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1 Introduction

Our motivation stems from the paper [9], in which the authors introduce a class
of decompositions of complete graphs into certain strongly regular graphs which
share a common spread. Analyzing their construction, we soon came to realize that
these strongly regular graphs are GQ(s, t)-graphs, and thus, due to a famous result
of A.E. Brouwer, deletion of the spread leads in each case to an antipodal distance
regular graph which is an (s+1)-fold cover of the complete graph Kst+1. A relational
structure resulting from these distance regular graphs, plus a certain stratification
of the spread, yields an association scheme.

We call such objects Siamese association schemes. After recalling some pre-
liminary notions in Section 2, we formulate an axiomatic system for such objects,
as well as for some more general ones, and we analyze the resulting combinatorial
structures.

We emphasize that the goal of this paper is to introduce the reader to the new
area of “Siamese objects” in a clear and compelling way. Due to space limitations,
we have sought to achieve a desirable balance between general discussion, paying
close attention to computational detail, and the presentation of a few nice ad hoc
models, including elements of proof elaborated on objects of small size. A more
comprehensive treatment is thus postponed to [11] and [12]. We refer also to [19]
as an important source of information. Finally, we acknowledge the indispensable
role played in our investigations by the computer packages COCO [6], [7], GAP [20],
Grape [21] and nauty [16].

∗Research conducted while the author MK was a visitor at the University of Delaware.
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2 Preliminaries

2.1 Color graphs

We define a color graph Γ to be an ordered pair (V,R), where V is a set of vertices
and R a set of (non-empty) disjoint binary relations on V such that

⋃

R∈RR = V 2.
We refer to the elements of R as the colors of Γ, and to the number |R| of its colors
as the rank of Γ.

Given a color graph Γ = (V,R), we define its adjacency matrix to be the v × v
matrix A = (aij) for which aij = t if (xi, xj) ∈ Rt, Rt ∈ R.

Observe that a color graph is nothing more than an edge-coloring of a complete
graph. Note further that any function φ defined on V 2 defines a color graph. In
such case, we can alternatively denote it as (V, φ).

Let Γ = (V,R) and Γ′ = (V ′,R′) be color graphs. An isomorphism ψ : Γ → Γ′ is
a bijection of V onto V ′ which induces a bijection Ψ : R ↔ R′ of colors. A weak (or
color) automorphism is an isomorphism ψ : Γ → Γ. If, in addition, the induced map
Ψ is the identity on R we call ψ a (strong) automorphism. We denote by CAut(Γ)
and Aut(Γ) the groups of all weak and strong automorphisms of Γ, respectively.
(For brevity, we will sometimes refer to Aut(Γ) as the group of Γ, and to CAut(Γ)
as the color group of Γ.) Finally, we denote by N(Γ) the normalizer of Aut(Γ) in
the symmetric group S(V ).

2.2 Coherent configurations and association schemes

A coherent configuration W = (X, {Ri}) is our initial notion which we presume
to be known (e.g., see [7]). We shall speak of its basis relations Ri, basis graphs
Γi = (X,Ri), and basis matrices Ai = A(Γi), thus allowing us to switch freely
between the languages of relations, graphs and matrices.

Note that a coherent configuration is defined as a particular case of a color graph.
Thus, all definitions in the previous section apply as well to coherent configurations.

If a coherent configuration W = (X, {Ri}) is homogeneous (i.e., all of its basis
graphs Γi are regular), then we call it an association scheme.

When W is the association scheme of all 2-orbits corresponding to a prescribed
transitive permutation group (G,Ω), we often denote its adjacency algebra by V (G,Ω)
and call it the centralizer algebra of W .

We refer the reader to [1], [3] and [7] as detailed sources of information about
association schemes and distance regular graphs (briefly, drg’s). We use the notation
srg(v, k, λ, µ) to denote any strongly regular graph (briefly, srg) with parameters
(v, k, λ, µ), or when referring to the class of all such graphs.

