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Abstract

We study convergent sequences of Baumslag-Solitar groups in the space
of marked groups. We prove that BS(m, n) → F2 for |m|, |n| → ∞ and
BS(1, n) → Z ≀ Z for |n| → ∞. For m fixed, |m| > 2, we show that the
sequence (BS(m, n))n is not convergent and characterize many convergent
subsequences. Moreover if Xm is the set of BS(m, n)’s for n relatively prime
to m and |n| > 2, then the map BS(m, n) 7→ n extends continuously on Xm to
a surjection onto invertible m-adic integers.

1 Introduction

Let G2 be the space of finitely generated marked groups on two generators (see

Section 2 for definition) and let F2 =
〈

a, b
∣

∣

∣ ∅

〉

be the free group on two generators.
Baumslag-Solitar groups are defined by the presentations

BS(m, n) =
〈

a, b
∣

∣

∣ abma−1 = bn
〉

for m, n ∈ Z
∗ = Z \ {0}. The purpose of the present paper is to understand how

Baumslag-Solitar groups are distributed in G2. More precisely, we determine con-
vergent sequences and in some cases we are able to give the limit group. In the
following results, we mark F2 and BS(m, n) by (a, b).

Theorem 1 For |m|, |n| → ∞, we have BS(m, n) → F2.
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In particular, the property of being Hopfian is not open in G2 since BS(2k, 3k)
is known to be non Hopfian for all k > 1 (see [LS77], Chapter IV, Theorem 4.9.)
while F2 is Hopfian. Theorem 1 is not so surprising because the length of the relator
appearing in the presentation of BS(m, n) tends to ∞ when |m|, |n| → ∞. However,
this relator is not the shortest relation in the group for many values of (m, n). To
prove Theorem 1, we give a lower bound for the length of shortest relations in the
more general setting of HNN-extensions (see Section 3).

We now fix the parameter m. In the case m = ±1, we show that the sequence
(BS(±1, n))n∈Z is convergent and we can identify the limit.

Theorem 2 Let the wreath product Z ≀Z = Z ⋉⊕i∈ZZ be marked by the elements
(1, 0) and (0, e0) where e0 ∈ ⊕i∈ZZ is the Dirac mass at 0. Then BS(±1, n) → Z ≀Z
when |n| → ∞.

This illustrates the fact that a limit of metabelian groups is metabelian, see
[CG05], Section 2.6.

In the case |m| > 2, we show that the sequence (BS(m, n))n∈Z is not convergent
in G2. As G2 is compact, it has convergent subsequences. The next result we
state in this introduction, among subsequences, characterizes many convergent ones.
However we don’t actually know what the limits are. Notice that the result also
holds for m = ±1, even if it is in this case weaker than Theorem 2.

Theorem 3 Let m ∈ Z
∗ and let (kn)n be a sequence of integers relatively prime to

m. The sequence (BS(m, kn))n is convergent in G2 if and only if one (and only one)
of the following assertions holds:

(a) (kn)n is eventually constant;

(b) |kn| → ∞ and (kn)n is eventually constant modulo m
h for all h > 1.

Note that for |m| > 2, condition (b) precisely means that |kn| → ∞ and (kn)n is
convergent in Zm, the ring of m-adic integers. The link between Baumslag-Solitar
groups and m-adic integers can be made more precise. We define Xm to be the set
of BS(m, n)’s, for n relatively prime to m and |n| > 2 and we denote by Z

×

m
the set

of invertible elements of Zm.

Theorem 4 For |m| > 2, the map Ψ : Xm → Z
×

m
; BS(m, n) 7→ n extends continu-

ously to Xm. The extension is surjective, but not injective.

An immediate corollary of Theorem 3 or Theorem 4 is that (for |m| > 2) the
sequence (BS(m, n))n admits uncountably many accumulation points, namely at
least one for each invertible m-adic integer.

We end this introduction by a remark on markings of Baumslag-Solitar groups.
In this paper we always mark the group BS(m, n) by the generators coming from its
canonical presentation given above. Nevertheless, it is also an interesting approach
to consider different markings on BS(m, n). For instance, take m and n greater
than 2 and relatively prime, so that Γ = BS(m, n) is non-Hopfian, the epimorphism
φ : Γ → Γ given by a 7→ a and b 7→ bm being non-injective (see again [LS77],
Chapter IV, Theorem 4.9.). In [ABL+05], the authors consider the sequence of
groups Γn = Γ/ ker(φn) (marked by a and b). They show that the sequence (Γn)n
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converges to an amenable group while, being all isomorphic to Γ as groups, the
Γn’s are not amenable. This allow them to prove that Γ is non-amenable, but not
uniformly (cf. Proposition 13.3) and also shows that the property of being amenable
is not open in G2.

