Exceptional sets with a weight in a unit ball

Piotr Kot

Abstract

For a given number $s>-1$ and a multiindex $\alpha \in \mathbb{N}^{n}$ we give a proof of the following equality: $$
\int_{\|z\|<R} z^{\alpha} \overline{z^{\alpha}}\left(R^{2}-\|z\|^{2}\right)^{s} d z=\frac{\pi^{n} \alpha!R^{2(s+|\alpha|+n)}}{\prod_{i=1}^{|\alpha|+n}(s+i)} .
$$

As a result we receive different properties of the sets defined by the following formula

$$
E^{s}(f)=\left\{z \in \partial \mathbb{B}^{n}: \int_{|\lambda|<1}|f(\lambda z)|^{2}\left(1-|\lambda|^{2}\right)^{s} d \mathfrak{L}^{2}=\infty\right\}
$$

for the holomorphic function $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$.

1 Preface

This paperdeals with the exceptional sets with a weight:

$$
\chi_{s}: \mathbb{B}^{n} \ni z \longrightarrow \chi_{s}(z)=\left(1-\|z\|^{2}\right)^{s}
$$

We denote $\mathbb{D}=\{\lambda \in \mathbb{C}:|\lambda|<1\}$. The exceptional set with a weight s for the holomorphic function $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$ in this paper is denoted as

$$
E^{s}(f)=\left\{z \in \partial \mathbb{B}^{n}: \int_{\mathbb{D} z}|f|^{2} \chi_{s} d \mathfrak{L}^{2}=\infty\right\}
$$

[^0]In the 80s Peter Pflug [7] posed the question whether there exists a domain $\Omega \subset \mathbb{C}^{n}$, a complex subspace M of \mathbb{C}^{n} and a holomorphic, square integrable function f in Ω such that $\left.f\right|_{M \cap \Omega}$ is not square integrable.

A similar question was posed by Jacques Chaumat [1] in the late 80s; whether there exists a holomorphic function f in a ball \mathbb{B}^{n} such that for any linear, complex subspace M in \mathbb{C}^{n} a holomorphic function $\left.f\right|_{M \cap \mathbb{B}^{n}}$ is not square integrable.

The questions mentioned above inspired further investigation among the authors $[2,3,4,5,6]$. These authors consider holomorphic functions which are not square integrable along complex lines with a point 0 . Due to $[2,3]$ we know that for a convex domain Ω with a boundary of a class C^{1} it is possible to create a holomorphic function f, which is not square integrable along any real manifold M of a class C^{1} crossing transversally a boundary Ω.

Let E be any circular subset of the type G_{δ} of $\partial \mathbb{B}^{n}$. In the papers [5, 6] we presented a construction of the holomorphic function $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$ for which $E=$ $E^{0}(f)$. Additionally in the paper [6] we proved that a function f can be selected so that $\int_{\mathbb{B}^{n} \backslash \Lambda(E)}|f|^{2} d \mathfrak{\Sigma}^{2 n}<\infty$, where $\Lambda(E)=\{\lambda z:|\lambda|=1, z \in E\}$.

In this paper we deal mainly with the exceptional sets with a non-trivial weight. The following theorem is of key importance for this paper:
Theorem 2.2. For $k \in \mathbb{N}_{+}$, a number $s>-1$, a number $R>0$ and for a multiindex $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ we have the following equality

$$
\int_{\left|z_{1}\right|^{2}+\ldots+\left|z_{k}\right|^{2}<R^{2}} z^{\alpha} \overline{z^{\alpha}}\left(R^{2}-\|z\|^{2}\right)^{s} d z=\frac{\pi^{k} \alpha!R^{2(s+|\alpha|+k)}}{\prod_{i=1}^{|\alpha|+k}(s+i)} .
$$

Let us define the functional:

$$
\mathfrak{F}_{s}: \mathbb{O}\left(\mathbb{B}^{n}\right) \ni f=\sum_{m \in \mathbb{N}} p_{m} \rightarrow \sum_{m \in \mathbb{N}} \frac{p_{m}}{\sqrt{(m+n)^{s}}} \in \mathbb{O}(\Omega),
$$

where p_{m} denote homogeneous polynomial of the degree m.
Observe that $\mathfrak{F}_{s+t}=\mathfrak{F}_{s} \circ \mathfrak{F}_{t}$. We use this property to describe the functional \mathfrak{F} :
Theorem 2.4. Define $s>-1$. The operator \mathfrak{F}_{s} is properly defined and has the following properties:

1. $\mathfrak{F}_{s}\left(\mathbb{O}\left(\mathbb{B}^{n}\right)\right)=\mathbb{O}\left(\mathbb{B}^{n}\right)$,
2. there exist the constants $c_{1}, c_{2}>0$ such that:

$$
\begin{aligned}
c_{1} \int_{\mathbb{D} z}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}_{\mathbb{D} z}^{2} & \leq \int_{\mathbb{D} z}|f|^{2} \chi_{s} d \mathfrak{L}_{\mathbb{D} z}^{2} \\
& \leq c_{2} \int_{\mathbb{D} z}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}_{\mathbb{D} z}^{2}
\end{aligned}
$$

for $f \in \mathbb{O}\left(\mathbb{B}^{n}\right), z \in \partial \mathbb{B}^{n}$ and

$$
c_{1} \int_{\mathbb{B}^{n}}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}^{2 n} \leq \int_{\mathbb{B}^{n}}|f|^{2} \chi_{s} d \mathfrak{L}^{2 n} \leq c_{2} \int_{\mathbb{B}^{n}}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}^{2 n}
$$

for $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$.

Due to this Theorem it is possible to create the exceptional sets with a weight on the basis of the exceptional sets without a weight:
Example 2.5. Let E be a circular set of the type G_{δ} of the measure zero in $\partial \mathbb{B}^{n}$. Define $s>-1$. Therefore there exists a holomorphic function $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$ such that $E=E^{s}(f)$ and $\int_{\mathbb{B}^{n}}|f|^{2} \chi_{s} d \mathfrak{L}^{2 n}<\infty$.

Due to Theorems 2.2 and 2.4 we can prove some estimations connected with the exceptional sets with a weight:
Theorem 2.7. If $s>-1$, the function $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$ is such that: $\int_{\mathbb{B}^{n}}|f|^{2} \chi_{s} d \mathfrak{L}^{2 n}<\infty$, then $E^{s+n-1}(f)=\emptyset$.

2 Exceptional sets with the weights in a unit ball

Lemma 2.1. Let us define $R>0$. We have the following equality

$$
\int_{0}^{R} t^{m}(R-t)^{s} d t=\frac{m!R^{s+m+1}}{\prod_{i=1}^{m+1}(s+i)}
$$

for $s>-1$ and $m \in \mathbb{N}$. Additionally

$$
\int_{0}^{R} t^{m}(R-t)^{s} d t=\infty
$$

for $s \leq-1$ and $m \in \mathbb{N}$.
Proof. First, we assume that $s>-1$. Let $G_{s}^{m}(R)=\int_{0}^{R} t^{m}(R-t)^{s} d t$. It is easy to observe that $G_{s}^{0}=\left[-\frac{(R-t)^{s+1}}{s+1}\right]_{0}^{R}=\frac{R^{s+1}}{s+1}$. Therefore we get the equality

$$
\begin{equation*}
G_{s}^{m}(R)=\frac{m!R^{s+m+1}}{\prod_{i=1}^{m+1}(s+i)} \tag{2.1}
\end{equation*}
$$

for $m=0$ and for any $s>-1$. We assume that we have (2.1) for a given $m \in \mathbb{N}$ and $s>-1$. We can calculate

$$
\begin{aligned}
G_{s}^{m+1}(R) & =\int_{0}^{R} t^{m+1}(R-t)^{s} d t \\
& =\left[-\frac{t^{m+1}(R-t)^{s+1}}{s+1}\right]_{0}^{R}+\int_{0}^{R}(m+1) t^{m}\left(\frac{(R-t)^{s+1}}{s+1}\right) d t \\
& =\frac{m+1}{s+1} G_{s+1}^{m}(R)=\frac{m+1}{s+1} \frac{m!R^{s+m+2}}{\prod_{i=1}^{m+1}(s+1+i)} \\
& =\frac{(m+1)!R^{s+m+2}}{\prod_{i=1}^{m+2}(s+i)}
\end{aligned}
$$

for a given $m \in \mathbb{N}$ and for any $s>-1$. Therefore, using induction, we have the equality (2.1) for every $m \in \mathbb{N}$ and for any $s>-1$.

Let $s \leq-1$. Let ϵ be such that $\max \{0, R-1\}<R-\epsilon<R$. We can calculate

$$
\begin{aligned}
\int_{0}^{R} t^{m}(R-t)^{s} d t & \geq \int_{R-\epsilon}^{R} t^{m}(R-t)^{-1} d t \geq(R-\epsilon)^{m} \int_{R-\epsilon}^{R}(R-t)^{-1} d t \\
& \geq(R-\epsilon)^{m}[-\ln (R-t)]_{R-\epsilon}^{R}=\infty
\end{aligned}
$$

which finishes the proof.