2.3 Incidence structures

An incidence structure (P,B, I) for which |P | = v is called a Steiner system, denoted
by S(t, k, v), if each block has size k and every t-element subset of P is contained in
exactly one block. When additionally t = 2 and k = 3, we speak of a Steiner triple
system, and denote it by STS(v).
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Recall that a projective space PG(3, q), when considered as an incidence struc-
ture of points and lines, provides a classical example of an S (2, q + 1, q3 + q2 + q + 1),
see [8] for more details.

Special attention in this paper is devoted to generalized quadrangles (briefly,
GQ’s), see [18]. Given a GQ with parameters s and t, we denote it by GQ(s, t),
though when s = t we shall simply write GQ(s). We refer to the point graph of a
GQ(s, t) as a GQ(s, t)-graph, and to any srg with the same parameters as a GQ(s, t)-
graph a pseudo-geometric GQ(s, t)-graph. It is well known that a GQ(s, t)-graph is
an srg((s+ 1)(st+ 1), s(t+ 1), s− 1, t+ 1).

3 Siamese objects: main definitions

3.1 Siamese color graphs

Let Γ = (V, {IdV , S, R1, R2, . . . , Rn}) be a color graph for which:

(i) (V, S) is an imprimitive srg, that is a disjoint union of cliques of equal size.

(ii) Each (V,Ri) is an imprimitive drg of diameter 3 with antipodal system S.

(iii) Each (V,Ri ∪ S) is an srg.

Then we call Γ a Siamese color graph. We refer to S as the spread of Γ, and to the
number of drg’s as the Siamese rank of Γ.

Given a Siamese color graph Γ we indicate by (v, k, λ, µ, σ) its parameter set,
where (v, k, λ, µ) is the (common) parameter set of each srg (V,Ri ∪ S) and σ is
the valency of the spread S. There are obvious necessary conditions which must be
satisfied by such parameters, and we refer to any set (v, k, λ, µ, σ) which satisfies
these conditions as feasible.

As previously stated, Siamese color graphs were first studied in [9] by Kharaghani
and Torabi. The word “Siamese” comes from the observation that any two of the
strongly regular graphs share the spread S, so are like conjoined twins. However,
after surgical removal of the spread, both “twins” can live an independent life as
distance regular graphs.

3.2 Siamese association schemes

Let W = (V, {IdV , S1, . . . , Sn, R1, . . . , Rk}) be an association scheme. We call W
Siamese if Γ = (V, {IdV ,

⋃

Si, R1, . . . , Rk}) is a Siamese color graph. Thus, we are
allowing the spread of the color graph to be a union of basis relations of the scheme.

Consequently, given a Siamese color graph Γ one may ask whether or not it is
coming from a Siamese association scheme W . When it does, we say Γ admits W .

A Siamese color graph is said to be geometric if each srg (V,Ri ∪S) is the point
graph of a suitable generalized quadrangle.

3.3 Siamese Steiner designs

We here explore the relationship between geometric Siamese color graphs and Steiner
designs.
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Proposition 1. Let Γ be a Siamese color graph with the parameters

(q3 + q2 + q + 1, q(q + 1), q − 1, q + 1, q + 1).

Suppose further that Γ is geometric. For each point graph (V,Ri ∪ S), construct
a corresponding generalized quadrangle. Let B denote the union of all lines in all
resulting GQ’s. Then, defining I to be the usual point-line incidence, the incidence
structure (V,B, I) is a Steiner design S (2, q + 1, q3 + q2 + q + 1). �

Thus, a geometric Siamese color graph provides a Steiner system with a spread;
moreover, it provides a partition of the remaining blocks of the system into sets
which together with the spread form generalized quadrangles. We call this a Siamese
partition of the Steiner system. We further call such a partition coherent if the color
graph admits a Siamese association scheme.

Conversely, it is easy to see that a Siamese partition of a Steiner system provides a
geometric Siamese color graph Γ. The automorphism group of the partition coincides
with the color group CAut(Γ) of Γ.

3.4 Siamese color graphs as simultaneous antipodal covers

The drg’s that occur in Siamese color graphs are a special case of antipodal covers
of a complete graph. These are characterized by the following Theorem due to A.E.
Brouwer [3].

