
Multiple positive solutions for a nonlinear elliptic

equation in weighted Sobolev space

Amira Obeid

Abstract

In this paper, we consider the problem (Pλ) in the setting of a weighted
Sobolev space W 1,p(Ω, ω), where ω is a weight function defined on the un-
bounded domain Ω. The study is based on the variational methods and criti-
cal point theory. We show the existence of at least two nonnegative solutions,
one with negative energy, the other one with energy which changes sign at a
certain value of the positive parameter λ.

1 Introduction

In this paper, we are concerned with the problem of finding positive solutions to the
following equation satisfied by the unknown scalar function u:

(Pλ)


−div(|∇u|p−2∇u) = f(x)|u|r−2u in Ω,

|∇u|p−2∇u.n + a(x)|u|p−2u = λb(x)|u|q−2u on Γ,

where p < N , 1 < q < p < r < p∗ = Np
N−p

, n is the unit outward normal vector on Γ,
f : Ω −→ R, a, b : Γ −→ R are given functions and λ is a real parameter. Here, Ω
denotes an unbounded domain with noncompact and smooth boundary Γ.
This type of boundary value problems arises in a variety of situations: In the theory
of nonlinear diffusion, in particular in the mathematical modeling of non-Newtonian
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fluids. For a discussion of some physical background, we refer the reader to [9].
From variational point of view, solutions of (Pλ) are critical points of the corre-
sponding functional Jλ defined by:

Jλ(u) =
1

p

∫
Ω
|∇u|p d x+

1

p

∫
Γ
a(x)|u|p d σ − λ

q

∫
Γ
b(x)|u|q d σ − 1

r

∫
Ω
f(x)|u|r d x.

For unbounded domains with noncompact boundary, the arguments which can be
used in the bounded case break down because of losses of compactness. This diffi-
culty can be illustrated by the following: neither the embedding W 1,p(Ω) ↪→ Lr(Ω),
nor the trace operator W 1,p(Ω) ↪→ Lq(Γ) is compact. So to overcome it, we use a
weighted Sobolev space as a variational framework of the problem.

The study of existence when the nonlinear term is placed in the equation has
received considerable attention. For the Laplace operator, see for example [2, 6, 8].
Also see [3, 4, 5, 11, 13, 16] for the p-Laplacian. However, nonlinear boundary
conditions have only been considered in recent years, see for example [6, 7, 11, 14,
15, 16]. In [16], the author considered a similar problem to (Pλ). After using the
mountain-pass lemma, he proved that there exist at least two nonnegative solutions,
one with positive energy, the other one with negative energy. Recently in [11], the
author studied a problem with parameter in a bounded domain, namely the p-
Laplacian with concave and convex nonlinearities on the right hand side in the
equation. He showed the existence of two nonnegative solutions, the energy of the
first is negative while the energy of the second changes sign at a cetain value of the
parameter.
Here we consider problem (Pλ) in the unbounded domain Ω. Our results extend the
corresponding results of [11] for a bounded domain. Even, they are generalizations
for those of [16]. More precisely, our existence and multiplicity results are nonlocal
with respect to the parameter λ. At the same time, our approach does not use the
mountain-pass lemma.

The paper is organized as follows: In section 2, we set up the variational frame-
work of the problem. In section 3 we verify that the functional associated to the
problem (Pλ) satisfies the Palais-Smale condition. Section 4 is devoted to the be-
haviour of the energy corresponding to the positive solutions.

2 Variational setting

Let 1 ≤ p < ∞. For a nonnegative measurable function ω, we define the weighted
Lebesgue space Lp(Ω, ω) by all measurable functions u which satisfies

∫
Ω ω|u|p d x <

∞ and associate with it the norm ‖u‖0,p,ω = (
∫
Ω ω|u|p d x)

1
p . The weighted Sobolev

space W 1,p(Ω; v0, v1) is defined as the space of all functions u ∈ Lp(Ω, v0) such that
all derivatives ( ∂u

∂xi
)N
i=1 belong to Lp(Ω, v1). Equipped with its natural norm

‖u‖1,p,v0,v1 = (
∫
Ω v0|u|p d x+

∫
Ω v1|∇u|p d x)

1
p ,

W 1,p(Ω; v0, v1) is a Banach space. Here, we investigate the properties ofW 1,p(Ω; v0, v1)
via the following lemmas.
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Lemma 1. (cf. Kufner & Opic [12], Pflüger [16, 17]). Let 1 ≤ p ≤ r <
∞, α, β ∈ R and Ω is an unbounded domain in RN with noncompact and smooth
boundary Γ. We denote

v0(x) = (1 + |x|)β−p, v1(x) = (1 + |x|)β, and ω(x) = (1 + |x|)α.