Structure of the article. In Section 2, we give the necessary preliminaries. In
Section 3, we estimate the length of the shortest relations in a HNN-extension and
prove Theorem 1. Section 4 is devoted to the case m = 1, namely the proof of The-
orem 2, and Section 5 to other one-parameter families of Baumslag-Solitar groups,
i.e. the proof of Theorem 3. Finally, we prove Theorem 4 in Section 6, linking
Baumslag-Solitar groups and m-adic integers.

Acknowledgements. I would like to thank Luc Guyot and Alain Valette for their
useful comments and hints, and Indira Chatterji, Pierre de la Harpe, Nicolas Monod
and Alain Robert for comments on previous versions.

2 Preliminaries

In this Section, we collect some definitions and material which are needed in the
rest of the paper. The reader who is familiar with the notions of m-adic integers,
HNN-extensions and topology on the space of marked groups can skip this Section.

The ring of m-adic integers. For m ∈ Z, |m| > 2 we define Zm to be the
completion of Z with respect to the ultrametric distance given by the following
”absolute value”:

|a · mk|m :=

(

1

|m|

)k

for a not a multiple of m and k > 0 .

(Note that it is not multiplicative in general, but one has | − x|m = |x|m, which
is sufficient to induce a distance.) The space Zm has a ring structure obtained by
continuous extensions of the ring laws for Z and we call it the ring of m-adic integers.
The symbol Z

×

m
denotes the invertible elements of Zm. The distance induced by |.|m

is called the m-adic ultrametric distance, since it satisfies the ultrametric inequality

|x− z|m 6 max
(

|x− y|m, |y − z|m
)

.

As a topological ring, Zm is the projective limit of the system

. . .→ Z/mh
Z → Z/mh−1

Z → . . .→ Z/m2
Z → Z/mZ

where the arrows are the canonical (surjective) homomorphisms. This shows that
Zm is compact and it is coherent with this characterization to set Zm = {0} for
m = ±1. It becomes also nearly obvious that the group of invertible elements of Zm

is given by
Z
×

m
= Zm \ (p1Zm ∪ . . . ∪ pkZm)

where p1, . . . , pk are the prime factors of m.
To conclude this short summary about m-adic integers, let us notice that, for

|m| > 1 and m not prime, the ring Zm has zero divisors.
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Marked groups and their topology. Introductory expositions of these topics
can be found in [Ch00] or [CG05]. We only recall some basics and what we need in
following sections.

The free group on k generators will be denoted Fk, or FS (with S = (s1, . . . , sk)) if
we want to precise the names of (canonical) generating elements. A marked group on

k generators is a pair (Γ, S) where Γ is a group and S = (s1, . . . , sk) is a family which
generates Γ. A marked group (Γ, S) comes always with a canonical epimorphism
φ : FS → Γ, giving an isomorphism of marked groups between FS/ kerφ and Γ.
Hence a class of marked groups can always be represented by a quotient of FS. In
particular if a group is given by a presentation, this defines a marking on it. The
nontrivial elements of R := ker φ are called relations of (Γ, S).

Let w = xε1
1 · · ·xεn

n be a reduced word in FS (with xi ∈ S and εi ∈ {±1}). The
integer n is called the length of w and denoted ℓ(w). The length of the shortest
relation(s) of Γ will be denoted gΓ, for we observe it is the girth of the Cayley graph
of Γ (with respect to the generating set S). In case R = ∅, we set gΓ = +∞.

If (Γ, S) is a marked group on k generators and γ ∈ Γ, the length of γ is

ℓΓ(γ) := min{n : γ = s1 · · · sn with si ∈ S ⊔ S−1}

= min{ℓ(w) : w ∈ FS, φ(w) = γ} .

Let Gk be the set of marked groups on k generators (up to marked isomorphism).
Let us recall that the topology on Gk comes from the following ultrametric: for
(Γ1, S1) 6= (Γ2, S2) ∈ Gk we set d

(

(Γ1, S1), (Γ2, S2)
)

:= e−λ where λ is the length of
a shortest element of Fk which vanishes in one group and not in the other one. But
what the reader has to keep in mind is the following characterization of convergent
sequences.