Theorem 1. Let Γ be a pseudo-geometric GQ(s, t)-graph with a spread. Then
removing the spread from Γ gives a distance regular graph which is an (s + 1)-fold
cover of the complete graph Kst+1. Conversely, any drg which is an (s + 1)-fold
cover of the complete graph Kst+1 may be obtained by removing a spread from a
pseudo-geometric GQ(s, t)-graph. �

This gives us the following interpretation of Siamese color graphs: The distance
regular graphs in a Siamese color graph form simultaneous antipodal covers of Kst+1

which partition the edges of the complete multipartite graph S, where S is the
spread.

3.5 Pattern of investigation

Given a Siamese color graph Γ there are many interesting questions one may ask:
Is Γ geometric? If so, which Steiner design is associated to Γ? Does Γ admit a
Siamese association scheme? To answer these questions, as well as to investigate
the numerous combinatorial objects one may derive from Γ, it is useful to describe
the relevant automorphism groups.

There are quite a few groups to consider: (i) Aut(Γ); (ii) CAut(Γ); (iii) N(Γ);
(iv) automorphism groups of the drg’s; (v) automorphism groups of the srg’s.

If Γ is geometric, we have in addition: (vi) automorphism groups of the GQ’s;
(vii) automorphism group of the Steiner system; (viii) automorphism group of the
Siamese partition.

Finally, if s = t or s = t+ 2, each srg defines a symmetric design which gives us
one more group to consider.
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In fact, not all of these groups are distinct. The automorphism group of a
GQ coincides with that of its point graph; if Γ admits a Siamese partition, then the
automorphism group of the partition coincides with CAut(Γ); if Γ admits a Schurian
Siamese association scheme, then CAut(Γ) coincides with N(Γ).

4 Siamese objects on 15 points

4.1 Initial framework

The example we are about to give was our first attempt to develop a general con-
structive procedure, and as such it played a central role for us. Originally, it was
managed with the aid of COCO, although a posteriori practically all computational
results can be reproduced by hand.

Consider the action of the alternating group G = A5 acting on the coset space
G/E, where E ∼= E4 is a fixed Sylow 2-subgroup of G. Then we have

Proposition 2. (a) The rank r of (G,G/E) is equal to 6.

(b) The association scheme W = (G/E, 2-orb(G,G/E)) has five classes with re-
spective valencies 1, 1, 4, 4, 4.

(c) One such class, say R3, corresponds to a classical antipodal drg, namely the line
graph of the Petersen graph (see p.2 of [3] for a portrait of this graph).

(d) The action of A5 is 2-closed, i.e., Aut(W ) = A5.

Proof: Applying the classical orbit-counting lemma to the group E (e.g., see [10]) we
obtain r = 1

4
(15+3 ·3) = 6, proving (a). Identifying the given action (G,G/E) with

that of A5 on the 15 edges of the Petersen graph, we get an evident description of
2-orbits of (G,G/E) from which both (b) and (c) readily follow. Lastly, one proves
(d) by using arguments similar to those found in Section 2.5.2 of [7]. �

4.2 A Siamese association scheme on 15 points

In what follows, denote Ω = G/E, so that W = (Ω, 2-orb(G,Ω)).

Proposition 3. (a) The color group CAut(W ) acts transitively on the non-reflexive
relations R1, R2 of valency 1, and on the relations R3, R4, R5 of valency 4.

(b) The graph (Ω, R1 ∪ R2) is an imprimitive srg of valency 2, i.e., a spread with 5
connected components.

(c) The automorphism group of graph (Ω, R3) ( i.e., line graph of the Petersen graph)
is isomorphic to S5.

(d) The graph (Ω, R1 ∪ R2 ∪ R3) is a strongly regular graph of valency 6; it is
isomorphic to the complement T (6) of the triangular graph T (6) = L(K6). Its
automorphism group is S6. �

Under the action of CAut(W ), we obtain two more strongly regular graphs each
isomorphic to the graph in part (d) of Proposition 3. Thus we get

Corollary 4. W is a Siamese association scheme. �
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We may now investigate the Siamese triple system which corresponds to W .
It turns out that the automorphism group of this system is a large overgroup of
Aut(W ), a fact which is quite advantageous for our purposes.

