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Abstract

In this paper, we give an alternative construction of the Hölz design
DHölz(q), for q 6≡ 2 mod 3. If q ≡ 2 mod 3, then our construction yields
a 2− (q3 + 1, q + 1, q+4

3 )-subdesign of the Hölz-design. The construction uses
two hexagons embedded in the parabolic quadric Q(6, q).

1 Introduction

In 1981, Hölz [4] constructed a family of 2− (q3 +1, q +1, q+2)-designs whose point
set coincides with the point set of the Hermitian unital over the field GF(q), and with
an automorphism group containing PGU3(q). In fact, the blocks of the design are the
blocks of the unital and the Baer-conics lying on the unital (viewed as a Hermitian
curve in PG(2, q2)). We will call the blocks corresponding to the conics Hölz-blocks.
Here, q is any odd prime power. Two years later, Thas [9] proved that these designs
are one-point extensions of the Ahrens-Szekeres generalized quadrangles AS(q) of
order (q − 1, q + 1) (see [1]). In the present paper, we define, for each odd prime
power q, a 2 − (q3 + 1, q + 1, 1 + q+1

(q+1,3)
)-design by looking at the common point

reguli of two split Cayley generalized hexagons represented on the parabolic quadric
Q(6, q). We show that these designs are either isomorphic to the Hölz-designs (for
q 6≡ 2 mod 3) or subdesigns of the Hölz-designs (for q ≡ 2 mod 3). The fact that,
for q ≡ 2 mod 3, the Hölz-design has such large subdesigns is apparently unnoticed
in the literature. In fact, these subdesigns emerge as a union of orbits under the
subgroup PSU3(q), which acts transitively on the Hölz-blocks of the Hölz-design only
if q 6≡ 2 mod 3. Hence we have an alternative, rather unexpected, construction of
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the Hölz-designs DHölz(q) for q 6≡ 2 mod 3, and we have a geometric explanation of
the non-transitivity of the subgroup PSU3(q) on the Hölz-blocks if q ≡ 2 mod 3.

2 Preliminaries

2.1 Generalized hexagons and the split Cayley hexagon

A generalized hexagon Γ (of order (s, t)) is a point-line geometry the incidence graph
of which has diameter 6 and girth 12 (and every line is incident with s + 1 points;
every point incident with t + 1 lines). Note that, if P is the point set and L is the
line set of Γ, then the incidence graph is the (bipartite) graph with set of vertices
P ∪L and adjacency given by incidence. The definition implies that, given any two
elements a, b of P ∪ L, either these elements are at distance 6 from one another in
the incidence graph, in which case we call them opposite, or there exists a unique
shortest path from a to b. If for two points a, b there exists a unique point collinear
with both, then we denote that point by a⋊⋉b. Finally, the set a⊥ is defined to be
the set of all points collinear with a.

In this paper we are mostly interested in the split Cayley hexagons H(q), for q

odd. A model H of this hexagon, the construction of which is due to Tits [10], can
be defined as follows (see [10]; also [11]). Choose coordinates in the projective space
PG(6, q) in such a way that the points of Q(6, q) satisfy the equation X0X4+X1X5+
X2X6 = X2

3 , and let the points of H be all points of Q(6, q). The lines of H are
the lines on Q(6, q) whose Grassmannian coordinates (p01, p02, . . . , p56) satisfy the
six relations p12 = p34, p56 = p03, p45 = p23, p01 = p36, p02 = −p35 and p46 = −p13.

To make the points and lines more concrete to calculate with, we will use the
coordinatization of H (see Chapter 3 of [11]; this coordinatization is originally due
to De Smet and Van Maldeghem [2]). We thus obtain the labelling of points and
lines of H by i-tuples with entries in the field GF(q), and two 1-tuples (∞) and [∞],
with ∞ 6∈ GF(q), as given in Table 1.