Proposition 1 Let (Γn, Sn) be a sequence of marked groups (on k generators). The
following are equivalent:

(i) (Γn, Sn) is convergent in Gk;

(ii) for all w ∈ Fk we have either w = 1 in Γn for n large enough, or w 6= 1 in Γn

for n large enough.

Proof. (i)⇒(ii): Set (Γ, S) = lim
n→∞

(Γn, Sn) and take w ∈ Fk. For n sufficiently

large we have d
(

(Γ, S), (Γn, Sn)
)

< e−ℓ(w), which implies that we have w = 1 in Γn

if and only if w = 1 in Γ.
(ii)⇒(i): Set N = {w ∈ Fk : w = 1 in Γn for n large enough }, Γ = Fk/N , and

fix r > 1. For n large enough, Γn and Γ have the same relations up to length r (for
the balls in Fk are finite) and hence d(Γ,Γn) < e−r (we drop the markings since they
are obvious). This implies Γn →

n→∞
Γ. �

HNN-extensions and Baumslag-Solitar groups. Suppose now that (H,S) is
a marked group on k generators, and that φ : A → B is an isomorphism between
subgroups of H . The HNN extension of H with respect to A, B and φ is given by

HNN(H,A,B, φ) :=
H ∗ 〈t〉

N
.



Convergence of Baumslag-Solitar groups 225

where N is the normal subgroup generated by the t−1atφ(a)−1 for a ∈ A. Unless
specified otherwise, we always mark a HNN-extension by S and t. An element
γ ∈ HNN(H,A,B, φ) can always be written

γ = h0t
ε1h1 · · · t

εnhn with n > 0, εi ∈ {±1}, hi ∈ H . (1)

The decomposition of γ in (1) is called reduced if no subword of type t−1at (with
a ∈ A) or tbt−1 (with b ∈ B) appears. We recall the following result, which is called
Britton’s Lemma.

Lemma 1 ([LS77], Chapter IV.2.) Let γ ∈ HNN(H,A,B, φ) and write as in (1)
γ = h0t

ε1h1 · · · tεnhn. If n > 1 and if the decomposition is reduced, then γ 6= 1 in
HNN(H,A,B, φ).

This shows in particular that the integer n appearing in a reduced decomposition
is uniquely determined by γ.

Let us finally recall that Baumslag-Solitar groups are defined by the presentations
BS(m, n) =

〈

a, b
∣

∣

∣ abma−1 = bn
〉

for m, n ∈ Z
∗. Setting φ(nk) = mk, we have

BS(m, n) = HNN(Z, nZ,mZ, φ).

3 Shortest relations in a HNN-extension and convergence of

Baumslag-Solitar groups

Let (H,S) be a marked group and Γ = HNN(H,A,B, φ). In this Section we give
a lower estimate for gΓ. As a higher estimate, we obviously get gΓ 6 gH , because a
shortest relation in H is also a relation in Γ. Let us define:

α := min
{

ℓH(a) : a ∈ A \ {1}
}

;

β := min
{

ℓH(b) : b ∈ B \ {1}
}

.

Theorem 5 Let (H,S), Γ, α and β be defined as above. Then we have

min{gH , α + β + 2, 2α+ 6, 2β + 6} 6 gΓ 6 gH .

As the case of Baumslag-Solitar groups (treated below) will show, the lower
bound given in Theorem 5 is in fact sharp. This sharpness is the principal interest
of this Theorem, because the estimate min{gH , α, β} 6 gΓ, which follows easily from
Lemma 2 and Britton’s Lemma, suffices to prove Theorem 1 (replace Proposition 2
by the estimate gBS(m,n) > min(m, n)). I would like to thank the referee for having
pointed this fact to me.

Before proving Theorem 5, let us begin with a simple observation.

Lemma 2 Let (H,S) and Γ be defined as above and let r be a relation of Γ con-
tained in FS. Then r is a relation of H . In particular, ℓ(r) > gH .

Proof. Since r = 1 in Γ and since the canonical map H → Γ is injective, we get
r = 1 in H . Hence the first assertion. The second one follows by definition of gH . �
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Proof of Theorem 5. The second inequality has already been discussed. To
establish the first one, let us take a relation r of Γ and show that ℓ(r) > m, where
we set m := min{gH, α + β + 2, 2α + 6, 2β + 6}.