Theorem 2.2. For $k \in \mathbb{N}_{+}$, a number $s>-1$, a number $R>0$ and for a multiindex $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ we have

$$
\int_{\left.|z|^{2}\right|^{2}+\ldots+\left|z_{k}\right|^{2}<R^{2}} z^{\alpha} \overline{z^{\alpha}}\left(R^{2}-\|z\|^{2}\right)^{s} d z=\frac{\pi^{k} \alpha!R^{2(s+|\alpha|+k)}}{\prod_{i=1}^{|\alpha|+k}(s+i)} .
$$

Proof. We define

$$
G_{\alpha, s}^{m}(R)=\int_{\left|z_{1}\right|^{2}+\ldots+\left|z_{m}\right|^{2} \leq R^{2}} z^{\alpha} \overline{z^{\alpha}}\left(R^{2}-\|z\|^{2}\right)^{s} d z
$$

We prove the following equality

$$
\begin{equation*}
G_{\alpha, s}^{m}(R)=\frac{\pi^{m} \alpha!R^{2(s+|\alpha|+m)}}{\prod_{i=1}^{|\alpha|+m}(s+i)} . \tag{2.2}
\end{equation*}
$$

If $m=1$, then $\alpha \in \mathbb{N}$. Therefore, due to Lemma 2.1, we can calculate

$$
\begin{aligned}
G_{\alpha, s}^{1}(R) & =\int_{|z|^{2} \leq R^{2}} z^{\alpha} \overline{z^{\alpha}}\left(R^{2}-|z|^{2}\right)^{s} d z=2 \pi \int_{0}^{R} r^{2 \alpha+1}\left(R^{2}-r^{2}\right)^{s} d r \\
& =\pi \int_{0}^{R^{2}} t^{\alpha}\left(R^{2}-t\right)^{s} d t=\frac{\pi \alpha!R^{2(s+|\alpha|+1)}}{\prod_{i=1}^{|\alpha|+1}(s+i)}
\end{aligned}
$$

for $R>0$ and $s>-1$. We assume that we have (2.2) for a given $m \in \mathbb{N}_{+}$, any number $R>0$, a number $s>-1$ and a multiindex $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$. We define a multiindex $\beta=\left(\alpha_{1}, \ldots, \alpha_{m}, \beta_{m+1}\right)$. We have the equality

$$
\begin{aligned}
G_{\beta, s}^{m+1}(R) & =\int_{\left|z_{1}\right|^{2}+\ldots+\left|z_{m+1}\right|^{2} \leq R^{2}} z^{\beta} \overline{z^{\beta}}\left(R^{2}-\|z\|^{2}\right)^{s} d z \\
& =\int_{\left|z_{m+1}\right|^{2} \leq R^{2}}\left|z_{m+1}\right|^{2 \beta_{m+1}} G_{\alpha, s}^{m}\left(\sqrt{R^{2}-\left|z_{m+1}\right|^{2}}\right) d z_{m+1} \\
& =2 \pi \int_{0}^{R} r^{2 \beta_{m+1}+1} \frac{\pi^{m} \alpha!\left(R^{2}-r^{2}\right)^{(s+|\alpha|+m)}}{\prod_{i=1}^{|\alpha|+m}(s+i)} d r \\
& =\int_{0}^{R^{2}} t^{\beta_{m+1}} \frac{\pi^{m+1} \alpha!\left(R^{2}-t\right)^{(s+|\alpha|+m)}}{\prod_{i=1}^{|\alpha|+m}(s+i)} d t .
\end{aligned}
$$

Using Lemma 2.1 we can calculate:

$$
\begin{aligned}
G_{\beta, s}^{m+1}(R) & =\frac{\pi^{m+1} \alpha!}{\prod_{i=1}^{|\alpha|+m}(s+i)} \int_{0}^{R^{2}} t^{\beta_{m+1}}\left(R^{2}-t\right)^{(s+|\alpha|+m)} d t \\
& =\frac{\pi^{m+1} \alpha!\beta_{m+1}!R^{2(s+|\beta|+m+1)}}{\prod_{i=1}^{|\alpha|+m}(s+i) \prod_{i=1}^{\beta_{m}+1}(s+|\alpha|+m+i)} \\
& =\frac{\pi^{m+1} \beta!R^{2(s+|\beta|+m+1)}}{\prod_{i=1}^{|\beta|+m+1}(s+i)} .
\end{aligned}
$$

Therefore, using induction we have (2.2) for any $m \in \mathbb{N}_{+}$, a number $s>-1$, a number $R>0$ and a multiindex $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$.

We need the following estimations:
Lemma 2.3. Let $s>-1$. There exist the constants $C, c>0$ such that

$$
c \leq \frac{m!m^{s}}{\prod_{i=1}^{m}(i+s)} \leq C
$$

for $m \geq 1$.

