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Abstract

In this paper, I will start with posing three fundamental and old questions
on (elation) generalized quadrangles, and survey tersely answers on these ques-
tions coming from recent work of S. E. Payne and the author of this paper. I
will then introduce a fourth question posed recently by S. E. Payne, and will
provide a general answer to this question, a result independently obtained by
R. Rostermundt for the Hermitian quadrangles H(3, q2), q even, in an en-
tirely different fashion. Finally, I will show that this answer yields examples
of elation generalized quadrangles for which the automorphism group fixing
the elation point is not induced by the automorphisms of the elation group
fixing the associated 4-gonal family.

1 Standard Conjectures and Questions on Elation Generalized

Quadrangles

This paper can be seen as a sequel to S. E. Payne and K. Thas [10] and K. Thas
and S. E. Payne [16].

We refer to the monograph [9] for an introduction to the theory of generalized
quadrangles. Also, one might want to use the survey [7] and the recent book [14]
for further information and updates.

Let S be a thick generalized quadrangle (denoted “GQ” throughout), and let p be
a point of S. Then S is an elation generalized quadrangle (EGQ) with elation point
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p and elation group G, if G is an automorphism group of S which fixes p linewise
and which acts sharply transitively on the points of S which are non-collinear with
p. Sometimes we write (S(p), G) or S(p) for S. An elation about p is either the
identity 1, or an automorphism fixing p linewise and fixing no point not collinear
with p. Note that this does not imply that an elation φ about p acts freely on these
points, that is, that 〈φ〉 is a group of elations about p. An EGQ is always thick in
this paper: if (s, t) is its order, then s, t > 1.

In Chapter 8 of [9], the following is quoted: “In general it seems to be an open
question as to whether or not the set of elations about a point must be a group.” In
the same chapter of loc. cit. the authors study translation generalized quadrangles
(TGQ’s), which are just EGQ’s with an abelian elation group, and show that all
elations about the elation point are in this group (cf. 8.6.4 of [9]). We will call the
aforementioned question “Question (1)”.

Most of the known GQ’s are, up to duality, EGQ’s with at least one elation
point. (In fact, each known GQ is as such, or is constructed from an EGQ.) We
therefore formulate the following specialization of Question (1):

Question (2). Given an EGQ S(p), is the set of elations about p a group?

The following question makes sense if the answer is “not always”:

Question (2′). Given an EGQ S(p), when is the set of elations about p a
group?

Let F be a Kantor-Knuth semifield flock of the quadratic cone K in PG(3, q),
q = ph, with p an odd prime power (see Chapter 3 of [14] for more details). Let
S(F) be the corresponding flock GQ [7, 12] of order (q2, q). It is well-known that
each flock GQ has a ‘special’ point (∞) for which there is a group of elations K
making it into an EGQ with elation point (∞). Recently, S. E. Payne and K. Thas
[16] constructed an elation θ about (∞) with the following two properties:

• θp is an involution fixing some subGQ of order q pointwise;

• θ2 is contained in K.

So θ is not an element of K. This suggested the definition of a “standard elation”
about a point p: this is an elation φ for which 〈φ〉 is a group of elations. The fol-
lowing natural question arises:

Question (3). Given an EGQ S(p), is the set of standard elations about p a
group?

In the same way as for Question (2), one could now also formulate Question (3′).
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2 4-Gonal Families and Elation Generalized Quadrangles

Suppose (S(p), G) is an EGQ of order (s, t), s 6= 1 6= t, with elation point p and
elation group G, and let q be a point of P \p⊥ (P is the point set). Let L0, L1, . . . , Lt

be the lines incident with p, and define ri and Mi by LiIriIMiIq, 0 ≤ i ≤ t. Put
Hi = {θ ∈ G ‖ Mθ

i = Mi} and H∗

i = {θ ∈ G ‖ rθ
i = ri}, and J = {Hi ‖ 0 ≤ i ≤ t}.

Then |G| = s2t and J is a set of t + 1 subgroups of G, each of order s. Also, for
each i, H∗

i is a subgroup of G of order st containing Hi as a subgroup. Moreover,
the following two conditions are satisfied:

(K1) HiHj ∩ Hk = {1} for distinct i, j and k;

(K2) H∗

i ∩ Hj = {1} for distinct i and j.