Write r = h0t
ε1h1 · · · tεnhn with εi ∈ {±1}, hi ∈ FS and hi 6= 1 if εi = −εi+1.

Up to replacement by a (shorter) conjugate, we may assume that r is cyclically
reduced. If n 6= 0, we may also assume that h0 = 1. Since r = 1 in Γ, one clearly
has

∑n
i=1 εi = 0. In particular, n is even. Let us distinguish several cases and show

ℓ(r) > m in each one:
Case n = 0: We get r = h0 ∈ FS. Thus ℓ(r) > gH > m by Lemma 2.
Case n = 2: One gets r = tεh1t

−εh2. If we look at r in Γ, we have r = 1 and
thus h1 ∈ A (if ε = −1) or h1 ∈ B (if ε = 1) by Britton’s Lemma. Suppose ε = −1
(in case ε = 1 the proof is similar and left to the reader). Looking at h1 in FS, there
are two possibilities (remember that we assumed h1 6= 1).

• If h1 = 1 in Γ, Lemma 2 implies ℓ(r) > ℓ(h1) > gH > m.

• If h1 6= 1 in Γ, then ℓ(h1) > α. On the other hand h−1
2 = t−1h1t ∈ B; thus

ℓ(h2) > β and ℓ(r) > α+ β + 2 > m.

Case n > 4: We have r = 1 in Γ. By Britton’s Lemma, there is an index
i such that either εi = −1, εi+1 = 1 and hi ∈ A, or εi = 1, εi+1 = −1 and
hi ∈ B. Since cyclic conjugations preserve length, we may assume i = 1, so that
r = tε1h1t

−ε1h2t
ε3h3 · · · tεnhn. Let us moreover assume ε1 = −1 (again the case

ε1 = 1 is similar and left to the reader). Set r′ = wh2t
ε3h3 · · · tεnhn where w ∈ FS is

such that w = t−1h1t in Γ (in fact this element is in B). Applying Britton’s Lemma
to r′, one sees there exists an index j > 3 such that either εj = −1 = −εj+1 and
hj ∈ A, or εj = 1 = −εj+1 and hj ∈ B. There are three possibilities:

• If h1 = 1 or hj = 1 in Γ, Lemma 2 implies ℓ(r) > gH > m as above.

• If h1 6= 1 in Γ, hj 6= 1 in Γ and εj = 1, then ℓ(h1) > α and ℓ(hj) > β. Thus
ℓ(r) > α+ β + 4 > m.

• If h1 6= 1 in Γ, hj 6= 1 in Γ and εj = −1, then we write r = t−1h1tw1t
−1hjtw2

with ℓ(h1) > α and ℓ(hj) > α. The subwords w1, w2 are not empty because r
is cyclically reduced. Thus ℓ(r) > 2α+ 6 > m (Remark that 2α+ 6 would be
replaced by 2β + 6 in the case ε1 = 1, εj = 1).

The proof is complete. �

We now turn to prove that for Baumslag-Solitar groups, the lower bound coming
from Theorem 5 is in fact the length of the shortest relation. More precisely we have
the following statement:

Proposition 2 Let m, n ∈ Z
∗. We have

gBS(m,n) = min
{

|m| + |n| + 2, 2|m| + 6, 2|n| + 6
}

.

Proof. Set m := min{|m| + |n| + 2, 2|m| + 6, 2|n| + 6} and Γ = BS(m, n). We
have gZ = +∞, α = |n| and β = |m|. Thus, Theorem 5 implies gΓ > m. To prove
that gΓ 6 m, we produce relations of length |m| + |n| + 2, 2|m| + 6, and 2|n| + 6.
Namely:
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• abma−1b−n has length |m| + |n| + 2;

• abma−1bab−ma−1b−1 has length 2|m| + 6;

• a−1bnaba−1b−nab−1 has length 2|n| + 6. �

Theorem 1 of introduction is now a consequence of Proposition 2, since a sequence
of groups Γn =

〈

a, b
∣

∣

∣ Rn

〉

converges to the free group on two generators (marked

by its canonical basis) if and only if gΓn
tends to ∞.

