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A4 =































0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0































A5 =































0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0































A6 =































0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0































A7 =































0 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0































.

It should be mentioned that det(A0) = · · · = det(A7) = 1. The octonion multipli-
cation table can be written in various ways, for example, the table in [2, p. 150] is dif-
ferent from one in [3]. These different tables result in different systems (1.1), though
all these systems are clearly equivalent. Solutions of the system [f ]D = 0 are called
right-monogenic functions; functions, which are both left- and right-monogenic, are
called monogenic.

Systems (1.1), where each component fj, 0 ≤ j ≤ 7, is harmonic, are called the
generalized Cauchy-Riemann systems (GCR) - see Stein and Weiss [10, pp. 260-262].
Systems

∑7
j=0 Aj

∂F
∂xj

+ BF = 0, where B is also a constant matrix, were considered

by Evgrafov [5]. Stein and Weiss have proved that for any GCR system there exists
a nonnegative index p0 < 1 such that |F |p is a subharmonic function for all p ≥ p0.
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It is known (ibid, p. 262) that for the M. Riesz system in Rn

∂u1

∂x1
+ · · ·+

∂un

∂xn
= 0,

∂ui

∂xj
=

∂uj

∂xi
, i, j = 1, . . . , n, i 6= j,

the exact value of p0 is (n − 2)/(n − 1). Our first goal is to prove that the same is
valid for system (1.1) in R8, that is for system (1.1)

p0 =
n − 2

n − 1

∣

∣

∣

∣

∣

n=8

= 6/7.

The question on the precise value of p0 for the system (1.1) has been risen by Li and
Peng [7].

Our result leads to a natural question whether the conclusion p0 = n−2
n−1

is valid
for any generalized Cauchy-Riemann system.

The theorem on the subharmonicity of powers allows us to transplant many
properties of subharmonic functions to monogenic functions. Thus, we extend
Hadamard’s three circles and three lines theorems to octonion-valued monogenic
functions and prove a simple Phragmén-Lindelöf theorem.

2 Subharmonicity of powers of monogenic

functions

Theorem 2.1. For any solution F of system (1.1) and for each p ≥ p0 = 6/7
the function s(x) = |F (x)|p is subharmonic in the corresponding domain and this
value of p0 cannot be decreased. Moreover, the same conclusion holds true for right-
monogenic and monogenic functions.

Proof. As in [10, Theorem 4.9], the problem can be reduced to the following
one:

Find the smallest value of α ≥ 0 such that

max
|v|=1

7
∑

j=0

(u(j) · v)2 ≤ α
7
∑

j=0

|u(j)|2,

where u(j), j = 0, 1, . . . , 7, are 8-columns satisfying the equation
∑7

j=0 Aju
(j) = 0;

without loss of generality we assume
∑7

j=0 |u
(j)|2 = 1.

However, the reasoning in [10, p. 262] does not work for system (1.1) since unlike
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M. Riesz’ system, the relevant matrix

M =













































α0 −α1 −α2 −α3 −α4 −α5 −α6 −α7

α1 α0 −α3 α2 −α7 α6 −α5 α4

α2 α3 α0 −α1 −α6 −α7 α4 α5

α3 −α2 α1 α0 α5 −α4 −α7 α6

α4 α7 α6 −α5 α0 α3 −α2 −α1

α5 −α6 α7 α4 −α3 α0 α1 −α2

α6 α5 −α4 α7 α2 −α1 α0 −α3

α7 −α4 −α5 −α6 α1 α2 α3 α0













































is not symmetric and has nonzero trace; indeed, it has complex eigenvalues

λ± = α0 ± ı
√

α2
1 + · · ·+ α2

7

each of multiplicity 4.

Therefore, we straightforwardly consider an extremal problem

g0(y) ≡
7
∑

j=0

(

7
∑

i=0

uj,ivi

)2

→ maximum,

where y = (u0,0, . . . , u7,7, v0, . . . , v7) ∈ R72, subject to ten constrains. Two of the
latter are the normalization conditions,

g1(y) ≡
7
∑

i=0

v2
i − 1 = 0

and

g2(y) ≡
7
∑

j,i=0

u2
j,i − 1 = 0.

The other eight constrains correspond to the differential equations comprising system
(1.1):

g3(y) ≡ u0,0 − u1,1 − u2,2 − u3,3 − u4,4 − u5,5 − u6,6 − u7,7 = 0

g4(y) ≡ u0,1 + u1,0 + u2,3 − u3,2 + u4,7 − u5,6 + u6,5 − u7,4 = 0

g5(y) ≡ u0,2 − u1,3 + u2,0 + u3,1 + u4,6 + u5,7 − u6,4 − u7,5 = 0

g6(y) ≡ u0,3 + u1,2 − u2,1 + u3,0 − u4,5 + u5,4 + u6,7 − u7,6 = 0

g7(y) ≡ u0,4 − u1,7 − u2,6 + u3,5 + u4,0 − u5,3 + u6,2 + u7,1 = 0

g8(y) ≡ u0,5 + u1,6 − u2,7 − u3,4 + u4,3 + u5,0 − u6,1 + u7,2 = 0

g9(y) ≡ u0,6 − u1,5 + u2,4 − u3,7 − u4,2 + u5,1 + u6,0 + u7,3 = 0

g10(y) ≡ u0,7 + u1,4 + u2,5 + u3,6 − u4,1 − u5,2 − u6,3 + u7,0 = 0.
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We apply the method of Lagrange multipliers. The resulting system of 72 cubic
equations in 72 indeterminates u0,0, . . . , u7,7, v0, . . . , v7 with two quadratic and eight
linear constraints and with ten additional parameters (the Lagrangian multipliers)
looks (almost) intractable. However it has many symmetries and can be reduced to
a cubic equation with rational roots for the values of the objective function g0 at
the critical points, yielding three extremal values:

(A) g0 = 0, which is the obvious global minimum, since g0 ≥ 0;

(B) an extraneous value g0 = 1, which is the maximum value of g0 if the linear
constraints g3 − g10 are not taken into consideration;

(C) the maximum value α = g0 = 7/8, which we are looking for.