1) The embedding of W 1,p(Ω; v0, v1) into Lr(Ω, ω) is continuous respectively compact
if and only if

N

r
− N

p
+ 1 ≥ 0 and

α

r
− β

p
+
N

r
− N

p
+ 1 ≤ 0, (1)

respectively
N

r
− N

p
+ 1 > 0 and

α

r
− β

p
+
N

r
− N

p
+ 1 < 0. (2)

2) The embedding of W 1,p(Ω; v0, v1) into Lr(Γ, ω) is continuous respectively compact
if and only if

N − 1

r
− N

p
+ 1 ≥ 0 and

α

r
− β

p
+
N − 1

r
− N

p
+ 1 ≤ 0, (3)

respectively
N − 1

r
− N

p
+ 1 > 0 and

α

r
− β

p
+
N − 1

r
− N

p
+ 1 < 0. (4)

Remark 1. In the remaining of this text, for α1, α2 ∈ R, we introduce the weight
functions ω1(x) = (1 + |x|)α1 and ω2(x) = (1 + |x|)α2 . The last theorem leads to the
following:
(i) W 1,p(Ω; (1+|x|)−p, 1) is compactly imbedded into Lr(Ω, ω1) for α1 < −N+ r

p
(N−

p) and p < r < p∗.
(ii) W 1,p(Ω; (1 + |x|)−p, 1) is imbedded into Lp(Γ, ω2), continuously for α2 = −p+ 1
and compactly for α2 < −p+ 1.

Lemma 2. (cf. Pflüger [16]). Let 1 < p < N . There exists two positive constants
C1 and C2 such that for any u in W ,∫

Ω

|u|p

(1 + |x|)p
d x ≤ C1

∫
Ω
|∇u|p d x+ C2

∫
Γ

|u|p

(1 + |x|)p−1
d σ (5)

Proof. Since D(Ω̄) is a dense space in W with respect to its natural norm, then
to establish this inequality, it suffices to prove it in D(Ω̄). For this, for any q in
(D(Ω̄))N and u in D(Ω̄), we have the Green formula, i.e∫

Ω
(q.∇u+ udivq) d x =

∫
Γ
q.nu d σ,

where n is the unit outward normal vector on Γ. Using this equality with u is
replaced by |u|p

(1+|x|)p and q by x, we obtain:

∫
Ω

(
x.∇

(
|u|p

(1 + |x|)p

)
+N

|u|p

(1 + |x|)p

)
d x =

∫
Γ
x.n

|u|p

(1 + |x|)p
d σ. (6)
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On the other hand,∣∣∣∣∣
∫
Ω
x.∇

(
|u|p

(1 + |x|)p

)
d x

∣∣∣∣∣ ≤ p
∫
Ω

|u|p−1

(1 + |x|)p−1
|∇u| d x+ p

∫
Ω

|u|p

(1 + |x|)p
d x,

thus, by Hölder’s inequality, we may write∣∣∣∣∣
∫
Ω
x.∇

(
|u|p

(1 + |x|)p

)
d x

∣∣∣∣∣
≤ p

(∫
Ω

|u|p

(1 + |x|)p
d x

) p−1
p (∫

Ω
|∇u|p d x

) 1
p

+ p
∫
Ω

|u|p

(1 + |x|)p
d x

≤ pε
∫
Ω

|u|p

(1 + |x|)p
d x+ pCε

∫
Ω
|∇u|p d x+ p

∫
Ω

|u|p

(1 + |x|)p
d x,

where ε > 0 is an arbitrary real number. The previous inequality and (6) give us

N
∫
Ω

|u|p

(1 + |x|)p
d x ≤

∫
Γ

|u|p

(1 + |x|)p−1
d σ + pε

∫
Ω

|u|p

(1 + |x|)p
d x+ pCε

∫
Ω
|∇u|p d x

+ p
∫
Ω

|u|p

(1 + |x|)p
d x

and

(N − p(1 + ε))
∫
Ω

|u|p

(1 + |x|)p
d x ≤

∫
Γ

|u|p

(1 + |x|)p−1
d σ + pCε

∫
Ω
|∇u|p d x.

The proof is complete.

In the sequel, W will denote the weighted Sobolev space W 1,p(Ω; (1 + |x|)−p, 1).
It results from the Hardy-type inequality and the second assertion of Remark 1 that
W can be equipped with the norm

‖u‖W =

[∫
Ω
|∇u|p d x+

∫
Ω

|u|p

(1 + |x|)p−1
d σ

] 1
p

.

Throughout this work, we make the following assumptions:
(i) There are constants c1, c2 > 0 such that

c1
(1 + |x|)p−1

≤ a(x) ≤ c2
(1 + |x|)p−1

.

(ii) There exists a constant c3 > 0 such that

0 < f ≤ c3ω1.

(iii) 0 < b ∈ L
p

p−q (Γ, ω
q

q−p

2 ).
The first assumption leads to the equivalence between ‖u‖W and

‖u‖ =
(∫

Ω
|∇u|p d x+

∫
Γ
a(x)|u|p d σ

) 1
p

. (7)

So, W endowed by (7) is a Banach space.
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3 The Palais-Smale condition

In this part, let us note P (u) = ‖u‖p, Q(u) =
∫
Γ
b(x)|u|q d σ andR(u) =

∫
Ω
f(x)|u|r d x.