4 Limit of Solvable Baumslag-Solitar groups

This section is entirely devoted to the proof of Theorem 2. We notice first that
BS(1, n) = BS(−1,−n) as marked groups. Thus we may assume m = 1. Hence, we
let Γn = BS(1, n) and Γ = Z ≀ Z. In Z ≀ Z, let us set a = (1, 0) and b = (0, e0). We
have to show that for all w ∈ F2:

(1) if w = 1 in Z ≀ Z, then w = 1 in BS(1, n) for |n| large enough;

(2) if w 6= 1 in Z ≀ Z, then w 6= 1 in BS(1, n) for |n| large enough.

Let w ∈ F2. One can write w = aαaα1bβ1a−α1 · · ·aαkbβka−αk . The image of w in
Γ is (α,

∑k
i=1 βieαi

), where ej ∈ ⊕h∈ZZ is the Dirac mass at j. Let m = min16i6k αi.
In Γn = BS(1, n), we have

w = aαamaα1−mbβ1am−α1 · · ·aαk−mbβkam−αka−m

= aαambβ1n
α1−m

· · · bβkn
αk−m

a−m

= aαamb

∑

h∈Z

(

∑

αi=h
βi

)

n
h−m

a−m

(1) As w =
Γ

1, we have α = 0 and ∀h ∈ Z,
∑

αi=h βi = 0. Hence

w =
Γn

a0amb
∑

h∈Z
0·nh−m

a−m = 1 ∀n ∈ Z
∗ .

(2) As w 6=
Γ

1, either α 6= 0 or ∃h ∈ Z such that
∑

αi=h βi 6= 0. The image of w by

the morphism Γn → Z given by a 7→ 1, b 7→ 0 is α. Hence, if α 6= 0, then w 6=
Γn

1 ∀n.

If α = 0, we set h0 to be the maximal value of h such that
∑

αi=h βi 6= 0. For |n|
large enough, we have

∣

∣

∣

∣

∣

∣

∑

αi=h0

βin
h0−m

∣

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

∣

∑

h<h0

∑

αi=h

βin
h−m

∣

∣

∣

∣

∣

∣

.

For those values of n, we get

w =
Γn

amb

(

∑

αi=h0
βi

)

n
h0−m+

∑

h<h0

(

∑

αi=h
βi

)

n
h−m

a−m 6=
Γn

1 .

The proof is complete. �
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5 General one-parameter families of Baumslag-Solitar groups

We now treat the case |m| > 2. More precisely, we begin the proof of Theorem 3.
We also have BS(m, n) = BS(−m,−n) as marked groups. This equality will allow
us to assume m > 0 in following proofs. We begin with a Lemma which already
shows that the sequence (BS(m, n))n is not itself convergent.

Lemma 3 Let m, n ∈ Z
∗, d = gcd(m, n). We write m = dm1, n = dn1. Let k ∈ Z,

h > 1 and

w = ah+1bma−1b−ka−hbah+1b−ma−1bka−hb−1 .

If |n| > 2, we have w = 1 in BS(m, n) if and only if n ≡ k (mod m
h
1d).

The congruence modulo m
h
1d (instead of m

h) is the reason for the hypothesis “n
relatively prime to m” appearing in Theorem 3.

Proof. Let Γn = BS(m, n). We have

w =
Γn

ahbn−ka−hbahbk−na−hb−1 .

Let us now distinguish three cases:
Case 1: n 6≡ k (mod m).

We have w 6=
Γn

1 by Britton’s Lemma, since |n| > 2.

Case 2: n 6≡ k (mod m
h
1d), but n ≡ k (mod m).

We write n − k = ℓmg
1d with g < h and ℓ not a multiple of m1. Hence ℓng

1d is not a
multiple of m = m1d, for m1 is relatively prime to n1. We have

w =
Γn

ah−gbℓn
g
1dag−hbah−gb−ℓn

g
1dag−hb−1 6=

Γn

1

by Britton’s Lemma (again because |n| > 2).
Case 3: n ≡ k (mod m

h
1d).

Let us write n − k = ℓmh
1d. Then w =

Γn

bℓn
h
1dbb−ℓnh

1db−1 =
Γn

1. �

Proof of Theorem 3. The “if” is a particular case of Theorem 6 below.
We prove now the “only if” part. Let Γn = BS(m, kn). We assume the sequence

(Γn)n to converge and condition (a) not to hold. We have to show that condition
(b) holds.

