A Half 3-Moufang Quadrangle is Moufang

Fabienne Haot Hendrik Van Maldeghem

Abstract

Recently, we showed in [1] that any 3-Moufang generalized quadrangle is automatically a Moufang quadrangle. In another recent paper, Katrin Tent [2] borrowed an argument of the second author to show that the half Moufang condition implies the Moufang condition for generalized quadrangles. In the present paper we show that this argument can be used to further weaken the hypotheses: we define the half 3 -Moufang condition as a kind of greatest common divisor of the 3 -Moufang condition and the half Moufang condition and show that it implies the Moufang condition.

1 Introduction, definitions and notation

A generalized quadrangle is a point-line incidence structure $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ containing no ordinary k-gons as subgeometries for $k<4$, and such that every two members of $\mathcal{P} \cup \mathcal{L}$ are contained in some ordinary quadrangle (called an apartment). To avoid trivialities, We will also assume that every point (line) is incident with at least three lines (points). The automorphism group $\operatorname{Aut}(\mathcal{S})$ of the generalized quadrangle \mathcal{S} is the group of permutations of \mathcal{P} and of \mathcal{L} that preserve the relation I. Putting $G:=\operatorname{Aut}(\mathcal{S})$, we denote the stabilizer of an element $x \in \mathcal{P} \cup \mathcal{L}$ as usual by G_{x}. For points and lines $x_{1}, \ldots, x_{k}, k \in \mathbb{N}$, we denote by $G^{\left[x_{1}, \ldots, x_{k}\right]}$ the stabilizer in G of all elements incident with one of x_{1}, \ldots, x_{k}.

Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ be a generalized quadrangle with automorphism group G. The incidence graph is the graph with vertex set $\mathcal{P} \cup \mathcal{L}$ and edges given by I. A root is the set of elements of a path of length 4 in the incidence graph. Hence there are two kinds of roots: the ones containing 3 lines, and the ones containing three points. A root $\mathcal{R}=\left\{y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right\}$, with $y_{0} \mathrm{I} y_{1} \mathrm{I} \ldots \mathrm{I} y_{4}$, is called Moufang if the group

[^0]$G^{\left[y_{1}, y_{2}, y_{3}\right]}$ acts transitively on the set of apartments containing \mathcal{R}. This is equivalent with saying that $G^{\left[y_{1}, y_{2}, y_{3}\right]}$ acts transitively on the set of elements incident with y_{0} (respectively y_{4}) different from y_{1} (respectively y_{3}).

A generalized quadrangle is called Moufang if all roots are Moufang. A generalized quadrangle is called half Moufang if every root of one fixed kind is Moufang. A generalized quadrangle is called 3 -Moufang if for every path $\left\{y_{0}, y_{1}, y_{2}, y_{3}\right\}$ of length 3 , with $y_{0} \mathrm{I} y_{1} \mathrm{I} \ldots \mathrm{I} y_{3}$, the group $G^{\left[y_{1}, y_{2}\right]}$ acts transitively on the set of apartments containing y_{0}, \ldots, y_{3}.

Generalized quadrangles were introduced by Jacques Tits [4], and he also introduced the Moufang condition in the appendix of [5]. The half Moufang condition was introduced by Thas, Payne and the second author in [3], where the equivalence with the Moufang condition in the finite case was shown. Later on, Richard Weiss and the second author defined the k-Moufang condition for generalized polygons [7] and Thas, Payne and the second author proved in [6] that 3-Moufang is equivalent to Moufang for finite generalized quadrangles.

Recently, Katrin Tent [2] proved in general that the half Moufang condition is equivalent to the Moufang condition, and she used an argument of the second author in order to repair a flaw in an earlier version of her proof. Then, the authors proved in [1] that, again in general, the 3-Moufang condition is equivalent to the Moufang condition (for generalized quadrangles). In the same paper, they showed how the argument of the second author can be adopted to give a very short proof of Tent's result mentioned above. In the present paper, we will apply a variant of that very same argument to further weaken the Moufang condition. We will introduce a condition that is weaker than both the half Moufang condition and the 3-Moufang condition, and therefore we will call it the half 3-Moufang condition.