The energy functional corresponding to (Pλ) is given by:

Jλ(u) =
1

p
P (u)− λ

q
Q(u)− 1

r
R(u). (8)

We denote by Nf and Nb the corresponding Nemytskii operators, i.e

Nf : Lr(Ω, ω1) −→ L
r

r−1 (Ω, ω
1

1−r

1 ) and Nb : Lp(Γ, ω2) −→ L
p

p−1 (Γ, ω
1

1−p

2 )
u 7−→ f(x)|u|r−2u u 7−→ b(x)|u|q−2u

Lemma 3. The two operators defined before are bounded and continuous.

Proof. We only prove the statement for Nf , since the arguments for Nb are
similar. Let u in Lr(Ω, ω1). Then∫

Ω
(f(x)|u|r−1)

r
r−1ω

1
1−r

1 d x ≤
∫
Ω
k

r
1−r |u|rω1 d x,

which shows that Nf is bounded. The continuity of this operator follows from the
usual properties of Nemytskii operators. Which ends the proof.

Lemma 4. The functional Jλ is Fréchet-differentiable on W .

Proof. The directional derivative of Jλ in direction h in W is given by:

< J ′λ(u), h >=
1

p
< P ′(u), h > −λ

q
< Q′(u), h > −1

r
< R′(u), h >,

where

< P ′(u), h > = p
[∫

Ω
|∇u|p−2∇u∇h d x+

∫
Γ
a(x)|u|p−2uh d σ

]
,

< Q′(u), h > = q
∫
Γ
b(x)|u|q−2uh d σ, < R′(u), h >= r

∫
Ω
f(x)|u|r−2uh d x.

P ′ is a continuous operator, then the operator Q′ is the composition of

Q′ : W −→ Lp(Γ, ω2)
Nb−→ L

p
p−1 (Γ, ω

1
1−p

2 )
l−→ W ′,

with for any v in L
p

p−1 (Γ, ω
1

1−p

2 ) and h in W , < l(v), h >=
∫
Γ
vh d σ.

Furthermore, by the embedding of W into Lp(Γ, ω2), we get

< l(v), h >≤
(∫

Γ
|v|

p
p−1ω

1
1−p

2 d σ
)1− 1

p
(∫

Γ
|h|pω2 d σ

) 1
p

.

In a similar way, R′ is the composition of

R′ : W −→ Lr(Ω, ω1)
Nf−→ L

r
r−1 (Ω, ω

1
1−r

1 )
l−→ W ′,

with, for any v in L
r

r−1 (Ω, ω
1

1−r

1 ), < l(v), h >=
∫
Ω
vh d x. The compact embeddings

of W into Lr(Ω, ω1) and Lp(Γ, ω2) (see Remark 1) lead to that of Q′ and R′. The
lemma is proved.
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We introduce on R×W the modified energy functional J̃λ (cf. [10, 19]) defined
by:

J̃λ(t, u) := Jλ(tu).

Here, we recall that if t(u) is a critical point for t 7−→ J̃λ(t, u) and t(u) is smooth,
then t(u)u is a critical point for Jλ. By observing that the mapping t 7−→ J̃λ(t, u)
is even, the study of critical points for t 7−→ J̃λ(t, u) can be restricted to ]0,∞[.

Lemma 5. For any u in W \ {0}, there exists a unique λ(u) > 0 for which the
functional t 7−→ ∂tJ̃λ(u)(t, u) has a unique positive zero. Moreover for every λ < λ(u)

respectively λ > λ(u), t 7−→ ∂tJ̃λ(t, u) has exactly two positive zero respectively no
zero.

Proof. Let u be an element in W \ {0}. We have ∂tJ̃λ(t, u) = tq−1Ẽλ(t, u) where
Ẽλ(t, u) = tp−qP (u)− λQ(u)− tr−qR(u) and observe that{

∂tJ̃λ(t, u) = 0

∂ttJ̃λ(t, u) = 0
⇐⇒

{
Ẽλ(t, u) = 0

∂tẼλ(t, u) = 0.

The second equation of the right hand side, ∂tẼλ(t, u) = 0, acquires the form

tp−q−1((p− q)P (u)− (r − q)tr−pR(u)) = 0 (9)

and has one positive root

t(u) =

[
p− q

r − q

P (u)

R(u)

] 1
r−p

. (10)

It follows from (9) that t 7−→ Ẽλ(t, u) attains its maximum at t(u). Moreover, it is
increasing on ]0, t(u)[, and decreasing on ]t(u),+∞[. Substituting t(u) into Ẽλ(t, u),
we obtain

Ẽλ(t(u), u) =
r − p

r − q
P (u)

[
p− q

r − q

P (u)

R(u)

] p−q
r−p

− λQ(u)

and the number of roots of t 7−→ Ẽλ(t, u) depends on the sign of Ẽλ(t(u), u). More
precisely 

t 7−→ Ẽλ(t, u) has two positive roots ⇐⇒ Ẽλ(t(u), u) > 0,

t 7−→ Ẽλ(t, u) has one positive root ⇐⇒ Ẽλ(t(u), u) = 0,

t 7−→ Ẽλ(t, u) has zero root ⇐⇒ Ẽλ(t(u), u) < 0.