Proof. Let $N \in \mathbb{N}$ be such that $\frac{|s|}{N}<1$. Let $M \in \mathbb{N}$ be such that $N<M$.
For $|x|<1$ we have the following inequality $x-\frac{x^{2}}{2} \leq \ln (1+x) \leq x$. In particular, we have $|\ln (1+x)-x| \leq \frac{x^{2}}{2}$. We can conclude the following estimation

$$
\left|\ln \prod_{i=N}^{M}\left(1+\frac{s}{i}\right)-\sum_{i=N}^{M} \frac{s}{i}\right|=\left|\sum_{i=N}^{M}\left(\ln \left(1+\frac{s}{i}\right)-\frac{s}{i}\right)\right| \leq \sum_{i=1}^{\infty} \frac{s^{2}}{2 i^{2}} .
$$

Similarly

$$
\begin{aligned}
\left|\ln \frac{M}{N}-\sum_{i=N}^{M-1} \frac{1}{i}\right| & =\left|\ln \prod_{i=N}^{M-1}\left(1+\frac{1}{i}\right)-\sum_{i=N}^{M-1} \frac{1}{i}\right| \\
& =\left|\sum_{i=N}^{M-1}\left(\ln \left(1+\frac{1}{i}\right)-\frac{1}{i}\right)\right| \leq \sum_{i=1}^{\infty} \frac{1}{2 i^{2}} .
\end{aligned}
$$

We can now estimate:

$$
\begin{aligned}
\left|\ln \frac{\prod_{i=N}^{M}\left(1+\frac{s}{i}\right)}{\left(\frac{M}{N}\right)^{s}}\right| & =\left|\ln \prod_{i=N}^{M}\left(1+\frac{s}{i}\right)-s \ln \frac{M}{N}\right| \\
& \leq\left|\ln \prod_{i=N}^{M}\left(1+\frac{s}{i}\right)-\sum_{i=N}^{M} \frac{s}{i}\right|+|s|\left|\ln \frac{M}{N}-\sum_{i=N}^{M} \frac{1}{i}\right| \\
& \leq \sum_{i=1}^{\infty} \frac{s^{2}}{2 i^{2}}+\sum_{i=1}^{\infty} \frac{|s|}{2 i^{2}}+1 .
\end{aligned}
$$

Therefore

$$
\frac{1}{C} \leq \frac{\prod_{i=N}^{M}\left(1+\frac{s}{i}\right)}{\left(\frac{M}{N}\right)^{s}} \leq C
$$

for

$$
C=\exp \left(\sum_{i=1}^{\infty} \frac{s^{2}}{2 i^{2}}+\sum_{i=1}^{\infty} \frac{|s|}{2 i^{2}}+1\right)
$$

and for any $M>N$. There exists $\widetilde{C}>0$ such that

$$
\frac{1}{\widetilde{C}} \leq \frac{m!m^{s}}{m!\prod_{i=1}^{m}\left(1+\frac{s}{i}\right)}=\frac{m!m^{s}}{\prod_{i=1}^{m}(i+s)} \leq \widetilde{C}
$$

for $m \in \mathbb{N}$, which finishes the proof.

Theorem 2.4. We define $s>-1$. The operator \mathfrak{F}_{s} is properly defined and has the following properties:

1. $\mathfrak{F}_{s}\left(\mathbb{O}\left(\mathbb{B}^{n}\right)\right)=\mathbb{O}\left(\mathbb{B}^{n}\right)$,
2. there exists the constants $c_{1}, c_{2}>0$ such that:

$$
\begin{aligned}
c_{1} \int_{\mathbb{D} z}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}_{\mathbb{D} z}^{2} & \leq \int_{\mathbb{D} z}|f|^{2} \chi_{s} d \mathfrak{L}_{\mathbb{D} z}^{2} \\
& \leq c_{2} \int_{\mathbb{D} z}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}_{\mathbb{D} z}^{2}
\end{aligned}
$$

for $f \in \mathbb{O}\left(\mathbb{B}^{n}\right), z \in \partial \mathbb{B}^{n}$ and

$$
c_{1} \int_{\mathbb{B}^{n}}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}^{2 n} \leq \int_{\mathbb{B}^{n}}|f|^{2} \chi_{s} d \mathfrak{L}^{2 n} \leq c_{2} \int_{\mathbb{B}^{n}}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}^{2 n}
$$

for $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$.

Proof. Observe that due to Lemma 2.3 there exist the constants $c_{1}, c_{2}>0$ such that

$$
c_{1} \leq \frac{(m+n)!(m+n)^{s}}{\prod_{i=1}^{m+n}(s+i)} \leq c_{2}
$$

and

$$
c_{1} \leq \frac{(m+1)!(m+n)^{s}}{\prod_{i=1}^{m+1}(s+i)} \leq c_{2}
$$

for $m \in \mathbb{N}$.
As $\lim _{m \rightarrow \infty}\left(m^{s}\right)^{\frac{1}{m}}=1$, therefore the operator \mathfrak{F}_{s} is properly defined and $\mathfrak{F}_{s}\left(\mathbb{O}\left(\mathbb{B}^{n}\right)\right)=$ $\mathbb{O}\left(\mathbb{B}^{n}\right)$.