First notice that all paths of length 3 in a generalized quadrangles are of the same type. So we cannot restrict on the set of 3-paths in order to weaken the 3-Moufang condition. Instead, we will restrict on the transitivity property of the 3-Moufang condition. More exactly, the half 3-Moufang condition assures that for one type of root $\mathcal{R}=\left\{y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right\}$, with $y_{0} \mathrm{I} y_{1} \mathrm{I} \ldots \mathrm{I} y_{4}$, the group $G_{y_{0}}^{\left[y_{2}, y_{3}\right]}$ acts transitively on the apartments containing y_{0}, \ldots, y_{4}.

Our Main result reads now:
Main Result. Every half 3-Moufang generalized quadrangle is a Moufang generalized quadrangle, and vice versa.

Since the converse is rather trivial to prove, we will only prove that the half 3 -Moufang condition implies the Moufang condition.

2 Proof of the Main Result

From now on, we assume that $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a generalized quadrangle with automorphism group G, satisfying the half 3 -Moufang condition. More exactly, we assume that for all roots $\mathcal{R}=\left\{y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right\}$, with $y_{0} \mathrm{I} y_{1} \mathrm{I} \ldots \mathrm{I} y_{4}$, and with $y_{0}, y_{2}, y_{4} \in \mathcal{P}$, the group $G_{y_{0}}^{\left[y_{2}, y_{3}\right]}$ acts transitively on the apartments containing y_{0}, \ldots, y_{4}.

We fix some apartment $\Sigma:=\left\{x_{0}, x_{1}, \ldots, x_{7}\right\}$, with $x_{0} \mathrm{I} x_{1} \mathrm{I} \cdots \mathrm{I} x_{7} \mathrm{I} x_{0}$, where $x_{0} \in \mathcal{P}$.

2.1 Reduction lemmas

In this subsection, we reduce our main result to proving that certain actions must be independent of certain configurations.

We remark first that all paths $\left\{x, y, y^{\prime}, z\right\}$, with $x \mathrm{I} y \mathrm{I} y^{\prime} \mathrm{I} z$ and $x \in \mathcal{L}$, of length 3 form a single orbit under G, and hence all groups $G_{z}^{[x, y]}$ are conjugate. The proof is left to the reader, but the arguments follow the lines of the proof of Lemma 2 below.

For two points $x, y \in \mathcal{P}$, the trace $\{x, y\}^{\perp}$ is defined to be the set of all points collinear to both x and y, and the span $\{x, y\}^{\perp \perp}$ is the set of all points collinear to all points of $\{x, y\}^{\perp}$.

Lemma 1 If in \mathcal{S} the span $\{x, y\}^{\perp \perp}$ of some non-collinear points x, y contains at least 3 elements, then \mathcal{S} is half Moufang.

Proof We may assume without loss of generality that $\{x, y\}=\left\{x_{2}, x_{6}\right\}$. Let $x_{6}^{\prime} \in\left\{x_{2}, x_{6}\right\}^{\perp \perp}$, with $x_{2} \neq x_{6}^{\prime} \neq x_{6}$. Let x_{5}^{\prime} denote the line incident with x_{4} and x_{6}^{\prime}. As $G_{x_{6}}^{\left[x_{3}, x_{4}\right]}$ fixes $\left\{x_{2}, x_{6}\right\}$, the span $\left(x_{2}, x_{6}\right)^{\perp \perp}$ has to be stabilized as a set, but as the lines through x_{4} are fixed as well, this implies that the span is fixed pointwise, and hence in particular x_{6}^{\prime} is fixed. Consider an arbitrary element $g \in G_{x_{6}, x_{6}^{\prime}}^{\left[x_{3}, x_{4}\right]}$ and choose an element $h \in G^{\left[x_{5}^{\prime}, x_{6}^{\prime}\right]}$ mapping x_{2} to x_{6} (h exists by the half 3-Moufang assumption on the root $\left\{x_{0}, x_{0} x_{6}^{\prime}, x_{6}^{\prime}, x_{5}^{\prime}, x_{4}\right\}$). The commutator $[g, h]$ clearly belongs to $G_{x_{6}}^{\left[x_{4}, x_{5}^{\prime}, x_{6}^{\prime}\right]}$ and hence is trivial. Consequently $g=g^{h} \in G^{\left[x_{3}, x_{4}, x_{5}\right]}$.

Let Ω denote the set of lines incident with x_{0}, but distinct from x_{1}.

Lemma 2 Let x be any point incident with $x_{1}, x \neq x_{0}$, and let y be any point not on x_{1} collinear with x. If the action of $G_{y}^{\left[x_{1}, x\right]}$ on Ω independent of x and y, then \mathcal{S} is half Moufang.