Conversely, if G is a group of order s2t and J (respectively J ∗) is a set of t + 1
subgroups Hi (respectively H∗

i ) of G of order s (respectively of order st), where
Hi ≤ H∗

i for each i, and if the Conditions (K1) and (K2) are satisfied, then the H∗

i

are uniquely defined by the Hi, and (J ,J ∗) or J is said to be a 4-gonal family of
Type (s, t) in G.

Let (J ,J ∗) be a 4-gonal family of Type (s, t) in the group G of size s2t, s 6= 1 6= t.
Define an incidence structure S(G,J ) as follows.

• Points of S(G,J ) are of three kinds: (i) elements of G; (ii) right cosets H∗

i g,
g ∈ G, i ∈ {0, 1, . . . , t}; (iii) a symbol (∞).

• Lines are of two kinds: (a) right cosets Hig, g ∈ G, i ∈ {0, 1, . . . , t}; (b)
symbols [Hi], i ∈ {0, 1, . . . , t}.

• Incidence. A point g of Type (i) is incident with each line Hig, 0 ≤ i ≤ t.
A point H∗

i g of Type (ii) is incident with [Hi] and with each line Hih contained
in H∗

i g as a set. The point (∞) is incident with each line [Hi] of Type (b).
There are no further incidences.

It is straightforward to check that the incidence structure S(G,J ) is a GQ of order
(s, t). Moreover, if we start with an EGQ (S(p), G) to obtain the family J as above,
then we have that (S(p), G) ∼= S(G,J ). Hence, a group of order s2t admitting a 4-
gonal family is an elation group of a suitable elation generalized quadrangle. These
results were first noted by W. M. Kantor in [6].

3 Some Recent Results by S. E. Payne and K. Thas

3.1 Recent results on Question (3)

For non-classical flock GQ’s there is a complete answer to Question (3):

Theorem 3.1 (S. E. Payne and K. Thas [10]). Let S(F) be a non-classical
flock GQ of order (q2, q). Then the set of standard elations about (∞) is a group.
This group is the usual elation group K. When q is odd, the same conclusion holds
in the classical case. �
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Remark 3.2. In [10], the condition that S(F) be non-classical for q even was
forgotten in the statement of the theorem (cf. Theorem 2.4 and Theorem 6.1).

The point (∞) of a flock GQ is a regular point: for each point x 6∼ (∞), we have
|{(∞), x}⊥⊥| = q + 1 (where the order of the GQ is (q2, q)). We call an EGQ with
regular elation point a skew translation generalized quadrangle or STGQ.1 For an
STGQ of order (s, t) with elation point p, there is an automorphism group of size t
fixing p⊥ pointwise. A point with this property is a center of symmetry.

Generalizing Theorem 3.1, the following was also obtained in [10].

Theorem 3.3 (S. E. Payne and K. Thas [10]). Let S(p) be an STGQ of order
(s, t), s, t > 1. Then we have two possibilities:

(a) the set of standard elations about p is a group;

(b) s = t2, s is a power of 2, and there is a W (t)-subGQ containing p fixed
pointwise by an involution of S(p). �

Remark 3.4. Examples of (b) yield possible counter examples to Question (3).
Such STGQ’s will play a central role in §4.

Note that by X. Chen [2] and independently D. Hachenberger [5], s and t are
powers of the same prime for an STGQ with these parameters.

3.2 Recent results on Question (2)

From the next theorem, it will follow that “most of the time”, the answer to Question
(2) is that the set of elations about an elation point is not a group, and it also explains
precisely why. Recall first that a whorl about a point of a GQ is an automorphism
of the GQ fixing the point linewise.

Theorem 3.5 (K. Thas and S. E. Payne [16]). Let (S(p), G) be an EGQ, and
let W be the group of all whorls about p. Then the set of elations about p is a
group if and only if there is no nontrivial element in W fixing more than one point
non-collinear with p if and only if W is a Frobenius group. �

Note that “a priori” it is not needed to know that the parameters of the GQ are
powers of the same prime. The proof is elementary, and uses Burnside’s Lemma.

Remark 3.6. It is important to remark that this theorem also settles the original
Question (1) in general; one only has to consider orbits in P \ p⊥ — where P is the
point set of the GQ — of the group of all whorls about p, instead of considering one
orbit P \ p⊥.

1This is a slight abuse of the original definition (see [14]), but it is an equivalent one and will
suffice for our purposes.
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The known examples.