4.3 A Siamese partition of PG(3, 2)

Proposition 5. W = (Ω, 2-orb(G,Ω)) gives rise to a Siamese STS(15).

Proof: It is well known that T (6) is the point graph of the unique GQ(2). Now
apply Propositions 3 and 1 to complete the proof. �

Proposition 6. The STS(15) of Proposition 5 is isomorphic to PG(3, 2). More-
over, the embedded GQ’s of order 2 correspond bijectively to the 2-subsets of an
8-element set.

Proof: We begin by imitating the proof of a classical exceptional isomorphism be-
tween PSL(4, 2) and A8, see [22]. Clearly, PG(3, 2) is a classical STS(15) which we
denote by S. We now derive a combinatorial model for S as follows.

Consider an affine design S(3, 4, 8) with base set Ω0 = {1, . . . , 8} and its resulting
orbit Ω1 of length 15 under the action induced from (A8,Ω0). Now take Ω1 to be the
point set of S, and define the block set B to consist of all partitions of Ω0 having
shape 4 + 4. We define D ∈ Ω1 to be incident to π ∈ B if the cells of π are blocks
in D.

We now construct a subset of blocks which forms a generalized quadrangle. Re-
call that S(3, 4, 8) is also a 2-design with λ = 3. Let us fix a certain 2-element subset
of Ω0, say {1, 2}. Then there are exactly three blocks in S(3, 4, 8) containing {1, 2}.
It is clear that in a concrete copy S(3, 4, 8), the remainders of these three blocks
form a partition of the set Ω0 \{1, 2} of the form 2+2+2. Moreover, taking into ac-
count that A8 acts 6-transitively on Ω0, we easily get that each such partition arises
exactly once from a suitable design in the orbit Ω1 defined above. This establishes
a bijection between Ω1 and the set P of partitions of Ω0 \ {1, 2} of shape 2 + 2 + 2.

On the other hand, let us consider the set B0 of all partitions from B which
do not separate set {1, 2}. We have exactly 15 such partitions which bijectively
correspond to the 2-element subsets of Ω0 \ {1, 2}. Thus we are coming to a famous
model of W (2) for GQ(2) (cf. [3], Example (ii), page 30). Indeed, we have a natural
incidence structure (B0, P ) in which a 2-subset from B0 is incident to a partition
from P if it is one of the cells of this partition.

An extra important message is thatW (2) is self-dual, thus we have now complete
freedom to embed the dual of W (2) into our combinatorial model of PG(3, 2). This
embedding is uniquely determined by the selected subset {1, 2}. �

Corollary 7. (a) There are exactly 28 embedded GQ’s in PG(3, 2).

(b) The generalized quadrangles defined by the pairs {x, y}, {x, z}, {y, z} intersect
pairwise in a fixed spread which depends only on the subset {x, y, z} ⊂ Ω0.

(c) This construction provides a Siamese partition of the classical STS(15).

(d) The automorphism group of the Siamese partition in part (c) is isomorphic to
(S5 × S3)

+, where G+ denotes the subgroup of all even permutations in G.

(e) There are exactly 56 different Siamese partitions of the classical STS(15). �
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Coming back from S to W , we again obtain all desired information about W ,
only this time in a much more natural and clear manner.

Corollary 8. (a) Aut(W ) ∼= A5.

(b) CAut(W ) ∼= (S5 × S3)
+. �

4.4 Another Siamese partition of an STS(15)

Using GAP and COCO we construct a Siamese color graph Γ with Aut(Γ) ∼= A4,
which does not admit a Siamese association scheme despite the fact that Γ is geo-
metric. Namely, we consider the STS(15) designated as #7 in the enumeration of
Mathon-Rosa-Phelps [15]. This Steiner system is invariant under (S4 × S4)

+ in its
natural action on the two orbits O1 = {1, 2, 3, 4} and O2 = {5, 6, 7, 8} (each copy of
S4 acts on one orbit). There are two orbits of points of lengths 3 and 12 and three
orbits of blocks of lengths 18, 15 and 1. Descriptions of points, blocks and incidence
may be easily realized in terms of the initial action of (S4 × S4)

+ on O1 ∪ O2 (see
[11], [19], [12]). In these terms we also get a clear, computer-free description of the
three embedded GQ’s which form the desired Siamese partition of STS#7.