In order to complete the description, we need to express the incidence relation
with these new coordinates. If we consider the 1-tuples (∞) and [∞] formally as 0-
tuples (because they do not contain an element of GF(q)), then a point, represented
by an i-tuple, 0 ≤ i ≤ 5, is incident with a line, represented by a j-tuple, 0 ≤ j ≤ 5,
if and only if either |i−j|=1 and the tuples coincide in the first min{i, j} coordinates,
or i = j = 5 and, with notation of Table 1,



















k′′ = a3k + l − 3a′′a2 + 3aa′,

b′ = a2k + a′ − 2aa′′,

k′ = a3k2 + l′ − kl − 3a2a′′k − 3a′a′′ + 3aa′′2,

b = −ak + a′′,

or, equivalently,



















a′′ = ak + b,

l′ = a3k2 + k′ + kk′′ + 3a2kb + 3bb′ + 3ab2,

a′ = a2k + b′ + 2ab,

l = −a3k + k′′ − 3ba2 − 3ab′.
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POINTS
Coordinates in H Coordinates in PG(6, q)

(∞) (1, 0, 0, 0, 0, 0, 0)
(a) (a, 0, 0, 0, 0, 0, 1)

(k, b) (b, 0, 0, 0, 0, 1,−k)
(a, l, a′) (−l − aa′, 1, 0,−a, 0, a2,−a′)

(k, b, k′, b′) (k′ + bb′, k, 1, b, 0, b′, b2 − b′k)
(a, l, a′, l, a′′) (−al′ + a′2 + a′′l + aa′a′′,−a′′,−a,−a′ + aa′′,

1, l + 2aa′ − a2a′′,−l′ + a′a′′)

LINES
Coordinates in H Coordinates in PG(6, q)

[∞] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1)〉
[k] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1,−k)〉

[a, l] 〈(a, 0, 0, 0, 0, 0, 1), (−l, 1, 0,−a, 0, a2, 0)〉
[k, b, k′] 〈(b, 0, 0, 0, 0, 1,−k), (k′, k, 1, b, 0, 0, b2)〉

[a, l, a′, l′] 〈(−l − aa′, 1, 0,−a, 0, a2,−a′),
(−al′ + a′2, 0,−a,−a′, 1, l + 2aa′,−l′)〉

[k, b, k′, b′, k′′] 〈(k′ + bb′, k, 1, b, 0, b′, b2 − b′k),
(b′2 + k′′b,−b, 0,−b′, 1, k′′,−kk′′ − k′ − 2bb′)〉

Table 1: Coordinatization of H

The generalized hexagon H(q) has the following property (see [11], 1.9.17 and
2.4.15). Let x, y be two opposite points and let L, M be two opposite lines at
distance 3 from both x, y. All points at distance 3 from both L, M are at distance
3 from all lines at distance 3 from both x, y. Hence we obtain a set R(x, y) of
q + 1 points every member of which is at distance 3 from any member of a set
R(L, M) of q + 1 lines. We call R(x, y) a point regulus, and R(L, M) a line regulus.
Any regulus is determined by two of its elements. The two above reguli are said
to be complementary, i.e. every element of one regulus is at distance 3 from every
element of the other regulus. Every regulus has a unique complementary regulus.
Now consider again our model H. We will call a line of the quadric Q(6, q) which
does not belong to the hexagon H an ideal line. On the quadric Q(6, q), every line
regulus constitutes a hyperbolic quadric isomorphic to Q+(3, q). Hence there is a
unique opposite regulus, which is a set of q + 1 ideal lines that intersect every line of
the given regulus in a unique point. Since q is odd, the quadric Q(6, q) is associated
to a unique nondegenerate polarity ρ of PG(6, q) and the image under the polarity
of the 3-space generated by a line regulus is a plane which meets Q(6, q) exactly in
the complementary point regulus. Point reguli of H thus are simply (some) conics
on Q(6, q).

2.2 Designs and the H ölz-design

A t− (v, k, λ)-design (in this case also briefly designated as a t-design), for integers
t, v, k and λ with v > k > 1 and k ≥ t ≥ 1, is an incidence structure D satisfying
following axioms: D contains v points; each of its blocks is incident with k points;
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any t points are incident with exactly λ common blocks. For further information on
designs we refer to [6].