We define now λ(u) as the positive real number such that Ẽλ(u)(t(u), u) = 0, i.e

λ(u) =
r − p

r − q

[
p− q

r − q

P (u)

R(u)

] p−q
r−p P (u)

Q(u)
, (11)

and we have the following:
t 7−→ Ẽλ(t, u) has two positive roots ⇐⇒ λ < λ(u),

t 7−→ Ẽλ(t, u) has one positive root ⇐⇒ λ = λ(u),

t 7−→ Ẽλ(t, u) has zero root ⇐⇒ λ > λ(u).

The result is also true for the map t 7−→ ∂tJ̃λ(t, u).
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Remark 2. For λ < λ(u), denoting the positive roots of t 7−→ ∂tJ̃λ(t, u) by t(u, λ)
and t(u, λ) (t(u, λ) < t(u) < t(u, λ)). It results from

∂tẼλ(t(u, λ), u)t(u, λ)q+1−p = (p− q)P (u)− (r − q)t(u, λ)r−pR(u)

> (p− q)P (u)− (r − q)t(u)r−pR(u) = 0,

that ∂ttJ̃λ(t(u, λ), u) > 0. In a similar way, we get ∂ttJ̃λ(t(u, λ), u) < 0.

Remark 3. By the embedding results of W into Lr(Ω, ω1) and Lp(Γ, ω2), we find two
positive constants CΩ and CΓ such that

R(u) ≤ kCΩP (u)
r
p and Q(u) ≤ ‖b‖

p−q
p

L
p

p−q (Γ,ω

q
q−p
2 )

C
q
p

Γ P (u)
q
p .

We conclude that

λ(u) =
r − p

r − q

[
p− q

r − q

] p−q
r−p

[
P (u)

r
p

R(u)

] p−q
r−p P (u)

q
p

Q(u)

≥ r − p

r − q

[
p− q

r − q

] p−q
r−p

[kCΩ]
r−p
p−q ‖b‖

q−p
p

L
p

p−q (Γ,ω

q
q−p
2 )

C
−q
p

Γ > 0.

Let us define
λ̂ = inf

u∈W\{0}
λ(u). (12)

We remark that u 7−→ λ(u) is an homogeneous function and consequently

λ̂ = inf
u∈S

λ(u) (13)

where S is the unit sphere in W .

Lemma 6. There exist two positive constants c4 and c5 such that for any positive
real number t with ∂tJ̃λ(t, u) = 0 and for u in W \ {0}, we have

Jλ(tu) ≥ c4P (tu)− c5

.

Proof. Let t > 0. From ∂tJ̃λ(t, u) = 0, we get

R(tu) = P (tu)−λQ(tu) which yields Jλ(tu) =

(
1

p
− 1

r

)
P (tu)−λ

(
1

q
− 1

r

)
Q(tu).

Furthermore, invoking Young’s inequality, we have

Q(tu) ≤ ‖b‖
p−q

p

L
p

p−q (Γ,ω

q
q−p
2 )

C
q
p

Γ P (tu)
q
p

≤ ‖b‖
p−q

p

L
p

p−q (Γ,ω

q
q−p
2 )

(
q

p
ε

p
qP (tu) + C

q
p−q

Γ ε
p

q−p

)
,

where ε > 0 is an arbitrary real number. It follows that

Jλ(tu) ≥
(

1

p
− 1

r
− λ

(
1

q
− 1

r

)
q

p
‖b‖

p−q
p

L
p

p−q (Γ,ω

q
q−p
2 )

ε
p
q

)
P (tu)

− λ

(
1

q
− 1

r

)
‖b‖

p−q
p

L
p

p−q (Γ,ω

q
q−p
2 )

CΓε
p

q−p .

The proof is achieved.
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Let us define for λ ∈]0, λ̂[,

α(λ) = inf
u∈W\{0}

J̃λ(t(u, λ), u), (14)

α(λ) = inf
u∈W\{0}

J̃λ(t(u, λ), u). (15)

Lemma 7. For any λ ∈]0, λ̂[, we have

α(λ) = inf
u∈S

J̃λ(t(u, λ), u), α(λ) = inf
u∈S

J̃λ(t(u, λ), u), (16)

where S is the unit sphere in W .

Proof.. For any real number γ > 0, we have

J̃λ(γt,
u
γ
) = J̃λ(t, u),

∂tJ̃λ(γt,
u
γ
) = 1

γ
∂tJ̃λ(t, u),

∂ttJ̃λ(γt,
u
γ
) = 1

γ2∂ttJ̃λ(t, u).