It is convenient to mention the known (classes of) examples of EGQ’s with elation
point p for which the set of elations about p is not a group. These classes are treated
in detail in [16].

• The classical and dual classical examples. W (q) with q odd; H(3, q2); H(4, q2);
H(4, q2)D.

• Flock GQ’s. The flock GQ’s with an even number of points on a line.

• Dual flock GQ’s (which are EGQ’s). As the order is (q, q2) for some q, it can
be shown that not more than one point not collinear with the elation point
can be fixed by a nonidentity collineation. So there are no examples possible.

• TGQ’s. There are no examples possible.

• Dual TGQ’s (which are EGQ’s). GQ’s SD, where S is a TGQ of order (q, q2),
q odd, that is good at some element.

4 Elation Generalized Quadrangles with Non-Isomorphic Ela-

tion Groups

The following fundamental question (especially in construction theory for GQ’s) was
recently posed by S. E. Payne [8]:

Question. Let S(p) be an EGQ. Can p be an elation point for non-isomorphic
elation groups?

In this section, we will consider a class of GQ’s which do admit non-isomorphic
elation groups, thus answering Payne’s question affirmatively. The only known
examples of this class are H(3, q2)-GQ’s with q even.

Lemma 4.1. Let S ′ and S ′′ be distinct W (q)-subGQ’s in a GQ S of order (q, q2).
Suppose p ∈ S ′ ∩ S ′′ is such that the lines of S ′ through p are those of S ′′ through
p. Furthermore, suppose θ 6= 1 is an involution that fixes S ′ pointwise. Then S ′′ is
stabilized by θ.

Proof. Let z 6∼ p be a point of S ′′. Then {p, z, zθ} is a triad of S, so |{p, z, zθ}⊥⊥|
≤ q + 1 by 1.2.4 of [9]. As p is regular in W (q), it follows that zθ ∈ S ′′. Lemma
4.2.5 of [14] implies that S ′′θ = S ′′. �

Standing Hypothesis. 1. For now, S(p) = S is an EGQ of order (q2, q),
q even, with elation group H. Also, S ′ is a subGQ of order (s′, q), s′ > 1, which
is fixed elementwise by a nontrivial collineation θ of S. By [16], we then have that
S ′ ∼= W (q), and that θ is an involution.

Suppose W is the group of all whorls about p, and let S2 be a Sylow 2-subgroup
of W which contains H . Then S2 clearly has size 2q5. Put H ′ = θH , so that
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S2 = H ∪ H ′. As S ′ ∼= W (q), and as each point of W (q) is regular, one observes
that for each point z 6∼ p, the pair {p, z} is regular, so that p is a regular point of S.
This implies that two distinct subGQ’s of order q containing p can only intersect in
a very restricted manner (using for instance Lemma 4.2.5 of [14]): either they share
the lines through p and the points (of the subGQ’s) incident with one of these lines,
or they intersect in the points and lines of a dual grid of order (1, q). Let θ′ and
θ′′ be two distinct nontrivial involutions in S2 that respectively fix the subGQ’s Sθ′

and Sθ′′ (of order q) pointwise. Suppose that they intersect in a dual grid as above.
Then there is a point z 6∼ p for which {p, z}⊥⊥ ⊆ Sθ′ ∩ Sθ′′ . Since both θ′ and θ′′ fix
z, we immediately have a contradiction since θ′ 6= θ′′ and |[S2]z| = 2. So all subGQ’s
of order q that are fixed pointwise by a nontrivial involution in S2 mutually do not
share points not collinear with p. This implies that if S1 and S2 6= S1 are two such
subGQ’s, there is some line MIp so that M⊥ ∩ S1 = M⊥ ∩ S2. Also, it follows
easily that the number of such subGQ’s is q2, and that the associated involutions
are mutually conjugate in S2. Note also that all whorls of S2 which are not elations
about p are contained in H ′. The group S2 is non-cyclic; if it were cyclic, then H
would be abelian, implying in its turn that there are more lines through a point
than points incident with a line (since S is then a TGQ, cf. Chapter 8 of [9]). As S2

is non-cyclic, a result of P. Deligne [3] implies that S2 has at least three subgroups
of size q5 (one of which is H). Suppose H ′′ 6= H is a subgroup of S2 of order q5. If
H ′′ does not contain any of the q2 involutions of above, then H ′′ is an elation group
(“first case”). If H ′′ contains at least one such involution (“second case”), it contains
all of them since they are mutually conjugate, and since H ′′ is a normal subgroup
of S2 (as a group of index 2). In that case, put H1 = H ′′ ∩ H , and H2 = H ′ ∩ H ′′.
So |H1| = |H2| = q5/2. Then it is straightforward to see that

H1 ∪ θ[H \ H1] = H−

is an elation group of size q5. As the first and second case are equivalent, we keep
using the notation of the second case. We put H4 = H \ H1 and H3 = θH4.