The following class of 2-designs DHölz(q) is due to G. Hölz [4]. Let U be a
hermitian curve of PG(2, q2) (see [3]). A Baer subplane (see [5]) D ∼= PG(2, q) is said
to satisfy property (H) if for each point x ∈ D∩U the tangent line Lx to U at x is a
line of D (i.e. |Lx ∩D| = q + 1). If D satisfies property (H) then one can show that,
if |D ∩ U| ≥ 3, then |D ∩ U| = q + 1. In this case, the points of D ∩ U are collinear
if q is even, and the points of D ∩ U are collinear or form an oval in D, if q is odd.
If D1 and D2 are Baer subplanes satisfying property (H) and if |D1 ∩ D2 ∩ U| ≥ 3,
then D1 ∩ U = D2 ∩ U . If moreover Di ∩ U is an oval of Di, then D1 = D2.

Let q be odd. If x and y are distinct points of U , then

(1) there are exactly q + 1 Baer subplanes D in PG(2, q2) which satisfy property
(H) and for which D ∩ U = xy ∩ U , and

(2) there are exactly q + 1 Baer subplanes D in PG(2, q2) which satisfy property
(H) and for which D ∩ U is an oval of D through x and y.

Let B1 be the set of all intersections L∩U with L a non tangent line of U , and let B′

be the set of all intersections D ∩ U with D a Baer subplane of PG(2, q2) satisfying
property (H) and containing at least three points of U . Finally, let B∗ = B′ − B1.

Then S1 = (U , B1,∈) is a 2 − (q3 + 1, q + 1, 1) design which we will call the
Hermitian design; S ′ = (U , B′,∈) is a 2 − (q3 + 1, q + 1, q + 2) design, the Hölz -
design denoted by DHölz(q), and S∗ = (U , B∗,∈) is a 2 − (q3 + 1, q + 1, q + 1)
design. Moreover any two distinct blocks of these designs have at most two points
in common. We will call the elements of B1 the Hermitian blocks, and the members
of B∗ the Hölz-blocks.

2.3 Main Result

In this paper, we will prove the following theorem:

Main Result. Let H1 and H2 be two models of H(q) isomorphic to the model

H as defined above. Define the following incidence structure with point set P and

line set L. The points are the common lines of H1 and H2. The blocks are the line

reguli entirely contained in P, together with the nonempty sets of elements of P that

are incident with a common point regulus of H1 and H2. Then, for each H1, there

exists a suitable choice of H2 such that, for q 6≡ 2 mod 3, this incidence structure

is isomorphic to DHölz(q) and, for q ≡ 2 mod 3, it is a 2 − (q3 + 1, q + 1, 1 + q+1
3

)
subdesign of H(q), invariant under PSU3(q) acting naturally on DHölz(q).

3 Construction and first properties of some designs derived

from the split Cayley hexagons

Consider the model of H(q), q odd, as described in the section 2.1. We refer to that
model as H1. Consider the hyperplane Π with equation νX1 + X5 = 0. From the
equation of Q(6, q), it is clear that Π meets Q(6, q) in an elliptic quadric isomorphic
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to Q−(5, q) if and only if −ν is a nonsquare. In this case, by Thas [8], the set S of
lines of H1 in Π is a spread of H1, i.e., a set of q3 + 1 mutually opposite lines. This
spread is called Hermitian because endowed with the line reguli entirely contained
in it, it is isomorphic to a Hermitian design. One easily calculates that

S = {[∞]} ∪ {[x, y, z,−νx, νy] : x, y, z ∈ GF(q)}.

Now consider the point p = Πρ with coordinates (0, 1, 0, 0, 0, ν, 0) in PG(6, q). Every
line through p and a point x of Π ∩ Q(6, q) intersects Q(6, q) only in x. Any other
line through p and a point y on the quadric intersects Q(6, q) in a second point y′.
The involution g mapping y to y′ and fixing all points of Π extends to an involutive
collineation of PG(6, q), which we also denote by g. It is actually easy to see that g

does not preserve H1. Indeed, the set of lines of H1 through a point x of Π∩Q(6, q)
fill up a plane of Q(6, q), and this plane is fixed under g only if it contains p, clearly
a contradiction.