We shall prove the result for α(λ) (similar argument for α(λ)).
By the characterization of the positive real number t(u, λ) (see Remark 2), it holds

t

(
u

γ
, λ

)
= γt(u, λ).

Therefore,

J̃λ(t(u, λ), u) = J̃λ

(
γt (u, λ) ,

u

γ

)
= J̃λ

(
t

(
u

γ
, λ

)
,
u

γ

)
,

for any u in W \ {0} and the result is proved by taking γ = ‖u‖.

Lemma 8. Let λ ∈]0, λ̂[. Then
(i) there exist {un}n≥1, {vn}n≥1 in S such that

J λ(un) → α(λ) as n→ +∞,

∀ϕ ∈ TunS,J ′
λ(un)(ϕ) ≤ 1

n
‖ϕ‖,

,


J λ(vn) → α(λ) as n→ +∞,

∀ϕ ∈ TvnS,J ′
λ(vn)(ϕ) ≤ 1

n
‖ϕ‖,

where J λ and J λ are the functionals defined on S by J λ(u) = Jλ(t(u, λ)u) and
J λ(u) = Jλ(t(u, λ)u).

(ii) For any u ∈ W \ {0}, J̃λ(t(u, λ), u) < 0 and t 7−→ J̃λ(t, u) is increasing on
]t(u, λ), t(u, λ)[.

(iii) lim inf
n→+∞

‖t(un, λ)un‖ > 0 and lim inf
n→+∞

‖t(un, λ)un‖ > 0.
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Proof. We start by proving the first assertion. By Remark 2 and by the implicit
function theorem, it follows, for any u ∈ W \ {0}, that t(u, λ) is a C1 function with
respect to its first variable u. Let us remember that the C1 functional defined on S
by J λ(u) = J̃λ(t(u, λ), u) = Jλ(t(u, λ)u) is bounded below. Therefore, it satifies the
Ekeland variational principle on the complete manifold S, i.e there exists a sequence
{un}n≥1 in S such that 

J λ(un) → α(λ) as n→ +∞,

∀ϕ ∈ TunS,J ′
λ(un)(ϕ) ≤ 1

n
‖ϕ‖.

Similar result can be proved with the point t(u, λ).
Here, we establish the point (ii). First, let us remember the two properties:

Ẽλ(t(u, λ), u) = 0 and t 7−→ Ẽλ(t, u) is increasing on ]0, t(u)[, which together with
0 < t(u, λ) < t(u), imply that Ẽλ(t, u) < 0 on ]0, t(u, λ)[ and > 0 on ]t(u, λ), t(u)[.
Taking into account that ∂tJ̃λ(t, u) = tq−1Ẽλ(t, u), we conclude that t 7−→ J̃λ(t, u) is
decreasing on ]0, t(u, λ)[ and increasing on ]t(u, λ), t(u)[, and hence J̃λ(t(u, λ), u) < 0.
For the second, we have also the two properties: Ẽλ(t(u, λ), u) = 0 and t 7−→ Ẽλ(t, u)
is decreasing on ]t(u),+∞[, which together with t(u, λ) > t(u), give us Ẽλ(t, u) > 0
on ]t(u), t(u, λ)[. At the same time, Ẽλ(t, u) > 0 on ]t(u, λ), t(u)]. Therefore
t 7−→ J̃λ(t, u) is increasing on ]t(u, λ)], t(u, λ)[ and the proof is complete.
Arguing by contradiction in order to prove the last assertion. If the first point is
not true, then for any n ≥ 1, there exists a subsequence of {un}n≥1, still denoted by
{un}n≥1, such that ‖t(un, λ)un‖ → 0.
It follows that J̃λ(t(un, λ), un) → 0 as n → +∞ and α(λ) = 0. The contradiction
comes now from the fact that inf

u∈W\{0}
J̃λ(t(u, λ), u) = 0 and J̃λ(t(u, λ), u) < 0.

For the second, we consider for any n ≥ 1, a subsequence of {un}n≥1, still de-
noted by {un}n≥1, such that ‖t(un, λ)un‖ → 0. ¿From ∂tJ̃λ(t(un, λ), un) = 0 and
∂ttJ̃λ(t(un, λ), un) < 0, it results

P (t(un, λ)un)− λQ(t(un, λ)un)−R(t(un, λ)un) = 0,

(p− 1)P (t(un, λ)un)− λ(q − 1)Q(t(un, λ)un)− (r − 1)R(t(un, λ)un) < 0,

which give
(p− q)P (t(un, λ)un) ≤ (r − q)R(t(un, λ)un).

Combining it with the compactness of the embedding of W into Lr(Ω, ω1), we find

(p− q)P (t(un, λ)un) ≤ (r − q)kCΩP (t(un, λ)un)
r
p ,

and hence,

(p− q) ≤ (r − q)kCΩP (t(un, λ)un)
r
p
−1 → 0 as n→ +∞.

This contradicts q < p. The proof is complete.

