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Abstract

Semipartial geometries (SPG) were introduced in 1978 by Debroey and
Thas [5]. As some of the examples they provided were embedded in affine
space it was a natural question to ask whether it was possible to classify all
SPG embedded in affine space. In AG(2, q) and AG(3, q) a complete classifi-
cation was obtained ([6]). Later on it was shown that if an SPG, with α > 1,
is embedded in affine space it is either a linear representation or TQ(4, 2h)
(see [8],[11]). In this paper we derive general restrictions on the parameters
of an SPG to have a linear representation and classify the linear representa-
tions of SPG in AG(4, q), hence yielding the complete classification of SPG in
AG(4, q), with α > 1.

1 Introduction

A semipartial geometry with parameters s, t, α and µ, denoted by spg(s, t, α, µ), is
a connected partial linear space S of order (s, t) satisfying the following axioms.

(i) If a point x and a line L are not incident, then there are either 0 or α (α > 0)
points which are collinear with x and incident with L.

(ii) If two points are not collinear, then there are µ (µ > 0) points collinear with
both.
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Semipartial geometries were introduced by Debroey and Thas in [5]. Semipartial
geometries have a strongly regular point graph. A semipartial geometry such that
α = 1 is called a partial quadrangle, and was introduced in [4] by Cameron. A
semipartial geometry such that for each anti-flag, i.e. non-incident point-line pair
(x, L), there are exactly α points on L collinear with x is called a partial geometry
[1]. In that case, condition (ii) is trivially satisfied with µ = α(t+1) and, conversely,
every semipartial geometry with µ = α(t + 1) is a partial geometry pg(s, t, α). A
pg(s, t, t) is also known as a (Bruck) net of order s+1 and degree t+1. A semipartial
geometry that is not a partial geometry will be called a proper semipartial geometry.
Several examples of partial and proper semipartial geometries are known; for an
overview on these geometries we refer to [7, 9]. In the rest of this section however
we shall restrict ourselves to those examples and constructions that we will need in
the rest of this paper.

Consider an affine space AG(n + 1, q) and a point set K in its hyperplane Π :=
PG(n, q) at infinity. The geometry T ∗

n(K) with point set the points of AG(n + 1, q)
and as set of lines the the union of all parallel classes of lines of AG(n+1, q), whose
points at infinity are the points of K is called the linear representation of K (the
incidence is the one inherited from AG(n + 1, q)).

A maximal arc K of degree d, with d > 0, in a projective plane Π of order q is
a non-empty set of points such that each line of Π that intersects K in at least one
point intersects it in exactly d points, i.e., it is a nonempty set of qd − q + d points
in Π such that every line of Π has either 0 or d points in common with K.

A unital U in a projective plane Π = PG(2, q2) is a set of q3 +1 points such that
each line of Π intersects U in either 1 or q + 1 points.

We can now give an overview of the known spg(s, t, α, µ) which have a linear
representation T ∗

n(K). We always suppose that K is not trivial, i.e. K nor its
complement is empty, a point or a subspace. If α = 1 then Calderbank [2], and
Tzanakis and Wolfskill [18] obtained an almost complete classification.

Theorem 1.1. If K is a non-trivial point set in PG(n, q) such that T ∗

n(K) is an
spg(q − 1, |K| − 1, 1, µ), then only the following cases can occur:

• K is a hyperoval in PG(2, 2m);

• K is an ovoid in PG(3, q);

• K is an 11-cap in PG(4, 3);

• K is the unique 56-cap in PG(5, 3); or a 78-cap in PG(5, 4) such that each
external point is on 7 secants (at least one example is known);

• K is a 430-cap in PG(6, 4), however it is not known whether such a cap exists.

If α > 1 the following examples are known:

• in AG(2, q) every linear representation is a Bruck net;

• K is a maximal arc in PG(2, q), and then T ∗

2 (K) is a partial geometry, and was
constructed by Thas [16];

• K is a unital U in PG(2, q2), and then T ∗

2 (U) is an spg(q2 −1, q3, q, q2(q2 −1));
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• K is a Baer-subgeometry B ∼= PG(n, q) of PG(n, q2), and then T ∗

n(B) is an
spg(q2 − 1, qn

−1
q−1

− 1, q, q(q + 1)).

To end this introduction we mention some theorems which will be of use in the
following sections.

Theorem 1.2 ([15]). Let O be a set of points in PG(n, q), n ≥ 3, such that each
line intersects O in either α or β points. If O nor its complement is empty, a point
or a hyperplane, then q is an odd square and if α ≤ β then

α =
1

2
(q + 1 −√

q(1 − ǫ)),

β =
1

2
(q + 1 +

√
q(1 + ǫ)) and

|O| =
1

2
(1 +

qn−1 − 1

q − 1
(q + ǫ

√
q) + δ

√

qn−1),

where ǫ = ±1 and δ = ±1.