4.5 All Siamese color graphs on 15 vertices are obtained

Proposition 9. Every Siamese color graph on 15 vertices is necessarily geometric.
Thus, there are exactly two non-isomorphic Siamese color graphs on 15 vertices, one
of which admits a Siamese association scheme. �

The proof available to us relies strongly on a computer inspection of all 80
STS(15)’s, see [15]. We also use the fact that T (6) is the only srg(15, 6, 1, 3), and
it is the point graph of the unique GQ(2).

5 A classical Siamese association scheme on 40 points

5.1 Initial framework

We here describe a Siamese association scheme corresponding to the classical gener-
alized quadrangle W (3) of order 3, such that its associated Siamese Steiner design is
the classical PG(3, 3). (We shall refer to the resulting Siamese scheme as “classical”
for exactly this reason, despite the fact that it has never been before presented.)

We begin with the alternating group G = A6 in its natural action on six letters,
and consider the action of G on the coset space Ω = G/E, where E is the Sylow
3-subgroup of G given by E = 〈(1, 2, 3), (4, 5, 6)〉. Clearly then, |Ω| = 360/9 = 40.
Set W = V (G,Ω). By way of computer we obtain the following initial information.

Proposition 10. (a) W has rank 8, with valencies 14, 94.

(b) Aut(W ) ∼= S2 ×A6.

(c) CAut(W ) is a non-split extension of S2 × A6 by the dihedral group D4 of order
8. It acts transitively on the set of directed relations of valency 1, as well as on the



852 M. Klin – S. Reichard – A. Woldar

set of relations of valency 9.

(d) Up to isomorphism, W has exactly 10 proper fusion schemes. �

One fusion scheme ofW defines a spread of the form 10◦K4, another an antipodal
drg Γ of valency 9 and diameter 3, and still another an srg (in fact the point graph
of W (3)). The metric scheme defined by Γ is non-Schurian.

5.2 New model of the classical generalized quadrangle W (3).

The drg Γ implicitly mentioned in the previous section is antipodal distance regular,
with intersection array {1, 2, 9; 9, 6, 1}. Thus, if we add a spread to it we get a
pseudo-geometric GQ(3)-graph. In fact, this graph is geometric.

To prove this, is suffices to find 40 4-cliques in this graph. However, we can
also establish this directly. Indeed, let Ω0 = {1, 2, 3, 4, 5, 6}, and let P be the set
of directed cycles of length 3 in Ω0. Let B1 be the set of all partitions of Ω0 into
two triples, and B2 the set of directed arcs from Ω0. Set B = B1 ∪ B2. Define
incidence as follows. Let a cycle be incident to a partition if its set of vertices is one
of the partition cells; let it be incident to an arc if it contains this arc. We are now
prepared to prove the following proposition.

Proposition 11. (a) The incidence structure (P,B) is a GQ of order 3 which is
isomorphic to W (3).

(b) B1 corresponds to a spread of W (3) (associate a partition of two triples with the
set of four directed cycles defined on these triples).

(c) Deletion of B1 from the point graph of W (3) results in the drg Γ.

(d) Aut(Γ) ∼= S2 × S6.

Proof: We provide an outline of basic facts which must be confirmed to elaborate a
proof. Most of these are straightforward to verify.

(1) |P | = 40, |B1| = 10, and |B2| = 30, hence |B| = 40.

(2) Each directed cycle is contained in one partition, and contains 3 arcs. Hence,
each point is incident to 4 blocks.

(3) Each partition contains two parts; for each of them, there are two possible
orientations. Thus each block in B1 is incident to 4 points.

(4) Given an arc (x, y), there are 4 points remaining to complete the arc to a cycle
of length 3. Hence, each block in B2 is incident to 4 points.

(5) Two distinct partitions cannot contain the same 3-set. In particular, two blocks
in B1 cannot be incident with the same point. Thus, B1 forms a spread of the
incidence structure.