Let us take any function

$$
f(z)=\sum_{\alpha \in \mathbb{N}^{n}} b_{\alpha} z^{\alpha} \in \mathbb{O}\left(\mathbb{B}^{n}\right) .
$$

Observe that

$$
\mathfrak{F}_{s}(f)(z)=\sum_{\alpha \in \mathbb{N}^{n}} \frac{b_{\alpha} z^{\alpha}}{\sqrt{(|\alpha|+n)^{s}}}
$$

and due to Theorem 2.2

$$
\int_{\mathbb{B}^{n}}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}^{2 n}=\sum_{\alpha \in \mathbb{N}^{n}} \frac{\left|b_{\alpha}\right|^{2} \pi^{n} \alpha!}{(|\alpha|+n)!(|\alpha|+n)^{s}} .
$$

Using Theorem 2.2 we can again calculate

$$
\begin{aligned}
\int_{\mathbb{B}^{n}}|f|^{2} \chi_{s} d \mathfrak{L}^{2 n} & =\sum_{\alpha} \frac{\left|b_{\alpha}\right|^{2} \pi^{n} \alpha!}{\prod_{i=1}^{\alpha \mid+n}(s+i)} \\
& =\sum_{\alpha} \frac{d_{\alpha}\left|b_{\alpha}\right|^{2} \pi^{n} \alpha!}{(|\alpha|+n)!(|\alpha|+n)^{s}},
\end{aligned}
$$

where

$$
c_{1} \leq d_{\alpha}=\frac{(|\alpha|+n)!(|\alpha|+n)^{s}}{\prod_{i=1}^{|\alpha|+n}(s+i)} \leq c_{2} .
$$

Therefore

$$
c_{1} \int_{\mathbb{B}^{n}}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}^{2 n} \leq \int_{\mathbb{B}^{n}}|f|^{2} \chi_{s} d \mathfrak{L}^{2 n} \leq c_{2} \int_{\mathbb{B}^{n}}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}^{2 n} .
$$

There exists a sequence of homogeneous polynomials p_{m} of a degree m such that $f(z)=\sum_{m \in \mathbb{N}} p_{m}(z)$. Observe that due to Lemma 2.1 for $s>-1$ we have:

$$
\begin{aligned}
\int_{\mathbb{D} z}\left|p_{m}\right|^{2} \chi_{s} d \mathfrak{L}_{\mathbb{D} z}^{2} & =\int_{|\lambda|<1}\left|p_{m}(z)\right|^{2}|\lambda|^{2 m} \chi_{s}(\lambda z) d \mathfrak{L}^{2}(\lambda) \\
& =\left|p_{m}(z)\right|^{2} \pi \int_{0}^{1} t^{m}(1-t)^{s} d t \\
& =\frac{\left|p_{m}(z)\right|^{2} \pi m!}{\prod_{i=1}^{m+1}(s+i)}
\end{aligned}
$$

Therefore

$$
\int_{\mathbb{D} z}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}_{\mathbb{D} z}^{2}=\sum_{m \in \mathbb{N}} \frac{\left|p_{m}(z)\right|^{2} \pi m!}{(m+1)!(m+n)^{s}}
$$

and

$$
\begin{aligned}
\int_{\mathbb{D} z}|f|^{2} \chi_{s} d \mathfrak{L}_{\mathbb{D} z}^{2} & =\sum_{m \in \mathbb{N}} \frac{\left|p_{m}(z)\right|^{2} \pi m!}{\prod_{i=1}^{m+1}(s+i)} \\
& =\sum_{m \in \mathbb{N}} \frac{k_{m, s}\left|p_{m}(z)\right|^{2} \pi m!}{(m+1)!(m+n)^{s}}
\end{aligned}
$$

for $z \in \partial \mathbb{B}^{n}$, where

$$
c_{1} \leq k_{m, s}=\frac{(m+1)!(m+n)^{s}}{\prod_{i=1}^{m+1}(s+i)} \leq c_{2} .
$$

In particular:

$$
\begin{aligned}
c_{1} \int_{\mathbb{D} z}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}_{\mathbb{D} z}^{2} & \leq \int_{\mathbb{D} z}|f|^{2} \chi_{s} d \mathfrak{L}_{\mathbb{D} z}^{2} \\
& \leq c_{2} \int_{\mathbb{D} z}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}_{\mathbb{D} z}^{2}
\end{aligned}
$$

for $z \in \partial \mathbb{B}^{n}$, which finishes the proof.
Example 2.5. Let E be a circular set of the type G_{δ} of the measure zero in $\partial \mathbb{B}^{n}$. We define $s>-1$. There exists therefore a holomorphic function $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$ such that $E=E^{s}(f)$ and $\int_{\mathbb{B}^{n}}|f|^{2} \chi_{s} d \mathfrak{L}^{2 n}<\infty$.