Theorem 1.3 ([14]). If K is a set of points of PG(n, q), n ≥ 3, with the property
that every hyperplane of PG(n, q) intersects K in either 0 or m > 0 points, then K is
either a unique point or the point set of the complement of a hyperplane of PG(n, q).

Theorem 1.4 ([19]). If K is a point set in PG(n, q), n ≥ 3, with the property
that K spans PG(n, q) and such that each line of PG(n, q) intersects K in either 0,
1 or α ≥ √

q + 1 points, then K is either a Baer-subgeometry, an affine subspace of
PG(n, q), or K equals the point set of PG(n, q).

2 General results

From now on let K be a non-trivial set of points in PG(n, q), n ≥ 3 (i.e. K is not a
subspace nor its complement). Embed PG(n, q) as a hyperplane Π in PG(n + 1, q).
We assume that the linear representation T ∗

n(K) of K is an spg(q − 1, |K| − 1, α, µ).
In this section we will derive some general results for such a set K, which will enable
us in the following sections to obtain a classification when n = 3. We always suppose
that α > 1. Throughout this paper N will always mean all non-negative integers,
including 0.

Lemma 2.1. Every line of Π intersects K in either 0, 1 or α+1 points, and the set
K consists of 1 + xα, x ∈ N, points. There exists a constant θ such that each point
not belonging to K is incident with θ lines intersecting K in 1 point. Furthermore
K has two intersection numbers with respect to hyperplanes.

Proof. It is readily checked that the α-condition for SPG implies that a line inter-
secting K in at least two points must intersect it in α + 1 points. Now consider a
fixed point of K. Then any line through this point contains either 0 or α other points
of K. Hence |K| = 1 + xα, with x the number of lines through a given point of K
intersecting K in at least 2 points. The existence of the constant θ is a consequence
of the µ-condition for SPG. There holds µ = (|K| − θ)α. Finally, since the point
graph of T ∗

n(K) is strongly regular, the last assertion of the lemma follows from a
result by Delsarte, see [10] (see also [3]). �
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We will call a line intersecting K in 0, 1, respectively α + 1 points an exterior
line, a tangent, respectively an (α + 1)-secant.

Lemma 2.2. (i) There exist exterior lines of K.

(ii) Every hyperplane of Π has at least one point in common with K.

Proof. (i) Suppose by way of contradiction that every line of Π would have at
least one point in common with K, then clearly each line intersects K in either
1 or α+1 points. From Theorem 1.2 there follows that 1 = 1

2
(q+1−√

q(1−ǫ)),
with ǫ = ±1, clearly a contradiction.

(ii) If there exist hyperplanes exterior to K, then Lemma 2.1 implies that a hy-
perplane contains either 0 or m > 0 points of K. Hence Theorem 1.3 yields
that K is either a point or the point set of the complement of a hyperplane,
in contradiction with our assumptions. �

Together with Lemma 2.1 the previous lemma implies that a hyperplane contains
either 1+yα points of K or 1+zα points of K, y, z ∈ N, with y < z ([3]). We will call
a hyperplane of the former (resp. latter ) type a y-hyperplane (resp. z-hyperplane).
From [3] it follows that K yields a two-weight code with weights w1 = 1+xα−(1+zα)
and w2 = 1 + xα − (1 + yα).

Lemma 2.3. If K is a set of points in Π := PG(n, q), n ≥ 3, q = pm, p prime, with
the property that T ∗

n(K) is an spg(q − 1, |K| − 1, α, µ) then α = pi, 0 ≤ i ≤ m.

Proof. By the previous lemma we can choose a subspace γ := PG(l, q) ⊂ Π exterior
to K, 0 < l < n − 1, such that no (l + 1)-dimensional subspace is exterior to K.
Now consider any Γ := PG(l + 2, q) ⊂ Π containing γ. Clearly |Γ ∩ K| = 1 + cα,
c ∈ N \ {0}. Every (l + 1)-dimensional subspace of Γ containing γ will contain
1 + cjα, cj ∈ N, points of K. We obtain

q
∑

j=0

(1 + cjα) = 1 + cα

and hence q + α
∑q

j=0 cj = cα. This proves the lemma. �

Lemma 2.4. There holds that z − y equals pk for some k > 0

Proof. From [3] it follows that w2 − w1 = pw, w ∈ N. Hence the previous lemma
implies that w2 − w1 = (z − y)pi = pw. Thus z − y = pk for some k ∈ N. We
will now show that k > 0. Consider an exterior line L and let δ be the number of
z-hyperplanes containing L. We count the pairs (u, η), where u ∈ K, u ∈ η and η a
hyperplane containing L, in two ways:

δ(1 + zα) + (
qn−1 − 1

q − 1
− δ)(1 + yα) = (1 + xα)

qn−2 − 1

q − 1
.