The first step is to prove that |kn| tends to ∞. To do this, we take ℓ in Z
∗

and we show that the set Aℓ := {n ∈ N : kn = ℓ} is finite. Set Bℓ = N \ Aℓ and
w = abma−1b−ℓ, so that w = bkn−ℓ in Γn. One has thus w = 1 in Γn if n ∈ Aℓ and
w 6= 1 in Γn if n ∈ Bℓ. On the other way, the set Bℓ is infinite, since (a) is supposed
not to hold. Now, as the sequence (Γn)n is convergent, one has w 6= 1 in Γn for n
large enough, so that the set Aℓ is finite.

The second step is to prove that kn is eventually constant modulo m
h (∀h > 1).

Up to removing the first elements in the sequence, we may assume |kn| > 2 for all
n. Fix h > 1. For k ∈ Z we set

wk = ah+1bma−1b−ka−hbah+1bma−1bka−hb−1 .
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As (Γn)n converges, we have (for each k ∈ Z) either wk =
Γn

1 for n large enough, or

wk 6=
Γn

1 for n large enough. As |kn| > 2 and kn is relatively prime to m for all n,

Lemma 3 ensures that (for each k ∈ Z) either kn ≡ k (mod m
h) for n large enough,

or kn 6≡ k (mod m
h) for n large enough. This implies that kn is eventually constant

modulo m
h (∀h > 1). �

What remains now to do is to prove the following Theorem, which is a little bit
more general than the “if” part of Theorem 3. The proof will need some preliminary
lemmas.

Theorem 6 Let m ∈ Z
∗ and let (kn)n be a sequence in Z

∗. If |kn| → ∞ and if
∀h > 1 the sequence (kn)n is eventually constant modulo m

h, then the sequence
(BS(m, kn))n is convergent in G2.

Lemma 4 Let m, n, n′ ∈ Z
∗ and h > 1. If n ≡ n

′ (mod m
h), there exists s0, . . . , sh;

s′0, . . . , s
′

h; r1, . . . , rh, which are unique, such that:

(i) 0 6 ri < m ∀i; s0 = 1 = s′0;

(ii) si−1n = sim + ri and s′i−1n
′ = s′im + ri ∀ 1 6 i 6 h;

(iii) si ≡ s′i (mod m
h−i) ∀ 0 6 i 6 h.

Proof. Given the congruence n ≡ n
′ (mod m

h), we obtain (by Euclidean division)
s0n = n = s1m + r1 and s′0n

′ = n
′ = s′1m + r1 with 0 6 r1 6 m and s1 ≡ s′1

(mod m
h−1). Hence we have s1n ≡ s′1n

′ (mod m
h−1). (Let us emphasize that we do

not necessary have s1n ≡ s′1n
′ (mod m

h).)
Now, it just remains to iterate the above and uniqueness follows from construc-

tion. �

Given a word w in F2, we may use Britton’s Lemma to reduce it in BS(m, n)
or BS(m, n′). But w could be reducible in one of these groups and not in the other
one. Even if it is reducible in both groups the result is not the same word in general.
The purpose of next statement is, under some assumptions, to control the parallel
process of reduction in both groups. This will be useful to ensure that w is a relation
in BS(m, n) if and only if it is one in BS(m, n′) (under some assumptions).

Lemma 5 Let m, n, n′ ∈ Z
∗ and h > m > 1. Assume that n ≡ n

′ (mod m
h) and let

α = k0 + k1n + k2s1n + . . .+ kmsm−1n

α′ = k0 + k1n
′ + k2s

′

1n
′ + . . .+ kms

′

m−1n
′

where s0, . . . , sh; s
′

0, . . . , s
′

h; r1, . . . , rh are given by Lemma 4. We assume moreover
that we have |k0| < min(|n|, |n′|).

(i) We have α ≡ 0 (mod m) if and only if α′ ≡ 0 (mod m). If this happens we get
abαa−1 =

BS(m,n)
bβ and abα

′

a−1 =
BS(m,n′)

bβ
′

with

β = ℓ1n + ℓ2s1n + . . .+ ℓm+1smn

β ′ = ℓ1n
′ + ℓ2s

′

1n
′ + . . .+ ℓm+1s

′

mn
′ .
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(ii) We have α ≡ 0 (mod n) if and only if α′ ≡ 0 (mod n
′). If this happens we get

a−1bαa =
BS(m,n)

bβ and a−1bα
′

a =
BS(m,n′)

bβ
′

with

β = ℓ0 + ℓ1n + ℓ2s1n + . . .+ ℓm−1sm−2n

β ′ = ℓ0 + ℓ1n
′ + ℓ2s

′

1n
′ + . . .+ ℓm−1s

′

m−2n
′ .