Proof. On the basis of the paper [6] there exists a holomorphic function g such that $E=E^{0}(g)$ and $\int_{\mathbb{B}^{n} \backslash \Lambda(E)}|g|^{2} d \mathfrak{L}^{2 n}<\infty$. On the basis of Theorem 2.4 there exists a holomorphic function $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$ such that $g=\mathfrak{F}_{s}(f)$. Therefore, due to Theorem 2.4 function f has the required properties.

The following question can be posed: is it possible that a holomorphic function $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$ is square integrable with a given weight χ_{s} and $E^{t}(f) \neq \emptyset$ for $t>-1$. The answer to this question is negative.

Lemma 2.6. There exists a constant $C>0$ such that

$$
\begin{equation*}
\sup _{z \in \partial \mathbb{B}^{n}} \int_{\mathbb{D} z}\left|p_{m}\right|^{2} \chi_{n-1} d \mathfrak{L}_{\mathbb{D} z}^{2} \leq C \int_{\mathbb{B}^{n}}\left|p_{m}\right|^{2} d \mathfrak{L}^{2 n} \tag{2.3}
\end{equation*}
$$

for any natural number m and for any homogeneous polynomial p_{m} of a degree m.

Proof. Let $e_{1}=(1,0, \ldots 0) \in \partial \mathbb{B}^{n}$. By β_{m} we denote a multiindex such that $\beta_{m}=$ $(m, 0, \ldots, 0) \in \mathbb{N}^{n}$ for $m \in \mathbb{N}$.

We prove that there exists a constant $C>0$ such that:

$$
\begin{equation*}
\int_{|\lambda|<1}\left|p_{m}\left(\lambda e_{1}\right)\right|^{2} \chi_{n-1}\left(\lambda e_{1}\right) d \mathfrak{L}^{2}(\lambda) \leq C \int_{\mathbb{B}^{n}}\left|p_{m}\right|^{2} d \mathfrak{L}^{2 n} \tag{2.4}
\end{equation*}
$$

for any natural number m and for any homogeneous polynomial p_{m} of a degree m. There exists a constant $c_{1}>0$ such that:

$$
\frac{n!m!m^{n}}{(m+n)!} \leq c_{1}
$$

and a constant c_{2} such that:

$$
c_{2} \leq \frac{m!m^{n}}{(m+n)!}
$$

for $m \in \mathbb{N}$. Let

$$
p_{m}(z)=\sum_{|\alpha|=m} b_{\alpha} z^{\alpha}
$$

be a homogeneous polynomial of a degree m. Let us estimate using Theorem 2.2 (for $s=n-1, k=1$) that:

$$
\begin{aligned}
\frac{c_{1} \pi\left|b_{\beta_{m}}\right|^{2} m!}{m!m^{n}} & \geq \frac{\pi\left|b_{\beta_{m}}\right|^{2} m!}{\prod_{i=1}^{m+1}(n-1+i)} \\
& =\int_{|\lambda|<1}^{\left|p_{m}\left(\lambda e_{1}\right)\right|^{2} \chi_{n-1}\left(\lambda e_{1}\right) d \mathfrak{L}^{2}(\lambda)} .
\end{aligned}
$$

Therefore, again due to Theorem 2.2 (for $s=0, k=n$), we can estimate

$$
\begin{aligned}
\int_{\mathbb{B}^{n}}\left|p_{m}\right|^{2} d \mathfrak{L}^{2 n} & =\sum_{|\alpha|=m} \frac{\pi^{n}\left|b_{\alpha}\right|^{2} \alpha!}{(m+n)!} \\
& \geq \sum_{|\alpha|=m} \frac{c_{2} \pi^{n}\left|b_{\alpha}\right|^{2} \alpha!}{m!m^{n}} \\
& \geq \frac{c_{2} \pi^{n}\left|b_{\beta_{m}}\right|^{2} m!}{m!m^{n}} \\
& \geq \frac{c_{2} \pi^{n-1}}{c_{1}} \int_{|\lambda|<1}\left|p_{m}\left(\lambda e_{1}\right)\right|^{2} \chi_{n-1}\left(\lambda e_{1}\right) d \mathfrak{L}^{2}(\lambda)
\end{aligned}
$$

Constant C can be defined as $C=\frac{c_{1}}{c_{2} \pi^{n-1}}$, which finishes the proof of the inequality (2.4).