Proof It suffices to show that there is an element $g \in G^{\left[x_{0}, x_{1}, x_{2}\right]}$ mapping x_{6} to an arbitrary point z on x_{7}. Let's start with an arbitrary nontrivial collineation $\alpha \in G_{x_{4}}^{\left[x_{1}, x_{2}\right]}$. Then there is a unique point z^{\prime} on x_{5}^{α} collinear with z. Hence, if we denote x_{2}^{\prime} the unique point on x_{1} collinear with z^{\prime}, then the collineation $\beta \in G_{z^{\prime}}^{\left[x_{1}, x_{2}^{\prime}\right]}$ mapping x_{7}^{α} to x_{7} maps x_{6}^{α} to z. The composition $\alpha \beta$ fixes all points on x_{1} and by assumption - it also fixes all lines incident with x_{0}, since the action of α on Ω must be the inverse of the action of β on Ω. Moreover, $\alpha \beta$ maps x_{6} to z. Also, the action of $\alpha \beta$ on the lines through x_{2} is the same as the action of β (since α fixes every line through x_{2}). Interchanging now the roles of x_{0} and x_{2}, we see that the collineation $\gamma \in G_{z}^{\left[x_{0}, x_{1}\right]}$ mapping x_{3}^{β} back to x_{3} has an action on the lines through x_{2} inverse to that of $\alpha \beta$, which implies that $\alpha \beta \gamma \in G^{\left[x_{0}, x_{1}, x_{2}\right]}$. Since $\alpha \beta \gamma$ maps x_{6} to z, the assertion follows.

In order to prove that every half 3 -Moufang quadrangle is Moufang, we thus need to show that our choice for x and y does not influence the action of $G_{y}^{\left[x_{1}, x\right]}$ on Ω. First we will deal with groups of the form $G_{y}^{\left[x_{1}, x_{2}\right]}$ where we vary y. For this, we will need Lemma 1. Then we vary x on x_{1} and use the argument that repaired Tent's proof alluded to in the introduction.

2.2 The action of $G_{y}^{\left[x_{1}, x_{2}\right]}$ on Ω is independent of the choice of y.

Here we prove:
Lemma 3 Let y be any point not on x_{1} collinear with x_{2}. Then the action of $G_{y}^{\left[x_{1}, x_{2}\right]}$ on Ω is independent of y.

Proof First we note that we may assume y to be incident with x_{3}. Indeed, this follows immediately from the fact that the group $G_{x_{6}}^{\left[x_{0}, x_{1}\right]}$ acts transitively on the lines through x_{2} distinct from x_{1}, and so any group $G_{z}^{\left[x_{1}, x_{2}\right]}$ can thus be seen as a conjugate of $G_{y}^{\left[x_{1}, x_{2}\right]}$ with $y \mathrm{I} x_{3}$ under a collineation which does not permute the lines through x_{0}.

Now, if the action of $G_{y}^{\left[x_{1}, x_{2}\right]}$ on Ω were not independent of the choice of y, with y incident with x_{3}, then we may assume that the action of the group $G_{1}:=G_{x_{4}}^{\left[x_{1}, x_{2}\right]}$ on Ω differs from the action of the group $G_{2}:=G_{x_{0}}^{\left[x_{2}, x_{3}\right]}$ on Ω.

Suppose first that there is an element $\alpha \in G_{1} \cup G_{2}$ such that α commutes with every element of $G_{1} \cup G_{2}$. We claim that G_{1} and G_{2} must have the same action on Ω. Indeed, if not, then there is a collineation $g_{1} \in G_{1}$ such that its action on Ω is not induced by any element of G_{2}. Let $g_{2} \in G_{2}$ be such that g_{2} maps $x_{7}^{g_{1}}$ back to x_{7}. Then $g_{1} g_{2}$ gives rise to a collineation $g_{1} g_{2} \in G_{x_{6}, x_{6}^{\alpha}}^{\left[x_{2}\right]}\left(\right.$ because $\left.\left(x_{6}^{\alpha}\right)^{g_{1} g_{2}}=\left(x_{6}^{g_{1} g_{2}}\right)^{\alpha}=x_{6}^{\alpha}\right)$. If x_{6}^{α} were not contained in $\left\{x_{2}, x_{6}\right\}^{\perp \perp}$, then $g_{1} g_{2}$ would fix at least three points on some line through x_{2}, implying that $g_{1} g_{2}$ would fix an ideal subquadrangle (i.e., a subquadrangle with the property that every line in \mathcal{S} through a point of the subquadrangle belongs to the subquadrangle). This contradicts the fact that $g_{1} g_{2}$ does not fix all lines through x_{0}. Hence we have a span of at least three elements, and Lemma 1 concludes the proof in this case (since the current lemma holds for half Moufang quadrangles).