Before proving that {t(un, λ)un}n≥1 and {t(un, λ)un}n≥1 are Palais-Smale se-
quences for the functionals Jλ(t(u, λ)u) and Jλ(t(u, λ)u) respectively, we establish a
result which will be useful in the sequel.
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Remark 4. We consider the mapping

α : W \ {0} −→ R∗
+ × S

u 7−→ α(u) = (α1(u), α2(u))

with (α1(u), α2(u)) =
(
‖u‖, u

‖u‖

)
.

Let ϕ ∈ W be arbitrary choosen. The real number

α′1(u)(ϕ) = ‖u‖1−p
(∫

Ω
|∇u|p−2∇u∇ϕdx+

∫
Γ
a(x)|u|p−2uϕ d σ

)

≤ ‖u‖1−p

[(∫
Ω
|∇u|p d x

) p−1
p
(∫

Ω
|∇ϕ|p d x

) 1
p

+

(∫
Γ
a(x)|u|p d σ

) p−1
p
(∫

Γ
a(x)|ϕ|p d σ

) 1
p

]
≤ ‖u‖1−p‖u‖p−1‖ϕ‖ = ‖ϕ‖.

Next, α′2(u)(ϕ) belongs to TuS and

α′2(u)(ϕ) =
ϕ

‖u‖
− u

‖u‖2
α′1(u)(ϕ) ≤ 2

‖ϕ‖
‖u‖

Now, we are able to prove

Lemma 9. Let {un}n≥1 be as above. The sequences {t(un, λ)un}n≥1 and {t(un, λ)un}n≥1

are Palais-Smale sequences for the functionals Jλ(t(u, λ)u) and Jλ(t(u, λ)u) respec-
tively.

Proof. We only establish the statement for Jλ(t(u, λ)u), the arguments are similar
for Jλ(t(u, λ)u). Since J λ(un) = Jλ(t(un, λ)un) → α(λ) as n→∞, then it remains
to prove that ‖J ′λ(t(un, λ)un)‖∗ → 0 as n→∞, where ‖.‖∗ denotes the norm on the
dual space W ′.
Let us remember that for any ψ in TunS,

|J ′
λ(un)(ψ)| = |∂tJ̃λ(t(un, λ), un)t′(un, λ)(ψ) + ∂uJ̃λ(t(un, λ), un)(ψ)|

= |∂uJ̃λ(t(un, λ), un)(ψ)| ≤ 1

n
‖ψ‖, (17)

where t′(un, λ) denotes the derivative of t(., λ) with respect to its first variable at
the point (un, λ).
Considering vn = t(un, λ)un, from un ∈ S, we get

Jλ(vn) = J̃λ(t(un, λ), un) = J̃λ

(
‖vn‖,

vn

‖vn‖

)
= J̃λ ◦ α(vn).

Therefore, for any ϕ in W ,

|J ′λ(t(un, λ)un)(ϕ)| = |J ′λ(vn)(ϕ)|
= |∂tJ̃λ(α(vn))α′1(vn)(ϕ) + ∂uJ̃λ(α(vn))(α′2(vn)(ϕ))|
= |∂uJ̃λ(t(un, λ), un)(ϕ2

n)| = |J ′
λ(un)(ϕ2

n)|,
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with ϕ2
n = α′2(t(un, λ), un)(ϕ) belongs to TunS. By virtue of Remark 4, we have

‖ϕ2
n‖ = ‖α′2(t(un, λ), un)(ϕ)‖ ≤ 2

‖ϕ‖
‖vn‖

= 2
‖ϕ‖

t(un, λ)

and by the last assertion of Lemma 8, the sequence {t(un, λ)}n≥1 is bounded below
by a positive constant c(λ). Consequently, for all n ∈ N, we get from (17)

|J ′λ((t(un, λ)un)(ϕ)| ≤ 2

n

‖ϕ‖
c(λ)

and the proof is complete.

In this section, we verify that the functional Jλ satisfies the Palais-Smale condi-
tion. In order to do this, we need the following lemma:

Lemma 10. (cf. Diaz [9], Lemma 4.10) Let x, y ∈ RN . If p ≥ 2, then it holds:

|x− y|p ≤ C(|x|p−2x− |y|p−2y)(x− y). (18)

If 1 < p < 2, then it holds:

|x− y|2 ≤ C(|x|p−2x− |y|p−2y)(x− y)(|x|+ |y|)2−p. (19)

Now, we may state the main result of this section.

Theorem 1. Let 1 < q < p < r < 2∗ and λ ∈]0, λ̂[. Then the problem (Pλ) has at
least two nonnegative weak solutions.