We now define H2 as Hg
1, and we know H1 6= H2. Henceforth, we shall use the

convention of writing a point regulus of Hi with a subindex i, i = 1, 2. So the point
regulus determined by two points a, b in Hi is denoted by Ri(a, b). Since line reguli
are determined by Q(6, q), such a notation for line reguli is superfluous.

Denote by Ω the set of point reguli of H1 that are also point reguli of H2. Clearly,

Ω contains the subset Ω1 of all point reguli complementary to the (q3+1)q3

(q+1)q
line reguli

in S.
We now define the following set Ω2 of point reguli common to H1 and H2.

Consider two arbitrary lines L and M of S, let a be any point on L, and denote by
Θ the 3-space generated by L and M . Let b be the point on M collinear with a on
Q(6, q). Then b is at distance 4 from a in the incidence graph of both H1 and H2.
Put r = a⋊⋉b and denote rg by r′. Obviously r′a and r′b are lines of H2, implying
r′ belongs to Θρ. Hence both r and r′ belong to the point regulus in both H1 and
H2 complementary to R(L, M). Therefore r′ is collinear in H1 with two points a′

and b′ (obviously distinct from a and b, respectively) on L and M , respectively.
Since g is an involution, the lines ra′ and rb′ of PG(6, q) are lines of H2. The point
regulus R1(a, b′) is complementary to R(rb, r′a′) and the point regulus R2(a, b′) is
complementary to R(ra′, r′b). Since rb and r′a′ generate the same 3-space Υ in
PG(6, q) as ra′ and r′b, we conclude that R1(a, b′) = R2(a, b′). Moreover, it is clear
that Υ is invariant under g, and hence p ∈ Υ. This implies now that R1(a, b′), which
belongs to Υρ ⊆ pρ, is entirely contained in Π.

The set Ω2 consist of all point reguli R1(a, b′), for all choices of L, M and a (but
a and b′ determine L and M uniquely, so there is no need to include L and M in
the notation).
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Lemma 1. With the above notation, we have Ω = Ω1 ∪ Ω2.

Proof. From our discussion above we already have Ω1 ∪Ω2 ⊆ Ω. Now suppose that
Ω 6= Ω1 ∪Ω2. Then there are opposite lines A, B of H1 spanning a 3-space Υ, which
meets Q(6, q) in a hyperbolic quadric, and such that the regulus R′ of that quadric
opposite to the regulus R containing A and B is a set of q + 1 lines belonging to
H2. Let A intersect Π in a and let B intersect Π in b′. Then the line ab′ does not
belong to Q(6, q) as otherwise it would belong to H2 as well, a contradiction. Hence
Π∩Υ intersects Q(6, q) in an irreducible conic C. Hence the set of lines R′g is a line
regulus in H1 containing C, and so is R.

Suppose R′g 6= R. Then R′g and R generate a 4-space in PG(6, q). This 4-space
contains all lines of R and in addition two points of the complementary point regulus
(collinear to a and b′, respectively). Since a line regulus and its complement generate
PG(6, q), a line regulus and two points of the complementary point regulus generate
a 5-space, a contradiction. Hence Rg = R′. But now defining L and M as the unique
lines of Π in H1 incident with a and b′, respectively, we see that Ag meets B in a
point r′, and Bg meets A in a point r. We also have rg = (A∩Bg)g = Ag ∩B = r′.
Moreover, L belongs to rρ∩r′

ρ (since L is at distance 3 from r in the incidence graph
of H1 and at the same distance from r′ in the incidence graph of H2), and, likewise,
M too. Hence both r and r′ belong to the point regulus complementary to the line
regulus containing L and M and so r is collinear with a point b on M in H1 and with
a point a′ on L in H2. But now we have, with the very same notation, the situation
described above, and we conclude that the point regulus R1(a, b′) = R2(a, b′) is
complementary to the line regulus Υ ∩ Q(6, q), and belongs to Ω2.

The lemma is proved. �

Lemma 2. The stabilizer G of Π inside the automorphism group of H1 stabilizes

Ω. Also, G acts doubly transitively on S, and the stabilizer of two elements L, M of

S acts transitively on the set of points incident with L.