Thus as in [10], the critical exponent is p0 = 2 − 1/α = 6/7. To show that this
value cannot be decreased, we can use the function h(x) = |x|−6/(−6) [10], since
|∇h| is monogenic [7].

The same argument and the same example work for the right-monogenic func-
tions. Therefore, for the monogenic functions the precise value of the exponent is
p0 = 6/7 as well. �

Theorem 2.1 and the theorem Coifman and Weiss [4] yield the following result,
where F λ(x) = [f0, f1, . . . , f6, λf7], λ ≥ 0.

Corollary 2.1. Together with |F (x)|p the functions

8|F 0(x)|p − (p − 1)|F (x)|p, 1 < p ≤ 2,

and
8p(p − 1)|F 0(x)|2|F λ(x)|p−2 − |F λ(x)|p, 2 ≤ p < ∞,

where 0 < λ2 ≤ min{1; (32(p − 2))−1}, are subharmonic. �

Remark 2.1. The same argument also holds true for quaternion-valued monogenic
functions in R4 giving the exponent p0 = 2/3 – this has already been shown in [7].

�
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3 Applications

As an application of Theorem 2.1, we extend the Hadamard three circles theorem
to our case.

Theorem 3.1. Let f(x) be an octonion-valued monogenic function in

{x ∈ R8
∣

∣

∣ r1 < |x| < r2, 0 ≤ r1 < r2 ≤ ∞}.

Denote

Mq(f, t) =

(

1

σ8t7

∫

S(t)
|f(x)|qdσ

)1/q

,

where dσ is the surface measure on the sphere S(t) of radius t centered at the origin
and σ8 is the area of the unit sphere in R8. Then Mq(|f |

6/7, t) and log Mq(exp{|f |6/7}, t)
are convex functions of t−6 on (r1, r2) for any q ≥ 1. Setting q = 7/6 and denoting

µ(t) =
(

∫

S(t) |f |dσ
)6/7

, the first conclusion can be stated as the inequality

(t62 − t61)µ(t) ≤ (t62 − t6)µ(t1) + (t6 − t61)µ(t2)

for all r1 < t1 ≤ t ≤ t2 < r2.

The conclusion follows immediately from Theorem 2.1 and [1, Theorem 3.5.7 (i)].
�

All other results on convexity such as in [1, Sect. 3.5] can also be reformulated
for the monogenic functions. We only state the following three lines theorem.

Theorem 3.2.Let f(y, t) be monogenic and upper-bounded on the strip R7 × (0, 1).
Then

1o F (t) ≡ supy∈R7 |f(y, t)| is convex on (0, 1). Moreover,

F (t) ≤ (1 − t6/7)7/6F (0+) + tF (1−). (3.1)

2o
∫

R7 |f(y, t)|6/7dy is convex for 0 < t < 1, provided that this function is locally
bounded on (0, 1). �

Remark 3.1. Since (1 − t6/7)7/6 < 1 − t for 0 < t < 1, (3.1) is stronger than the
inequality F (t) ≤ (1 − t)F (0) + tF (1) – Cf. [8], where another version of the three
lines theorem is given. �

We also state a Phragmén-Lindelöf theorem for octonion-valued monogenic func-
tions. The limiting growth in this statement is not likely precise; this question is
open.

Let D be a domain on the unit sphere S7 ⊂ R8, whose complement with respect
to S7 is not a polar set. Then λ(D), the smallest eigenvalue of the Dirichlet problem
for the Laplace-Beltrami operator in D, is positive. Let ϕ(D) be the corresponding
(positive) eigenfunction normed in L2(D) and α(D) the characteristic constant of
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the domain D, i.e., the positive root of the quadratic equation α(α + 6) = λ(D).
For example, if D is a half-sphere in R8, then λ = 7 and α = 1.

The domain D generates a cone

KD =
{

x ∈ R8
∣

∣

∣ x/|x| ∈ D, 0 < |x| < ∞
}

.

Applying Theorem 2.1 and a Phragmén-Lindelöf theorem from [6], we arrive at the
following result.

Theorem 3.3. Let f be an octonion-valued monogenic function in KD. If

lim inf
|x|→∞

|x|−α(D)
∫

D
|f(x)|6/7ϕ(x/|x|)dσ = 0 (3.2)

and |f |

∣

∣

∣

∣

∣

∂KD

≤ A, where A is a constant, then |f(x)| ≤ A in KD. �

We note finally that (3.2) can be replaced by a more transparent but less precise
condition

|f(x)| = ¯̄o
(

|x|(7/6)α(D)
)

, |x| → ∞.
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