Proof. We must show the existence of a subsequence of {t(un, λ)un}n≥1 which
converges strongly in W (similar argument for {t(un, λ)un}n≥1). First, as a conse-
quence of Lemma 6, the sequence {t(un, λ)un}n≥1 is bounded in W . Next, we show
that {Un}n≥1 = {t(un, λ)un}n≥1 is a Cauchy sequence. In the case p ≥ 2, we obtain:

‖Un − Uk‖p =
∫
Ω
|∇(Un − Uk)|p d x+

∫
Γ
a(x)|Un − Uk|p d σ

≤ C (< J ′λ(Un), Un − Uk > − < J ′λ(Uk), Un − Uk >)

+
λ

q
< Q′(Un)−Q′(Uk), Un − Uk > +

1

r
< R′(Un)−R′(Uk), Un − Uk >

≤ C

(
‖J ′λ(Un)‖∗ + ‖J ′λ(Uk)‖∗ +

λ

q
‖Q′(Un)−Q′(Uk)‖∗

+
1

r
‖R′(Un)−R′(Uk)‖∗

)
‖Un − Uk‖.

Now, from ‖J ′λ(Un)‖∗ → 0 as n → ∞, we obtain, using the compactness of Q′

and R′, the existence of a subsequence of {Un}n≥1, still denoted by {Un}n≥1, that
converges strongly to U in W .
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For 1 < p < 2, invoking (19) and Hölder’s inequality, we get:

[∫
Ω
|∇(Un − Uk)|p d x

] 2
p

≤ C
[∫

Ω

[(
|∇Un|p−2∇Un − |∇Uk|p−2∇Uk

)
(∇Un −∇Uk)

] p
2

[|∇Un|+ |∇Uk|]
p(2−p)

2 d x
] 2

p

≤ C
[∫

Ω

[(
|∇Un|p−2∇Un − |∇Uk|p−2∇Uk

)
(∇Un −∇Uk)

]
d x
]

×
[∫

Ω
[|∇Un|+ |∇Uk|]

p d x
] 2−p

p

. (20)

Similarly,

[∫
Γ
a(x)|Un − Uk|p d σ

] 2
p

≤ C
[∫

Γ
a(x)

[
(|Un|p−2Un − |Uk|p−2Uk)(Un − Uk)

]
d σ
]

×
[∫

Ω
[|Un|+ |Uk|]

p d x
] 2−p

p

. (21)

By the boundeness of the sequence {Un}n≥1 and by the Young inequality, we can
find a constant C3 > 0 such that

‖Un − Uk‖2 ≤ 2
2
p
−1

([∫
Ω
|∇(Un − Uk)|p d x

] 2
p

+
[∫

Γ
a(x)|Un − Uk|p d σ

] 2
p

)
≤ 2C3 [< J ′λ(Un)− J ′λ(Uk), Un − Uk >

+
λ

q
< Q′(Un)−Q′(Uk), Un − Uk >

+
1

r
< R′(Un)−R′(Uk), Un − Uk >

]
.

By similar argument to the one used in the proof of the first case p ≥ 2, we obtain the
convergence of a subsequence of {Un}n≥1 to U in W , which leads, by the third asser-
tion of Lemma 8, to 0 < lim

n→+∞
‖Un‖ = ‖U‖. Next, it follows from Jλ(Un) = Jλ(|Un|)

that the sequence {Un}n≥1 can be repalced by the nonnegative one, {|Un|}n≥1, and
the existence of |U | ≥ 0 as a weak solution of (Pλ) is proved.

Remark 5. It results from the convergence of {Un}n≥1 = {t(un, λ)un}n≥1 to U in W
that t(un, λ) = ‖Un‖ → ‖U‖ > 0 as n→∞. By the caracterization of the positive

real number t(un, λ) (see Remark 2), which together with un → u = U
‖U‖ as n→∞

give us t(u, λ) = ‖U‖.
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4 Behaviour of the energy

In this section, we examine the behaviour of the energy of U and U .

Theorem 2. Let 1 < q < p < r < 2∗. Then

(i) Jλ(U) < 0 for λ ∈]0, λ̂[

and

(ii)


Jλ(U) > 0 for λ ∈]0, λ0[,
Jλ(U) = 0 for λ = λ0,

Jλ(U) < 0 for λ ∈]λ0, λ̂[

where λ0 =
q

r

(
r

p

) r−q
r−p

λ̂.

Proof. Note that (i) arises automatically from the second point of Lemma 8.
For (ii), let u be an arbitrary element of W \ {0} et let us write

J̃λ(t, u) = tqF̃λ(t, u) where F̃λ(t, u) = tp−qP (u)

p
− λ

q
Q(u)− tr−qR(u)

r
.

The equation ∂tF̃λ(t, u) = 0 acquires the form

tp−q−1

(
p− q

p
P (u)− r − q

r
tr−pR(u)

)
= 0 (22)

and has one positive root

t0(u) =

(
r

p

) 1
r−p

[
p− q

r − q

P (u)

R(u)

] 1
r−p

=

(
r

p

) 1
r−p

t(u) (23)

with t(u) is defined by (10). We observe that for any real numbers r, p such that

1 < p < r,
(

r
p

) 1
r−p > 1 and hence t0(u) > t(u).