Proof. In order to prove the first assertion, it suffices to show that any element
h ∈ G stabilizes H2. Since g is the unique involution stabilizing Q(6, q) and fixing
all points of Π, and since h stabilizes both Π and Q(6, q), we have gh = g. Hence
h = hg stabilizes Hg

1 = H2.

Now G ≤ SU3(q) : 2, with the natural action on S as a Hermitian unital. Whence
the doubly transitivity. Let G∗ = G∩SU3(q). Then, the stabilizer G∗

L,M of two lines
L, M has order 2(q2 − 1). Since q is odd, every element σ of GL,M which fixes one
point of L has to fix a second point of L, and hence σ is a product of generalized
homologies, in the sense of Chapter 4 of [11], see 4.6.6 of [11]. We now consider
the explicit form of S as given in the beginning of the current section. We can take
L = [∞] and M = [0, 0, 0, 0, 0]. Given the explicit forms of generalized homologies
as in 4.5.11 of [11], it is now easy to see that the only generalized homologies fixing
[∞] and [0, 0, 0, 0, 0] and the point (∞) are given by the following actions on the
coordinates:

(a, l, a′, l′, a′′) 7→ (ǫa, ǫKl, Ka′, ǫK2l′, ǫKa′′),
[k, b, k′, b′, k′′] 7→ [Kk, ǫKb, ǫK2k′, Kb′, ǫKk′′],
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with K ∈ GF(q) arbitrary, and ǫ ∈ {1,−1}. This group fixes all points on [∞], and
hence is normal in G∗

L,M . By the orbit counting formula, the orbit of (∞) under
GL,M has length q + 1 and hence constitutes all points of L.

The lemma is proved. �

Now we define DHex(q) as the incidence geometry with point set the elements of
S and block set B = B1 ∪ B2, with

B1 = {R(L, M) : L, M ∈ S, L 6= M},

B2 = {{LIp : p ∈ ω2, L ∈ S} : w2 ∈ Ω2}.

We remark that we consider repeated blocks as one block.
We have the following proposition, which is already a substantial part of our

Main Result:

Proposition 1. The incidence geometry DHex(q), q odd, is 2− (q3 +1, q +1, q +2)-
design for q 6≡ 2 mod 3, and it is a 2− (q3 + 1, q + 1, q+4

3
)-design otherwise. In any

case, two distinct blocks never meet in more than two points.

Proof. We determine the number of blocks in DHex(q) through two given points of
DHex(q). Note that by the 2-transitivity of G on the point set of DHex(q), this number
is already a constant. So we have to count the number of “repeated blocks”, i.e., the
number of times a block is defined by different point reguli. By transitivity of G, we
may take the block B1 defined by the point regulus R := R((∞), (0, 0, 0, 0, 0)) and
the block B2 defined by the point regulus R′ := R((a), (A, 0, 0, 0, 0)), with (a, 0, 0)g =
(A, 0, 0) and a ∈ GF(q) \ {0}. Suppose some point x of B1 \ {(∞), (0, 0, 0, 0, 0)} is
on the same line of S as some point y ∈ B2. Such a point x has coordinates
(0, 0,−νa′, 0, 0), a′ ∈ GF(q) \ {0} and is incident with the line L = [a′, 0, 0,−νa′, 0]
of S.

Now, the point y has coordinates (A, 0, ., ., .) in H(q), and from the incidence
relation described in Section 2.1, we infer that y is incident with L if and only if
−A3 + 3Aνa′ = 0. This is equivalent to A2 = 3ν. Hence such a point y exists if
and only if −3 is not a square in GF(q), i.e., q ≡ 2 mod 3. This already shows that,
if q 6≡ 2 mod 3, then there are no repeated blocks, no two distinct blocks meet in
more than two points, and an easy counting argument concludes the proof of the
proposition (taking into account that no member of B1 can meet any member of B2

in more than two points, which is easy to see).
Now suppose q ≡ 2 mod 3. Then the equation A2 = 3ν has two solutions in