(6) Two arcs are incident with the same triangle if the endpoint of one is the starting
point of the other. In this case, the triangle is uniquely determined; thus, two points
in B2 intersect in at most one point.

(7) An arc and a partition are incident with the same triangle if the arc is contained
in one of the classes of the partition. Also here the triangle is unique; thus two
blocks, one from B1 and one from B2, share at most one point.

(8) Altogether we have that two blocks intersect in at most one point; thus, (P,B)
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is a partial linear space of order (3, 3).

(9) (P,B) is a generalized quadrangle.

As fact (9) is quite more subtle than the previous facts, we provide a detailed
proof. Let p be a point, and b be a block not containing p. If b ∈ B1, then since
p /∈ b, not all three points of the triangle lie in the same class of b. Thus there is
exactly one arc in p lying in one class; this is the unique block incident with p and
intersecting b. If, on the other hand, b ∈ B2, then the arc b is not contained in the
triangle p. If b shares a point with p, then there is exactly one arc in p such that its
endpoint is the starting point of b, or vice versa. If it doesn’t share a point with p,
then it intersect the unique block from B1 containing p.

(10) Aut(Γ) = S6 × S2, where Γ is the drg obtained by deleting a spread from
the point graph of the resulting GQ(3).

As with fact (9), we provide all essential details needed to verify (10). By con-
struction, (P,B) is invariant under S6, as well as under reversal of each cycle. Clearly
such reversal is not induced from an element of S6, but commutes with each such
element. As it is involutory, we have that (P,B) is invariant under S6 × S2. By
Theorem 1, deleting a spread from the obtained GQ(3) results in a drg Γ for which
we clearly have Aut(Γ) ≥ S6 × S2. It is well known (e.g., see [18]) that W (3) is the
unique GQ(3) containing a spread, and that Aut(W (3)) ∼= PSU(4, 3).Z2. As this
group contains a unique conjugacy class of maximal subgroups of order 1440 (see
Section 3.5 of [7]), we conclude that Aut(Γ) = S6 × S2. �

Corollary 12. W is a Siamese association scheme. �

Remark. Our model of W (3) is presented in much the same spirit as the one in
[17]. We believe, however, that ours has a certain advantage, providing in a more
evident form the “essence” of the group Aut(Γ).

6 Computational approach to Siamese objects

6.1 More Siamese objects on 40 points

We wish to describe Steiner designs S(2, 4, 40) which admit a Siamese partition; one
of these is the classical design PG(3, 3). In fact, at present 475 such designs have
been found with the aid of a computer.

Recall that there are exactly two geometric srg(40, 12, 2, 4) up to isomorphism;
only one of these has a spread, namely the point graph of W (3). Moreover, this
spread is unique up to isomorphism. Therefore, in a geometric Siamese color graph
on 40 points there is only one option for the drg and the srg. Note that all Siamese
color graphs found by us are geometric. It turns out that exactly three of the
corresponding Siamese designs have a point-transitive automorphism group, while
only the classical one has a block-transitive automorphism group.
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6.2 On 85 points

Several approaches were used to search for Siamese color graphs related to W (4) but
only one example was found; it is an association scheme, and will be discussed in
the next section in a more general context. The existence of other examples remains
a challenging open problem.

6.3 Toward an infinite series of Siamese association schemes

Recall that we used A5 and A6 as starting groups to manufacture classical Siamese
schemes on 15 and 40 points, respectively. A quite realistic prospect for an infinite
series of such schemes now emerges from two classical exceptional isomorphisms,
namely A5

∼= PSL(2, 4) and A6
∼= PSL(2, 9).

Consider the group G = PSL(2, q2). It has a subgroup H of the form Eq2 .S,
where S is the set of all non-zero squares in Fq. (In fact, H is a subgroup of the
affine group AGL(1, q2).) The index of H in G is (q2 + 1)(q + 1).

We consider the action of G on the coset space G/H . The corresponding central-
izer algebras have been investigated for q = 2, 3, 4, 5, 7; in all cases we get a Siamese
association scheme. Theoretical consequences of this computational experiment are
discussed in the Section 7.