Hence we may assume that the centralizer of $G_{1} \cup G_{2}$ in $G_{1} \cup G_{2}$ is trivial. Note that G_{1} and G_{2} normalize each other. We claim that G_{1} cannot have a commutative action on Ω. Indeed, if G_{1} were commutative, then also G_{2} would be commutative. If only the identity in G_{1} has the same action on Ω as some element of G_{2}, then G_{1} and G_{2} centralize each other. But two abelian groups acting regularly on a set Ω and centralizing each other must have the same action on Ω, a contradiction. Hence there is some nonidentity element c_{1} in G_{1} having the same action on Ω as an element c_{2} in G_{2}. Both c_{1}, c_{2} centralize $G_{1} \cup G_{2}$, again a contradiction with our assumptions. The claim is proved.

Next we claim that only the identity in G_{1} has the same action on Ω as some element of G_{2}. Indeed, suppose by way of contradiction that there is a $\beta_{1} \in G_{1}$ inducing the same action on Ω as some $\beta_{2} \in G_{2}$. Since β_{1} cannot lie in the center of $G_{1} \cup G_{2}$, we may suppose there is a $g \in G_{1} \cup G_{2}$ such that the commutator $\left[\beta_{1}, g\right] \neq \mathrm{id}$ (and this is equivalent to the assumption that the action on Ω of that commutator be nontrivial). Suppose $g \in G_{2}$ - the case $g \in G_{1}$ is similar, if one interchanges the roles of x_{0} and x_{4} (noting that the action of G_{1} and G_{2} on Ω is permutation equivalent with their action on the set of lines through x_{4} distinct from x_{3}). Consider an arbitrary $h \in G_{x_{6}}^{\left[x, x_{1}\right]}$, then g^{h} induces the same action on Ω as g. It is clear that all the commutators $\left[\beta_{1}, g\right],\left[\beta_{2}, g\right]$ and $\left[\beta_{2}, g^{h}\right]$ induce the same action on Ω, and each of them fixes all points of x_{3}. This easily implies $\alpha:=\left[\beta_{1}, g\right]=\left[\beta_{2}, g\right]=\left[\beta_{2}, g^{h}\right]$.

Since the latter fixes the line x_{3}^{h} pointwise and since h is arbitrary, we see that $\alpha \neq \mathrm{id}$ fixes all points collinear with x_{2}. So, the image of x_{6} under α must lie in the span of x_{2} and x_{6} which forces the generalized quadrangle to be half Moufang by Lemma 1. But then the lemma holds, and so the claim is proved.

Hence the regular actions of G_{1} and G_{2} on Ω normalize each other and share only the identity. This easily implies that they centralize each other, and the actions on Ω are opposite, i.e., Ω can be identified with G_{2}, the group G_{1} is anti-isomorphic to G_{2} and its action on Ω can be identified with left multiplication in G_{2}, and the action of G_{2} on Ω is right multiplication in G_{2}.

We conclude that, for arbitrary $y \mathrm{I} x_{3}, y \neq x_{2}$, the action of $G_{y}^{\left[x_{0}, x_{1}\right]}$ on Ω is either the same as the action of G_{2} on Ω, or it is opposite.

Suppose both really occur. So for some $y \mathrm{I} x_{3}, y \neq x_{2}$, the action of $G_{1}=G_{y}^{\left[x_{0}, x_{1}\right]}$ on Ω is opposite the action of G_{2} on Ω, and for some $z \mathrm{I} x_{3}, z \neq x_{2}$, the action of $G_{3}:=G_{z}^{\left[x_{0}, x_{1}\right]}$ on Ω is the same as the action of G_{2} on Ω. Since $G_{1} \cap G_{2}$ is trivial, no nontrivial element of G_{2} can fix all points on x_{1}. This implies that $G_{2} \cap G_{3}$ is trivial. But G_{2} and G_{3} normalize each other, hence they centralize each other. This means that the action of G_{3} - which is the same as the action of G_{2} - on Ω centralizes the action of G_{2} on Ω, hence this action is commutative! This contradicts a previous claim.