Suppose LIp, and let xILIp 6= x. By H(x, L, p), we denote the subgroup of H of
collineations that fix x and p linewise, and xp pointwise (we call such collineations
“root-elations”).

Standing Hypothesis. 2. For all LIp and xILIp 6= x, we have that
|H(x, L, p)| = q2. Also, H2 ≤ Z(H), where H2 = {h2 ‖ h ∈ H} and Z(H) is
the center of H.

Since |H(x, L, p)| = q2 for all L and x as above, and since these groups generate
H , it is straightforward to show that Z(H) is the group of symmetries about p. In
fact, one observes now easily that Z(H) = Z(H−). Let H(x, L, p) be a root-group;
then H(x, L, p)2 ≤ Z(H), so that H(x, L, p)2 = {1}. So all such root-groups are
elementary abelian. Now consider θφ ∈ H−, where φ ∈ H4 is a non-trivial root-
elation in H(z, M, p) with z ∈ Sθ which does not fix Sθ (it is an easy exercise that
such a φ exists for suitable z). Then (θφ)2 = [θ, φ−1] = [θ, φ] clearly cannot be the
identity, while it fixes z linewise. So (θφ)2 6∈ Z(H−), so that H 6∼= H−.

We have obtained the following theorem.
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Theorem 4.2. Let S = (S(p), H) be an EGQ of order (q2, q), where q is even,
which contains a subGQ S ′ of order (s, q), s > 1, fixed pointwise by a nontrivial
automorphism θ of S. If H2 ≤ Z(H), and if for all LIp and xILIp 6= x, we
have that |H(x, L, p)| = q2, then there is an automorphism group H ′ of S such that
H ′ 6∼= H and (S(p), H ′) is an EGQ.

Proof. By K. Thas and S. E. Payne [16], we have that S ′ ∼= W (q) (so that in
particular s = q), and that θ is an involution. The rest follows from the part of this
section occuring before this theorem. �

Corollary 4.3. Let S = (S(p), H) be an EGQ of order (q2, q), where q is even, which
contains a subGQ S ′ of order (s, q), s > 1, which is fixed pointwise by a nontrivial
automorphism θ of S. Let z 6∼ p and suppose z ∼ zi ∼ p for i = 0, 1, . . . , q. If all
groups H(p, pzi, zi) ≤ H are elementary abelian and have size q2, then there is an
automorphism group H ′ of S such that H ′ 6∼= H and (S(p), H ′) is an EGQ.

Proof. The root-groups are elementary abelian if and only if H2 ∈ Z(H) (easy
exercise). �

In the next section, we will show that H(3, q2) with q even satisfies the assump-
tions of Theorem 4.2, therefore providing a “concrete” answer to the question of S.
E. Payne.

5 An Example of Theorem 4.2: H(3, q2), q even

Consider S ∼= H(3, q2), q even, and suppose p is a point of S. We will show that all
the assumptions of Theorem 4.2 are satisfied.

Suppose LIp, and let xILIp 6= x; then the group of all root-elations H(x, L, p)
has size q2, and is isomorphic to the additive group of GF(q2). By putting H equal
to the group generated by all such root-elations (so that (S(p), H) is an EGQ), the
assumptions of Theorem 4.2 are satisfied (H2 = Z(H) for this H).

Remark 5.1. The previous result was independently obtained by R. Rostermundt
[11] in an entirely different fashion. He represents H(3, q2) (q even) as a group coset
geometry in the extra-special group K = {(α, c, β) ‖ α, β ∈ GF(q2), c ∈ GF(q)},
where the group operation is given by

(α, c, β) ◦ (α′, c′, β ′) = (α + α′, c + c′ + βα′T , β + β ′).