6.4 More about methodology

The Steiner designs and their Siamese partitions were obtained using one of three
computational approaches. First, we considered the stabilizer of a point in the
natural action of A5 and A6 on PG(1, 4) and PG(1, 9), respectively, and constructed
all Siamese color graphs invariant under this action. A second approach was to start
from a Steiner system and check to see if it admitted a Siamese partition. In order to
do this, a great number of S(2, 4, 40) had to be generated using the Kramer-Mesner
method. Using the first and second approaches in tandem, we were able to construct
all Siamese objects on 15 points (here “all” equaled just two), and nine such objects
on 40 points each having a rather rich automorphism group.

A third approach had been arranged by us in order to enumerate all Siamese ob-
jects on 40 points. It is based on the use of double cosets and is still being developed.
Early experimental results using this approach seem to be very encouraging.

7 Classical Siamese objects

7.1 Initial imprimitive group

We start with the group G = PSL(2, q2), and consider its action on the coset space
Ω = G/H where H is as described in Section 6.3. Our main object of interest is the
association scheme corresponding to the centralizer algebra W = V (G,Ω).
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7.2 Complete projective model

Consider the projective line PG(1, q2) of order q2. We label its points by Fq2 ∪{∞}
and note that G acts naturally on this point set.

We define a (possibly directed) graph on the affine points of PG(1, q2), i.e., the
elements of K = Fq2 . Let (x, y) ∈ K2 be an arc if y − x is a non-zero square in
F = Fq. Denoting this graph by γ, we set V = γG and W ′ = V (G, V ).

7.3 Incomplete projective model

Let F = Fq, K = Fq2, and denote by V the set of points of PG(3, q). We can express
such points in the form 〈(a, b)〉 where a, b ∈ K, a, b not both zero.

Let C = F ∗ ≤ K∗. Let β be a primitive element of F , and for i = 1, . . . , q + 1,
let Ci = βiC be the cosets of C in K∗. Set C0 = {0}.

Define the function φ : V × V → {0, 1, . . . , q + 1} by setting

φ(〈(a, b)〉 , 〈(c, d)〉) = i ⇐⇒

∣

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∣

∈ Ci

This yields a color graph Γ = (V, φ) on q3 + q2 + q + 1 vertices of rank q + 2.

7.4 Main results

Below we state all results from which one may conclude the existence of an infi-
nite series of Siamese objects. We mention that proofs of these results depend on
an amalgamation of ideas, facts and techniques from algebraic combinatorics, finite
geometry and group theory (especially, a familiarity with the classical groups). In
particular, we refer the reader to [2], [4], [5], [8], [14], [18], [22].

Proposition 13. (a) The association scheme W and the complete projective model
W ′ are isomorphic.

(b) The incomplete projective model Γ is a merging of classes of the complete pro-
jective model. �

Proposition 14. Γ is a Siamese color graph which admits W as a Siamese asso-
ciation scheme. �

Corollary 15. Consider the inclusion PSL(2, q2) ≤ PΓL(4, q), implied by the
inclusion PSp(4, q) ≤ PΓL(4, q). Then the orbits of PSL(2, q2) on the set of lines
of PG(3, q) (inherited from the action of PΓL(4, q) on this set) give a Siamese
partition of PG(3, q). �

Acknowledgment. The authors are indebted to the editors and an anonymous
referee, who contributed markedly to the improvement of this paper.



856 M. Klin – S. Reichard – A. Woldar

References

[1] E. Bannai and T. Ito. Algebraic Combinatorics I. Association Schemes. Ben-
jamin/Cummings, Menlo Park, 1984.

[2] N.L. Biggs. Distance-regular graphs with diameter three. Ann. Disc. Math.
15:69–80, 1982.

[3] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance Regular Graphs.
Springer-Verlag, Berlin, 1989.

[4] L.E. Dickson. Linear groups with an exposition of the Galois field theory.
Teubner, Leipzig, 1901 (Dover, 1958).

[5] R.H. Dye. Maximal subgroups of symplectic groups stabilizing spreads II. J.
London Math. Soc. 2(40):215–226, 1989.
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