We conclude that all actions of $G_{y}^{\left[x, x_{1}\right]}$ on $\Omega, y \mathrm{I} x_{3}, y \neq x_{2}$, are either the same as the action of G_{2} on Ω, or opposite. In particular, the action is independent of y.

2.3 The action of $G_{y}^{\left[x_{1}, x\right]}$ on Ω is independent of x

Here we prove:
Lemma 4 If x_{2}^{\prime} is an arbitrary point on $x_{1}, x_{2}^{\prime} \neq x_{0}$, and x_{4}^{\prime} is the unique point on x_{5} collinear with x_{2}^{\prime}, then the action of $G_{x_{4}}^{\left[x_{1}, x_{2}\right]}$ on Ω coincides with the action of $G_{x_{4}^{\prime}}^{\left[x_{1}, x_{2}^{\prime}\right]}$ on Ω.
Proof Let U_{2} be the permutation group acting on Ω given by the action of $G_{x_{4}}^{\left[x_{1}, x_{2}\right]}$. Let x_{2}^{\prime} be an arbitrary point on $x_{1}, x_{2}^{\prime} \neq x_{0}$, and let x_{4}^{\prime} be the unique point on x_{5} collinear with x_{2}^{\prime}. Then we define U_{2}^{\prime} as the permutation group on Ω given by the action of $G_{x_{4}^{\prime}}^{\left[x_{1}, x_{2}^{\prime}\right]}$. If we show that $U_{2} \equiv U_{2}^{\prime}$, then Lemma 2 implies that \mathcal{S} is half Moufang, and hence Moufang by [2]. We assume that $U_{2} \neq U_{2}^{\prime}$ and seek a contradiction. First we claim that the two different groups U_{2} and U_{2}^{\prime} cannot have a nontrivial element in common. Indeed, let U_{6} be the permutation group acting on Ω the way $G_{x_{4}}^{\left[x_{6}, x_{7}\right]}$ does. Then clearly U_{6} is conjugate to U_{2} since for every $g \in G_{x_{4}}^{\left[x_{1}, x_{2}\right]}$ there exists an $h \in G_{x_{4}}^{\left[x_{6}, x_{7}\right]}$ (determined by $x_{7}^{g}=x_{1}^{h^{-1}}$) such that $G_{x_{4}}^{\left[x_{1}, x_{2}\right]}=G_{x_{4}}^{\left[x_{6}, x_{7}\right]}{ }^{g h}$. Similarly U_{6} is conjugate to U_{2}^{\prime}. Suppose now that there are $g \in G_{\left.x_{4}, x_{2}\right]}^{\left[x_{1}, x_{2}\right]}$ and $g^{\prime} \in$ $G_{x_{4}^{\prime}}^{\left[x_{1}, x_{2}^{\prime}\right]}$ inducing the same action on Ω. For $\alpha \in G_{x_{4}}^{\left[x_{1}, x_{2}\right]} \cup G_{x_{4}^{\prime}}^{\left[x_{1}, x_{2}^{\prime}\right]} \cup G_{x_{4}}^{\left[x_{6}, x_{7}\right]}$ denote by r_{α} the corresponding element of $U_{2} \cup U_{2}^{\prime} \cup U_{6}$. With this notation $r_{g}=r_{g^{\prime}}$. If h is as above, then $U_{2}=U_{6}^{r_{g} r_{h}}=U_{6}^{r_{g^{\prime}} r_{h}}=U_{2}^{\prime}$, a contradiction. The claim follows.

We now show that the groups U_{2} and U_{2}^{\prime} also normalize each other. If $u_{2} \in U_{2}$ and $u_{2}^{\prime} \in U_{2}^{\prime}$, then let $g \in G_{x_{4}}^{\left[x_{1}, x_{2}\right]}$ be such that $r_{g}=u_{2}$ and similarly let $g^{\prime} \in G_{x_{4}^{\prime}}^{\left[x_{1}, x_{2}^{\prime}\right]}$
be such that $r_{g^{\prime}}=u_{2}^{\prime}$. Then $g^{g^{\prime}}$ belongs to $G_{x_{4}^{g^{\prime}}}^{\left[x_{1}, x_{2}\right]}$, which has the same action on Ω as $G_{x_{4}}^{\left[x_{1}, x_{2}\right]}$ by Lemma 3. Hence $u_{2}^{u_{2}^{\prime}} \in U_{2}$ and U_{2}^{\prime} normalizes U_{2}. Similarly, U_{2} normalizes U_{2}^{\prime}.