Proof. (i) We have α ≡ α′ (mod m) by construction. Assume now that α ≡ 0
and α′ ≡ 0 (mod m). We have

α = k0 + k1r1 + . . .+ kmrm + k1s1m + . . .+ kmsmm .

As α ≡ 0 (mod m), we obtain abαa−1 =
BS(m,n)

bβ with

β =
n

m
(k0 + k1r1 + . . .+ kmrm) + k1s1n + . . .+ kmsmn

Thus we set ℓ1 = 1
m
(k0 + k1r1 + . . . + kmrm) and ℓi = ki−1 for 2 6 i 6 m + 1, and

doing the same calculation with α′ in BS(m, n′), we obtain also

β ′ = ℓ1n
′ + ℓ2s

′

1n
′ + . . .+ ℓm+1s

′

mn
′ .

(ii) As |n| > |k0| and |n′| > |k0|, we have α ≡ 0 (mod n) if and only if k0 = 0 if
and only if α′ ≡ 0 (mod n

′). Suppose now that it is the case. We have abαa−1 = bβ

in BS(m, n) with

β = k1m + k2s1m + . . .+ kmsm−1m

= k1m − k2r1 − . . .− kmrm−1 + k2n + k3s1n + . . .+ kmsm−2n .

Hence we set ℓ0 = k1m−k2r1− . . .−kmrm−1 and ℓi = ki+1 for 1 6 i 6 m−1. Again,
doing the same calculation with α′ in BS(m, n′), we obtain also

β ′ = ℓ0 + ℓ1n
′ + ℓ2s

′

1n
′ + . . .+ ℓm−1s

′

m−2n
′ .

This completes the proof. �

Lemma 6 Let m ∈ Z
∗, let (kn)n be a sequence in Z

∗ such that |kn| → ∞ and
∀h > 1 (kn)n is eventually constant modulo m

h and let w ∈ F2. Then, the following
alternative holds:

(a) either w = bλn in BS(m, kn) for n large enough;

(b) or w is in BS(m, kn) \ 〈b〉 for n large enough.

Proof. We define Γn = BS(m, kn). Let us write w = bα0aε1bα1 · · ·aεmbαm with
εi = ±1 and αi ∈ Z, reduced in the sense that αi = 0 implies εi+1 = εi for all
i ∈ {1, . . . , m − 1}. We assume (b) not to hold, i.e. w = bλn in Γn for infinitely
many n. Then the sum ε1 + . . .+ εm has clearly to be zero (in particular m is even).
We have to show that w = bλn for n large enough.

For n large enough, we may assume that, |kn| > |αj| for all 1 6 j 6 m and the
kn’s are all congruent modulo m

m. We take a value of n such that moreover w = bλn
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in Γn (there are infinitely many ones) and apply Britton’s Lemma. This ensures
the existence of an index j such that εj = 1 = −εj+1 and αj ≡ 0 (mod m) (since
|kn| > |αj| for all j). By Lemma 5, for all n large enough

w =
Γn

bα0 · · ·aεj−1bαj−1+βj+αj+1aεj+2 · · · bαm

with βj = ℓ1kn (depending on n). Hence we are allowed to write

w =
Γn

bα
′

0,naε′1bα
′

1,n · · ·aε′m−2,nbα
′

m−2,n

for n large enough, with ε′i = ±1 and α′

j,n = k′0,j + k′1,jkn, where the k′i,j’s do not
depend on n.

Now, for n large enough, we may assume that, |kn| > |k′0,j| for all 1 6 j 6 m− 1
(and the kn’s are all congruent modulo m

m). Again we take a value of n such that
moreover w = bλn in Γn and apply Britton’s Lemma. This ensures the existence of an
index j such that either ε′j = 1 = −ε′j+1 and α′

j,n ≡ 0 (mod m), or ε′j = −1 = −ε′j+1

and α′

j,n ≡ 0 (mod kn). In both cases, while applying Lemma 5, we obtain

w =
Γn

bα
′′

0,naε′′1 bα
′′

1,n · · ·aε′′m−4,nbα
′′

m−4,n

for n large enough, with ε′′i = ±1 and α′′

j,n = k′′0,j +k′′1,jkn +k′′2,js1,nkn, where the k′′i,j’s
do not depend on n.