A giving rise to two point x′

1, x
′

2. This implies that x, x′

1 and x′

2 are three points
of distinct point reguli R, R′

1, R
′

2 (respectively) in Ω2 which are on the same spread
line L = [a′, 0, 0,−νa′, 0]. Since the equation A2 = 3ν does not depend on x, we see
that the point reguli R, R′

1, R
′

2 determine the same element of B2. By transitivity
we thus obtain that any two lines of the spread determine q+1

3
elements of B2. A

simple counting argument now concludes the proof of the proposition completely. �

Remark. The previous proof also implies that G acts transitively on the set
B2. If q ≡ 2 mod 3, then the center of G∗, which has order 3, fixes all points of
DHex(q) and permutes the point reguli belonging to Ω2 in such a way that point
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reguli that represent same elements of B2 are permuted amongst themselves. Hence
the center acts trivially on DHex(q) and we obtain a faithful action of PSU3(q) on
DHex(q), transitive on the points and with two orbits on the blocks.

4 DHex(q) vs. DHölz(q)

In this section we will show that each block of DHex(q) is a block of DHölz(q). This
will complete the proof of our Main Result.

Proposition 2. DHex(q) is a subdesign of DHölz(q). In particular, these designs

coincide if and only if q 6≡ 2 mod 3.

Proof. It is well known that the line reguli in S correspond to the Hermitian blocks.
Hence we only have to prove that any block of type B2 is a Hölz-block.

By transitivity on the blocks of type B2 we may only consider the block defined
by the point regulus R((∞), (0, 0, 0, 0, 0)). One easily calculates that this block
equals

B = {[∞]} ∪ {[k, 0, 0,−νk, 0] : k ∈ GF(q)}.

We now need to relate the Hermitian spread S of H1 to a Hermitian curve, U ,
in PG(2, q2). Let γ ∈ GF(q2) be such that γ2 = −ν (with ν given previously).
We already established that the lines of H1 in the hyperplane Π with equation
X5 = −νX1 in PG(6, q) form the Hermitian spread

S = {[∞]} ∪ {[k, b, k′,−νk, νb] : k, b, k′ ∈ GF(q)}

in H(q).
Now we extend PG(6, q) to PG(6, q2), thereby also extending Q(6, q) to Q(6, q2)

(having the same equation) and H(q) to H(q2) (the Grassmannian coordinates of
the lines of H(q2) satisfy exactly the same six equations above as is the case for
H(q); here we identify H(q) with the model H1 for clarity). Let σ be the involution
in H(q2) defined by applying the map x → xq to every coordinate of any element
in H(q2). It is obvious that σ fixes H(q) pointwise. By [12], the hyperplane Π,
viewed as a hyperplane of PG(6, q2), defines in H(q2) the subhexagon Γ(p, p′) of
order (1, q2) of H(q2) (with notation of 1.9 of[11]) and Γ(p, p′) ∩ H(q) = S, where
p is a point of H(q2) \ H(q) on [∞] and p′ is the point on [0, 0, 0, 0, 0] at distance 5
from pσ. With the terminology of Chapter 1 of [11], we know that Γ(p, p′) is the
double of a Desarguesian projective plane Πp,p′. Let π+ (respectively π−) be the
plane of PG(6, q2) generated by the points p, p′

σ and pσ
⋊⋉p′ (respectively pσ, p′ and

p′σ⋊⋉p). We know that π+ and π− can be thought of as the point set and the line
set, respectively, of PG(2, q2).

According to [12], the lines of S meet the plane π+ in the points of a hermitian
curve, which we will call U . We now establish an explicit algebraic correspondence.
We may choose p to be the point (γ) on the line [∞]. Hence π+ is generated by the
points p = (γ), p′

σ = (γ, 0, 0, 0, 0) and p′⋊⋉pσ = (−γ, 0, 0) of H(q2). Let p0 be the
fixed coordinate tuple (γ, 0, 0, 0, 0, 0, 1) of p. Likewise let p1 = (0, 0,−γ, 0, 1, 0, 0), be
the fixed representative of p′

σ, and then we have p2 = (0, 1, 0, γ, 0, γ2, 0), representing
p′⋊⋉pσ.
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We introduce coordinates in π+ by mapping a point r0.p0+r1.p1+r2.p2 of PG(6, 9)
to the point (r0, r1, r2) in PG(2, q2).