Since $U_{2} \cap U_{2}^{\prime}$ is trivial, it now follows that U_{2} and U_{2}^{\prime} centralize each other. So, as before, their respective actions on Ω are mutually opposite one another.

We need some more notation now. Note that we may assume that there are at least 4 lines through x_{0} otherwise the discussion about U_{2} and U_{2}^{\prime} having a different action on Ω is absurd. We can thus define two different paths of length 4 both not contained in the apartment Σ by the incidences $x_{0} \mathrm{I} \widetilde{x_{1}} \mathrm{I} \widetilde{x_{2}} \mathrm{I} \widetilde{x_{3}} \mathrm{I} x_{4}$ and $x_{4} \mathrm{I} \overline{x_{5}} \mathrm{I} \overline{x_{6}} \mathrm{I} \overline{x_{7}} \mathrm{I} x_{0}$. Furthermore we denote by ${\overline{x_{4}}}^{\prime}$ the unique point on $\overline{x_{5}}$ collinear with x_{2}^{\prime}, and by $\widetilde{x_{2}}$ the unique point on $\widetilde{x_{1}}$ collinear with x_{4}^{\prime}. Finally the unique point on x_{7} collinear with ${\overline{x_{4}}}^{\prime}$ is denoted p and the the unique point on $\widetilde{x_{1}}$ collinear with ${\overline{x_{4}}}^{\prime}$ is called q.

Put $\widetilde{\Omega}$ equal to the set of lines through x_{0} distinct from $\widetilde{x_{1}}$. The groups $G_{x_{4}^{\prime}}^{\left[\widetilde{x_{1}} \widetilde{x_{2}}\right]}$ and $G_{x_{4}}^{\left[\widetilde{x_{1}} \widetilde{\left.x_{2}\right]}\right.}$ induce opposite actions on $\widetilde{\Omega}$ since there exists a collineation $g \in G_{x_{0}}^{\left[x_{5}, x_{6}\right]}$ conjugating $G_{x_{4}^{\prime}}^{\left[x_{1}, x_{2}^{\prime}\right]}$ into $G_{x_{4}^{\prime}}^{\left[\widetilde{x_{1}}, \widetilde{x_{2}^{\prime}}\right]}$ and $G_{x_{4}}^{\left[x_{1}, x_{2}\right]}$ into $G_{x_{4}}^{\left[\widetilde{x_{1}}, \widetilde{x_{2}}\right]}$.

Also, the group $G_{\overline{x_{4}}}^{\left[\widetilde{x_{1}}, q\right]}$ induces either the same action on $\widetilde{\Omega}$ as $G_{x_{4}}^{\left[\widetilde{x_{1}}, \widetilde{x_{2}}\right]}$ or the opposite action, in which case this action coincides with the action of $G_{x_{4}^{\prime}}^{\left[\widetilde{x_{1}} \widetilde{x_{2}^{\prime}}\right]}$ on $\widetilde{\Omega}$. Define $g \in G_{\overline{x_{4}}}^{\left[\bar{x}_{6}\right.}, \widetilde{\left.x_{7}\right]}$ such that $x_{1}^{g}=\widetilde{x_{1}}$, and define $h \in G_{x_{4}}^{\left[\widetilde{x_{6}}, \overline{\left.x_{7}\right]}\right]}$ such that $x_{1}^{h}=\widetilde{x_{1}}$. We know from Lemma 3 that g and h have the same action on the set of lines through x_{0}. But g conjugates $G_{\overline{x_{4}^{\prime}}}^{\left[x_{1}, x_{2}^{\prime}\right]}$ (which induces the same action on Ω as $G_{x_{4}^{\prime}}^{\left[x_{1}, x_{2}^{\prime}\right]}$ by Lemma 3) into $G_{\overline{x_{4}}}^{\left[\widetilde{x_{1}}, q\right]}$ and h conjugates $G_{x_{4}}^{\left[x_{1}, x_{2}\right]}$ into $G_{x_{4}}^{\left[\widetilde{x_{1}}, \widetilde{x_{2}}\right] \text {. Hence the actions of }}$ $G_{\bar{x}_{4}}^{\left[\widetilde{x_{1}}, q\right]}$ and $G_{x_{4}}^{\left[x_{1}, \widetilde{x_{2}}\right]}$ on $\widetilde{\Omega}$ are opposite.