We show that such a constant C is appropriate. Therefore, let us select any point $z \in \partial \mathbb{B}^{n}$. There exists linear isometry (a geometric turn around a point 0) $\Theta: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that $\Theta\left(e_{1}\right)=z$. Let us take any homogeneous polynomial p_{m} of a degree m. Let us observe that

$$
\int_{\mathbb{B}^{n}}\left|p_{m} \circ \Theta\right|^{2} d \mathfrak{L}^{2 n}=\int_{\mathbb{B}^{n}}\left|p_{m}\right|^{2} d \mathfrak{L}^{2 n}
$$

Moreover

$$
\int_{|\lambda|<1}\left|p_{m}(\lambda z)\right|^{2} \chi_{n-1}(\lambda z) d \mathfrak{L}^{2}(\lambda)=\int_{|\lambda|<1}\left|p_{m} \circ \Theta\left(\lambda e_{1}\right)\right|^{2} \chi_{n-1}\left(\lambda e_{1}\right) d \mathfrak{L}^{2}(\lambda)
$$

In particular when using (2.4) for a homogeneous polynomial $p_{m} \circ \Theta$ of a degree m we get:

$$
\int_{|\lambda|<1}\left|p_{m}(\lambda z)\right|^{2} \chi_{n-1}(\lambda z) d \mathfrak{L}^{2}(\lambda) \leq C \int_{\mathbb{B}^{n}}\left|p_{m}\right|^{2} d \mathfrak{L}^{2 n}
$$

which finishes the proof.
Theorem 2.7. If $s>-1$, the function $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$ is such that: $\int_{\mathbb{B}^{n}}|f|^{2} \chi_{s} d \mathfrak{L}^{2 n}<\infty$, then $E^{s+n-1}(f)=\emptyset$.

Proof. Assume that $\int_{\mathbb{B}^{n}}|f|^{2} \chi_{s} d \mathfrak{L}^{2 n}<\infty$ for a holomorphic function $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$. Observe that due to Theorem 2.4 there is also the inequality $\int_{\mathbb{B}^{n}}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}^{2 n}<\infty$ for the function $\mathfrak{F}_{s}(f)$. There exists a sequence of homogeneous polynomials p_{m} of a degree m such that

$$
\mathfrak{F}_{s}(f)(z)=\sum_{m \in \mathbb{N}} p_{m}(z) .
$$

On the basis of Lemma 2.6, there exists a constant $C>0$ such that

$$
\begin{aligned}
C \int_{\mathbb{B}^{n}}\left|\mathfrak{F}_{s}(f)\right|^{2} d \mathfrak{L}^{2 n} & =C \int_{\mathbb{B}^{n}}\left|p_{m}\right|^{2} d \mathfrak{L}^{2 n} \\
& \geq \sum_{m \in \mathbb{N}} \int_{\mathbb{D} z}\left|p_{m}\right|^{2} \chi_{n-1} d \mathfrak{L}_{\mathbb{D} z}^{2} \\
& =\int_{\mathbb{D} z}\left|\mathfrak{F}_{s}(f)\right|^{2} \chi_{n-1} d \mathfrak{L}_{\mathbb{D} z}^{2}
\end{aligned}
$$

Therefore $E^{n-1}\left(\mathfrak{F}_{s}(f)\right)=\emptyset$. As $\mathfrak{F}_{s+n-1}=\mathfrak{F}_{n-1} \circ \mathfrak{F}_{s}$, on the basis of Theorem 2.4, we have

$$
E^{s+n-1}(f)=E\left(\mathfrak{F}_{s+n-1}(f)\right)=E\left(\mathfrak{F}_{n-1}\left(\mathfrak{F}_{s}(f)\right)\right)=E^{n-1}\left(\mathfrak{F}_{s}(f)\right)=\emptyset
$$

which finishes the proof.

It appears that Theorem 2.7 cannot be strengthened.

Example 2.8. Let $e_{1}=(1,0, \ldots 0) \in \partial \mathbb{B}^{n}$. If

$$
f\left(z_{1}, \ldots, z_{n}\right)=\sum_{m=2}^{\infty} \frac{\sqrt{m^{n-1}}}{\ln m} z_{1}^{m}
$$

then $\int_{\mathbb{B}^{n}}|f|^{2} d \mathfrak{L}^{2 n}<\infty$ and $E^{n-1-\varepsilon}(f)=\mathbb{S e}_{1}$, where ε is any number such that $0<\varepsilon<n$.

Proof. Let us select ε such that $0<\varepsilon<n$. There exists a constant $c>0$ such that

$$
\frac{m^{n}}{\prod_{i=1}^{n}(m+i)}<c
$$

for $m \in \mathbb{N}$. Due to Theorem 2.2, we can calculate:

$$
\begin{aligned}
\int_{\mathbb{B}^{n}}|f|^{2} d \mathfrak{L}^{2 n} & =\sum_{m=2}^{\infty} \frac{m^{n-1} \pi^{n} m!}{(\ln m)^{2}(m+n)!} \leq \sum_{m=2}^{\infty} \frac{m^{n} \pi^{n} m!}{m(\ln m)^{2}(m+n)!} \\
& \leq \sum_{m=2}^{\infty} \frac{c \pi^{n}}{(\ln m)^{2} m} \leq c \pi^{n} \int_{2}^{\infty} \frac{d t}{t(\ln t)^{2}}=\frac{c \pi^{n}}{\ln 2}<\infty .
\end{aligned}
$$