He then constructs q2 − 1 distinct elation groups Ki = 1, 2, . . . , q2 − 1 of size q5,
and shows that all Ki are mutually isomorphic. The Ki’s have nilpotency class 3,
while K has nilpotency class 2, so that K 6∼= Ki for all i. The proofs are long and
technical. For details and several other results, see R. Rostermundt [11].
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6 Group and GQ Automorphisms

Suppose (S(p), G) is a thick EGQ. Then there is associated a 4-gonal family (J ,J ∗)
to S(p), and, conversely, each 4-gonal family yields an EGQ. It is clear that any au-
tomorphism of G that fixes J as a set — and then also J ∗ — induces in a natural
way an automorphism of S(p) fixing p. It is therefore a basic question whether the
converse holds:

Question. Is any automorphism of S(p) fixing p induced by such a group au-
tomorphism of G?

In this section, we answer this question by constructing a class of counter examples.

For translation generalized quadrangles, an answer to a stronger version of this
question is known. Recall first from Chapter 8 of [9] that a generalized ovoid
O(n, m, q) of PG(2n + m − 1, q) is a set of qm + 1 (n − 1)-dimensional spaces,
denoted PG(i)(n − 1, q), i ∈ {0, 1, . . . , qm}, so that

(i) every three generate a PG(3n − 1, q),

(ii) for every i ∈ {0, 1, . . . , qm} there is a subspace PG(i)(n+m−1, q) of PG(2n+
m− 1, q) of dimension n + m− 1, which contains PG(i)(n− 1, q) and which is
disjoint from each PG(j)(n − 1, q) if j 6= i.

In [9] it is shown that from O(n, m, q) = O can be constructed a TGQ T (O) of
order (qn, qm), and given a TGQ S there is an O(n, m, q) = O so that S ∼= T (O).
Whence any TGQ can be represented in a projective space. The following theorem
was independently obtained in L. Bader, G. Lunardon and I. Pinneri [1] and J. A.
Thas and K. Thas [13].

Theorem 6.1 ([1]; [13]). Suppose S = T (O) is a TGQ of order (qn, qm) with
translation point (∞), and let GF(q) be a subfield of the kernel GF(q′) of T (O),
where O is a generalized ovoid in PG(2n +m− 1, q) ⊆ PG(2n +m, q). Then every
automorphism of S which fixes (∞) is induced by an automorphism of PG(2n+m, q)
which fixes O, and conversely. �

Whence there is a very satisfactory treatment for TGQ’s.

We now return to the original problem posed in the beginning of this section.
First of all, we note that if φ is an element of Aut(S)p, then φ is induced by an
automorphism of G if and only if φ fixes G under conjugation in Aut(S), that is,
if and only if Gφ = G. Now suppose S = (S(p), H) satisfies the hypotheses of §4,
and suppose S2 is the Sylow 2-subgroup of W which is generated by H and H−.
Suppose α 6= 1 is an involution in W that fixes a subGQ of order q pointwise, and
that is not contained in S2 (this is an extra hypothesis!). Then SW

2 6= S2, and as
HW = H , it follows that H−W

6= H−. So there are elements in W ≤ Aut(S)p which
are not induced by automorphisms of H−.

Again, H(3, q2) with q even is an example.
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7 Final Remark (On Property (F), and Kantor’s Conjecture)

Let S = (S(p), H) = S(G,J ) be an EGQ (using the notation of §2) of order (s, t),
s, t > 1. We introduce Property (F) as follows:

Property (F). For each H∗

i ∈ J ∗ we have H∗

i E H .

Each known EGQ (S(p), H) (up to now) satisfies this property. We now show that
the example (S(p), H−) constructed in §4, and in particular (H(3, q2)(p), H−) with q
even, does not have Property (F).

Proof. First note that (H(3, q2)(p), H) has (F). Property (F) is satisfied if and
only if for each x ∼ p 6= x, Hx fixes px pointwise. Clearly an element of the form
θφ ∈ H−, with φ ∈ Hz \ H−

z , z ∼ p 6= z, does not have this property. �

Conjecture. If Property (F) does not hold for (S(x), G), then S (which has
order (s, t)) has non-isomorphic (full) elation groups, and S has a subGQ of order
(s/t, t) fixed pointwise by some nontrivial collineation (possibly under some mild ex-
tra assumption).

This conjecture is closely related to Kantor’s fundamental conjecture which states
that a group admitting a 4-gonal family necessarily is a p-group. The author is
working on both conjectures at present [15].
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