We have shown that the actions of $G_{\overline{x_{4}}}^{\left[\widetilde{x_{1}}, q\right]}$ and $G_{x_{4}^{\prime}}^{\left[\widetilde{x_{2}}, \widetilde{x_{2}}\right]}$ on $\widetilde{\Omega}$ coincide. Now let $g^{\prime} \in G_{x_{4}^{\prime}}^{\left[x_{1}, x_{2}^{\prime}\right]}$ map $\widetilde{x_{1}}$ to x_{7} and let $h^{\prime} \in G_{\widetilde{x_{4}}}^{\left[x_{4}, x_{2}^{\prime}\right]}$ map $\widetilde{x_{1}}$ to x_{7}. Then, since g^{\prime} and h^{\prime} induce the same action on Ω by Lemma 3, and since

$$
\left(G_{x_{4}^{\prime}}^{\left[\widetilde{x}_{1}, \widetilde{x}_{2}^{\prime}\right]}\right)^{g^{\prime}}=G_{x_{4}^{\prime}}^{\left[x_{6}, x_{7}\right]} \quad \text { and } \quad\left(G_{\overline{x_{4}}}\left[\widetilde{x}_{1}, q\right]\right)^{h^{\prime}}=G_{\overline{x_{4}}}^{\left[p, x_{7}\right]}
$$

the groups $G_{x_{4}^{\prime}}^{\left[x_{6}, x_{7}\right]}$ and $G_{\overline{x_{4}}}^{\left[p, x_{7}\right]}$ induce the same action on the set of lines through x_{0}. Now let $g^{\prime \prime} \in G_{x_{4}}^{\left[\overline{x_{6}}, \overline{x_{7}}\right]}$ map x_{7} to x_{1} and let $h^{\prime \prime} \in G_{\overline{x_{4}}}^{\left[\overline{x_{6}}, x_{7}\right]}$ map x_{7} to x_{1}. Again both $g^{\prime \prime}$ and $h^{\prime \prime}$ induce the same action on the set of lines through x_{0}. Moreover, we have $\left(G_{x_{4}}^{\left[x_{6}, x_{7}\right]}\right)^{g^{\prime \prime}}=G_{x_{4}}^{\left[x_{1}, x_{2}\right]}$ and $\left(G_{\overline{x_{4}}}^{\left[p, x_{7}\right]}\right)^{h^{\prime \prime}}=G_{\overline{x_{4}}}^{\left[x_{1}, x_{2}^{\prime}\right]}$. We conclude that the action of U_{2} on Ω coincides with that of U_{2}^{\prime}.

The lemma is proved.
This now also completes the proof of the Main Result.

References

[1] F. Haot and H. Van Maldeghem, Some characterizations of Moufang generalized quadrangles, Glasgow Math. J. 46 (2004), $335-343$.
[2] K. Tent, Half Moufang implies Moufang for generalized quadrangles, J. Reine Angew. Math. 566 (2004), 231 - 236.
[3] J. A. Thas, S. E. Payne and H. Van Maldeghem, Half Moufang implies Moufang for finite generalized quadrangles, Invent. Math. 105 (1991), 153 - 156.
[4] J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Etudes Sci. Publ. Math. 2 (1959), 13 - 60.
[5] J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Mathematics 386, Springer, Berlin, 1974.
[6] H. Van Maldeghem, J. A. Thas and S. E. Payne, Desarguesian finite generalized quadrangles are classical or dual classical, Des. Codes Cryptogr. 1 (1992), 299 305.
[7] H. Van Maldeghem and R. Weiss, On finite Moufang polygons, Israel J. Math. 79 (1992), 321 - 330.

Ghent University
Department of Pure Mathematics and Computer Algebra
Galglaan 2,
B-9000 Ghent,
Belgium
E-mail: fhaot@cage.ugent.be (F. Haot)
hvm@cage.ugent.be (H. Van Maldeghem)

[^0]: 2000 Mathematics Subject Classification : 51E12.
 Key words and phrases : Moufang quadrangles, Moufang conditions, generalized quadrangles.