Let $e_{1}=(1,0, \ldots 0) \in \partial \mathbb{B}^{n}$. On the basis of Lemma 2.3, there exist the constants $q_{1}, q_{2}>0$ such that

$$
\frac{q_{1}}{m^{n-\varepsilon}}=\frac{q_{1} m!}{m!m^{n-\varepsilon}} \leq \frac{m!}{\prod_{i=1}^{m+1}(n-1-\varepsilon+i)} \leq \frac{q_{2} m!}{m!m^{n-\varepsilon}}=\frac{q_{2}}{m^{n-\varepsilon}}
$$

There also exists a constant $p>0$ such that

$$
t^{\varepsilon} \geq p(\ln t)^{2}
$$

for $t \geq 2$. Therefore, due to Theorem 2.2, we can estimate:

$$
\begin{aligned}
\int_{\mathbb{D} e_{1}}|f|^{2} \chi_{n-1-\varepsilon} d \mathfrak{L}_{\mathbb{D} e_{1}}^{2} & =\sum_{m=2}^{\infty} \int_{|\lambda|<1} \frac{|\lambda|^{2 m}\left(1-|\lambda|^{2}\right)^{n-1-\varepsilon}}{m^{-n+1}(\ln m)^{2}} d \mathfrak{L}^{2}(\lambda) \\
& =\sum_{m=2}^{\infty} \frac{m^{n-1} \pi m!}{(\ln m)^{2} \prod_{i=1}^{m+1}(n-1-\varepsilon+i)} \\
& \geq \sum_{m=2}^{\infty} \frac{q_{1} m^{n-1} \pi}{(\ln m)^{2} m^{n-\varepsilon}}=\sum_{m=2}^{\infty} \frac{q_{1} \pi}{(\ln m)^{2} m^{1-\varepsilon}} \\
& \geq q_{1} \pi \int_{3}^{\infty} \frac{d t}{t^{1-\varepsilon}(\ln t)^{2}} \\
& \geq q_{1} p \pi \int_{3}^{\infty} \frac{d t}{t}=\infty .
\end{aligned}
$$

It follows that $\lambda e_{1} \subset E^{n-1-\varepsilon}(f)$, when $|\lambda|=1$.
However, if $z \in \partial \mathbb{B}^{n}$ and $z \notin \mathbb{S} e_{1}$, then $\left|z_{1}\right|<1$, which results in

$$
\begin{aligned}
\int_{\mathbb{D} z}|f|^{2} \chi_{n-1-\varepsilon} d \mathfrak{L}_{\mathbb{D} z}^{2} & \leq \sum_{m=2}^{\infty} \frac{\left|z_{1}\right|^{2 m} m^{n-1} \pi m!}{(\ln m)^{2} \prod_{i=1}^{m+1}(n-1-\varepsilon+i)} \\
& \leq \sum_{m=2}^{\infty} \frac{\left|z_{1}\right|^{2 m} q_{2} \pi}{(\ln m)^{2} m^{1-\varepsilon}}<\infty
\end{aligned}
$$

because

$$
\lim _{m \rightarrow \infty} \sqrt[m]{\frac{\left|z_{1}\right|^{2 m} q_{2} \pi}{(\ln m)^{2} m^{1-\varepsilon}}}=\left|z_{1}\right|^{2}<1
$$

Therefore $z \notin E^{n-1-\varepsilon}(f)$, which finishes the proof.

References

[1] J. Chaumat, oral communication, Seminar on Complex Analysis at the Institute of Mathematics at Jagiellonian University, 1988.
[2] J. Globevnik, Holomorphic functions which are highly nonintegrable at the boundary, Israel J. Math. 115 (2000), 195-203.
[3] P. Jakóbczak, Highly nonintegrable functions in the unit ball. Israel J. Math 97 (1997), 175-181.
[4] P. Jakóbczak, Exceptional sets of slices for functions from the Bergman Space in the ball, Canad. Math. Bull. 44(2), (2001), 150-159
[5] P. Kot, Description of simple exceptional sets in the unit ball, Czechoslovak Mathematical Journal, 54 (129) (2004), 55-63.
[6] P. Kot, Boundary functions in $L^{2} H\left(\mathbb{B}^{n}\right)$, Czechoslovak Mathematical Journal, submitted.
[7] P. Pflug, oral communication, 4-th Symposium on Classical Analysis, Kazimierz 1987.
[8] P. Wojtaszczyk, On highly nonintegrable functions and homogeneous polynomials, Annales Polonici Mathematici no. 65, (1997), 245-251.

Politechnika Krakowska, Instytut Matematyki, ul. Warszawska 24, 31-155 Kraków, Poland.
email: pkot@usk.pk.edu.pl

[^0]: Received by the editors April 2004.
 Communicated by R. Delanghe.
 1991 Mathematics Subject Classification : 30B30.
 Key words and phrases : boundary behavior of holomorphic functions, exceptional sets, power series.