And so on, and so forth, setting m′ = m
2
, we get finally w = bα

(m′)
0,n in Γn for n

large enough, with

α
(m′)
0,n = k

(m′)
0,0 + k

(m′)
1,0 kn + k

(m′)
2,0 s1,nkn + . . .+ k

(m′)
m′,0sm′−1,nkn

where the k
(m′)
i,0 ’s do not depend on n. It only remains to set λn = α

(m′)
0,n . �

Let us now introduce the homomorphisms ψn : BS(m, n) → Aff(R) (for n ∈ Z
∗)

given by ψn(a)(x) = n

m
x and ψn(b)(x) = x+ 1.

Lemma 7 Let w ∈ F2. We have either ψn(w) = 1 for |n| large enough or ψn(w) 6= 1
for |n| large enough.

Proof. Let us write w = bα0aε1bα1 . . . aεkbαk with εi = ±1 and αi ∈ Z. Set next
σ0 = 0, σi = ε1 + . . .+ εi for 1 6 i 6 k and m = min06i6k σi. We get by calculation
that

ψn(w)(x) =
(

n

m

)σk

x+
(

n

m

)m

Pw

(

n

m

)

where Pw is the polynomial defined by Pw(y) =
∑k

i=0 αiy
σi−m. Let us assume the

second term of alternative not to hold, i.e. ψn(w) = 1 for infinitely many values
of n. Hence we have σk = 0 and for all those values of n, Pw( n

m
) = 0. As Pw is a

polynomial with infinitely many roots, it is the zero polynomial. This shows that
ψn(w) = 1 for all n. �

Proof of Theorem 6. It is easy to show that a word w is equal to 1 in BS(m, n)
if and only if it is in the subgroup generated by b and ψn(w) = 1. It is also a
consequence of (the proof of) Theorem 1 in [GJ03]. Let w ∈ F2. Lemmas 6 and 7
immediately imply that either w = 1 in BS(m, kn) for n large enough or w 6= 1 in
BS(m, kn) for n large enough. �

Theorem 3 is now completely established.
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6 Baumslag-Solitar groups and m-adic integers

This last section is entirely devoted to the proof of Theorem 4. We show first that
the map Ψ is uniformly continuous. In view of the distances we put on G2 and Z

×

m
,

it is equivalent to show that for any h > 1 there exists r > 1 such that we have
n ≡ n

′ (mod m
h) whenever BS(m, n) and BS(m, n′) (taken in Xm) have the same

relations up to length r.
Fix h > 1. Our candidate is r = 2mh + 4h+ 2m + 4. Assume that BS(m, n) and

BS(m, n′) have the same relations up to length r. For 0 6 k 6 m
h − 1 let

wk = ah+1bma−1b−ka−hbah+1bma−1bka−hb−1 .

(Remark that these words are exactly those which appear in the proof of the “only
if” part of theorem 3. We are in fact improving this proof in order to get the uniform
continuity.) We have ℓ(wk) 6 r for all k. Having by assumption w = 1 in BS(m, n)
if and only if w = 1 in BS(m, n′), Lemma 3 implies n ≡ n

′ (mod m
h).

The space Z
×

m
being complete and the uniform continuity of Ψ being now proved,

the existence of a (unique) uniformly continuous extension Ψ on Xm is a standard
fact (see [Dug70], Chapter XIV, Theorem 5.2. for instance).

Let us now show that Ψ is surjective. The space Xm being compact, im(Ψ) is
closed in Z

×

m
. Moreover it is dense since it contains the set of n’s relatively prime to

m and such that |n| > 2.
Finally, we consider the sequence (BS(m, 1 + m + m

n))n, which is convergent by
theorem 3 and we call the limit Γ. We have Ψ(Γ) = 1 + m = Ψ(BS(m, 1 + m)). On
the other hand, we have Γ 6= BS(1 + m), since abma−1b−(m+1) = 1 in BS(m, 1 + m)
while abma−1b−(m+1) 6= 1 in BS(m, 1 + m + m

n) for all n. This is the non-injectivity
of Ψ and completes the proof. �
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