Now we claim that the equation in π+ of the Hermitian curve U corresponding
to S is given by

U : −2γX2X
q
2 = X0X

q
1 − X1X

q
0

and the isomorphism Φ : S → U is given by

[∞]Φ = (1, 0, 0), [k, b, k′,−νk, νb]Φ = (γ(b2 + νk2) − νkb + k′,−1, γk + b).

Indeed, since the line [∞] meets Π in p it is obvious that we map this line
to the point (1, 0, 0). Consider a general line, [k, b, k′,−νk, νb], of the spread S.
Using Table 1 and the coordinates of points in π+, a simple calculation yields
Φ([k, b, k′,−νk, νb]) = (γ(b2 +νk2)−νkb+k′,−1, γk + b). The point (1, 0, 0) clearly
satisfies the given equation of U and therefore it suffices to check whether a general
point (γ(b2 + νk2)− νkb + k′,−1, γk + b), with k, b, k′ ∈ GF(q), is a point on U , and
that is an easy calculation. The claim follows.

We will now show that BΦ contains the points of an oval on U , which determine
a Baer subplane D satisfying property (H).

By our previous claim the lines of S corresponding to B are mapped onto the
points

{(1, 0, 0)} ∪ {(γνk2,−1, γk) : k ∈ GF(q)},

or, since γ2 = −ν,
{(1, 0, 0)} ∪ {(l2, γ, l) : l ∈ GF(q)}.

Now all of these points satisfy the quadratic equation X0X1 = γX2
2, which shows

that they are contained in a conic of PG(2, q2).
We now check Property (H).
Consider the points p1 = (1, 0, 0), p2 = (0, 1, 0), p3 = (1, γ, 1) and p4 = (1, γ,−1)

(all of which are points of BΦ). The Baer subplane through these points contains
the following additional points: p5 = p1p2 ∩ p3p4 = (1, γ, 0), p6 = p1p3 ∩ p2p4 =
(1,−γ,−1) and p7 = p1p4∩p5p6 = (0,−γ, 1). Now, with these additonal points, one
can easily see that the Baer subplane through the q + 1 points of U contains q + 1
points on X1 = 0, namely

{(1, 0, x) : x ∈ GF(q)} ∪ {(0, 0, 1)},

and its set of q2 other points is given by:

{(y, γ, x) : y, x ∈ GF(q)}.

With these explicit forms of the points of D it is easy to check whether this Baer
subplane satisfies property (H). Let us first recall that the tangent line at a point
(x0, x1, x2) of U is given by the equation

TpU :

(

∂U

∂X0

)

p

X0 +

(

∂U

∂X1

)

p

X1 +

(

∂U

∂X2

)

p

X2 = 0

with
(

∂U
∂Xi

)

p
the partial derivative with respect to Xi at the point p = (x0, x1, x2).

Given the equation of U we find

x
q
1X0 − x

q
0X1 + 2γx

q
2X2 = 0
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to be the tangent line of U at the point (x0, x1, x2) over the field GF(q2).
To investigate whether D satisfies property (H) we have to consider all points

of D on U , determine the tangent line at these points and check if these are a Baer
line of D. In particular, as every line of π+ intersects D in one or in q + 1 points it
suffices to find two points of such a tangent line which are in D to conclude that it
is a Baer line of the Baer subplane. Now, the points of D on U are in fact the points
of BΦ = {(1, 0, 0)} ∪ {(l2, γ, l) : l ∈ GF(q)}. The tangent line at the first point of
this set is the line X1 = 0 which we already know is a Baer line of D. Finally, the
tangent line at the point (l2, γ, l), with l ∈ GF(q), is the line

γX0 + l2X1 − 2γlX2 = 0

and this line contains the points (l2, γ, l) and (−l2, γ, 0) of D.
In conclusion, D satisfies property (H) and consequently DHex(q) is a subdesign

of DHölz(q). �
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