It results from that (22) that t 7−→ F̃λ(t, u) attains its maximum at t0(u). Moreover,
it is increasing on ]0, t0(u)[ and decreasing on ]t0(u),+∞[.
Inserting t0(u) into F̃λ(t, u), we get

F̃λ(t0(u), u) =

[
p− q

r − q

P (u)

R(u)

] p−q
r−p

(
r

p

) p−q
r−p r − p

p(r − q)
P (u)− λ

q
Q(u),

and the number of roots of t 7−→ F̃λ(t, u) depends on the sign of F̃λ(t0(u), u). More
precisely, 

t 7−→ F̃λ(t, u) has two positive roots ⇐⇒ F̃λ(t0(u), u) > 0,

t 7−→ F̃λ(t, u) has one positive root ⇐⇒ F̃λ(t0(u), u) = 0,

t 7−→ F̃λ(t, u) has zero root ⇐⇒ F̃λ(t0(u), u) < 0.

We define now λ0(u) as the positive real number such that F̃λ0(u)(t0(u), u) = 0, i.e

λ0(u) =
q

r

(
r

p

) r−q
r−p

λ(u),
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where λ(u) is defined by (11), and we have the following:
F̃λ(t0(u), u) > 0 ⇐⇒ λ < λ0(u),

F̃λ(t0(u), u) = 0 ⇐⇒ λ = λ0(u),

F̃λ(t0(u), u) < 0 ⇐⇒ λ > λ0(u).

Taking into account that J̃λ(t, u) = tqF̃λ(t, u), we obtain
J̃λ(t0(u), u) > 0 ⇐⇒ λ < λ0(u),

J̃λ(t0(u), u) = 0 ⇐⇒ λ = λ0(u),

J̃λ(t0(u), u) < 0 ⇐⇒ λ > λ0(u).

We have to prove that λ0(u) < λ(u). To do this, let us introduce the decreasing
function

]0, 1[ −→ R
t 7−→ − ln t

1−t

which permits us to conclude that

ln
1

x
>

1− x

1− y
ln

1

y

for every real numbers x, y such that 0 < x < y < 1. In particular, taking x = q
r

and y = p
r
, we get

r

q
>

(
r

p

) r−q
r−p

and hence λ0(u) < λ(u). Consequently,

λ0 := inf
u∈W\{0}

λ0(u) < λ̂.

The growth properties of t 7−→ F̃λ0(u)(t, u) imply that ∂ttF̃λ0(u)(t0(u), u) < 0, which,

together with F̃λ0(u)(t0(u), u) = ∂tF̃λ0(u)(t0(u), u) = 0 give us ∂tJ̃λ0(u)(t0(u), u) = 0

and ∂ttJ̃λ0(u)(t0(u), u) < 0. Using the caracterization of the positive real number
t(u, λ0(u)) (see Remark 2), we obtain

t(u, λ0(u)) = t0(u).

First, we show the first assertion of (ii). Fixing a λ ∈]0, λ0[, by the definition of λ0,
we have J̃λ(t0(u), u) > 0 for any u ∈ W \ {0}. On the other hand, t 7−→ J̃λ(t, u)
attains its maximum at t(u, λ) therefore for any u ∈ W \ {0}, J̃λ(t(u, λ), u) ≥
J̃λ(t0(u), u) > 0 and according to Remark 5, Jλ(U) = J̃λ(t(u, λ), u) > 0.
For the case λ = λ0, we have

Jλ0(U) = J̃λ0(t(u, λ0), u) = α(λ0) := inf
u∈S

J̃λ0(t(u, λ0), u).

On the other hand, the lower semicontinuity of the functional defined on W \ {0}

by u 7−→ P (u)
p−q
r−p +1

R(u)
p−q
r−p Q(u)

with

λ0 =
q

r

(
r

p

) r−q
r−p r − p

r − q

[
p− q

r − q

] p−q
r−p

inf
u∈W\{0}

P (u)
p−q
r−p

+1

R(u)
p−q
r−pQ(u)

=
q

r

(
r

p

) r−q
r−p r − p

r − q

[
p− q

r − q

] p−q
r−p

inf
u∈W\{0},R(u)

p−q
r−p Q(u)=1

P (u)
p−q
r−p

+1
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leads to the existence of u∗ ∈ W \ {0} such that λ0 = λ0(u
∗). This implies that

Jλ0(U) ≤ J̃λ0(u∗)(t(u
∗, λ0(u

∗)), u∗) = J̃λ0(u∗)(t0(u
∗), u∗) = 0.

Moreover, since t 7−→ J̃λ0(t, u) attains its maximum at t(u, λ0) and λ 7−→ J̃λ(t, u) is
a decreasing function on R∗

+ then

Jλ0(U) = J̃λ0(t(u, λ0), u) ≥ J̃λ0(t0(u), u) ≥ J̃λ0(u)(t0(u), u) = 0.

Finally, assume that λ0 < λ < λ̂. Since for any u ∈ W \ {0}, Jλ(u) is a decreasing
function with respect to λ, then Jλ(U) < Jλ0(U) = 0.
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