Now consider an (α+1)-secant M and let δ′ be the number of z-hyperplanes contain-
ing M . Here we count the pairs (v, ξ), where v ∈ K \ M , v ∈ ξ and ξ a hyperplane
containing M ,

δ′(z − 1)α + (
qn−1 − 1

q − 1
− δ′)(y − 1)α = (x − 1)α

qn−2 − 1

q − 1
.
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Subtracting the second equation from the first yields

(δ′ − δ)pk =
α + 1

α
qn−2.

Since α 6= q (because otherwise K would be the point set of a subspace) we find
that α+1

α
qn−2 ≥ qn−2 + 2qn−3 (recall that α = pi). As δ, δ′ ∈ N, we see that if k = 0

it follows that δ′ ≥ qn−2 + 2qn−3, a contradiction since δ′ ≤ (qn−1 − 1)/(q − 1). �

Lemma 2.5. If K is a set of points in Π := PG(n, q), n ≥ 3, q = pm, p prime, with
the property that T ∗

n(K) is an spg(q− 1, |K|− 1, pi, µ) then the strongly regular point
graph of T ∗

n(K) has parameters

• µ = pi x(1+xpi)(pm
−pi)

pmn+pm(n−1)+···+pm
−xpi

;

• λ = q − 2 + xpi(pi − 1) and

• K = (xpi + 1)(pm − 1), with K the valency of the graph.

Proof. From the previous lemmas we know that µ = (xpi + 1 − θ)pi. So we should
now determine θ. We count in two ways the pairs (u, v), where u /∈ K, v ∈ K and

uv a tangent. We obtain (1 + xpi)( qn
−1

q−1
− x)q = ( qn+1

−1
q−1

− 1 − xpi)θ from which θ

follows. It now easily follows that µ = pi x(1+xpi)(pm
−pi)

pmn+···+pm
−xpi .

The values for λ and K follow trivially. �

Theorem 2.6. Let K be a set of points in Π := PG(n, q), n ≥ 3, q = pm, p
prime, with the property that T ∗

n(K) is an spg(q − 1, |K| − 1, pi, µ). If i ≥ m/2, then
T ∗

n(K) ∼= T ∗

n(B).

Proof. Since T ∗

n(K) is connected, it follows that K spans PG(n, q). Now Theorem
1.4 immediately implies that K is a Baer subgeometry. �

From now on we may suppose that i < m/2. We will use the following theorem
from [3].

Theorem 2.7 ([3]). If K is a point set in PG(n, q) with the property that T ∗

n(K)
has a strongly regular point graph with parameters (v = qn+1, K = |K| (q − 1), λ, µ),
then

q(w2 − w1) = ((λ − µ)2 + 4(K − µ))1/2,

where w1 < w2 are the two intersection numbers of K with respect to hyperplanes of
PG(n, q).

Since the point graph of T ∗

n(K) is strongly regular Theorem 2.7 implies that

p2mp2k+2i = (λ − µ)2 + 4(K − µ) (1)

with λ, µ and K as in Lemma 2.5.
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Now set D = p3m + p2m + pm − xpi, D(3) = 0, D(n) = p4m + . . . + pnm if n ≥ 4,
and N = pix(1 + xpi)(pm − pi); furthermore let λ and µ be as in Lemma 2.5. We
calculate the right hand side of equation (1):

(λ − N
D+D(n)

)2 + 4(K − N
D+D(n)

)

= 1
(D+D(n))2

[λ2(D + D(n))2 − 2λ(D + D(n))N

+N2 + 4K(D + D(n)) − 4N(D + D(n))]
= 1

(D+D(n))2
[U + D(n) (2Dλ2 + D(n)λ2 − 2λN + 4K − 4N)]

with U = λ2D2 − 2λDN + N2 + 4KD − 4ND. Hence, after multiplication of both
sides of equation (1) with (D + D(n))2, we obtain

p2m+2k+2i(pnm + p(n−1)m + . . . + pm − xpi)2 = Un (2)

with Un = U + D(n) (2Dλ2 + D(n)λ2 − 2λN + 4K − 4N).

Finally we show that from K we can construct a point set in PG(n−1, q) having
two intersection numbers with respect to hyperplanes. Let u be any point of K and
consider a hyperplane ∆ of Π not containing u. As every hyperplane through u
contains either y or z (α + 1)-secants through u, we see that the projection of K
from u on ∆ yields a point set L of cardinality x in ∆ with the property that every
hyperplane of ∆ contains either y or z points of L. Notice that both intersection
numbers occur.

Lemma 2.8. There holds

x2(qn−2 − 1) + x(qn−2(q − 1) − (y + z)(qn−1 − 1)) + yz(qn − 1) = 0 (3)

Proof. In [12] this is shown for n = 3 (not in the context of projections of a set K).
The proof we give for the general case is analogous. Let L and ∆ be as above. Denote
by τy, respectively τz, the number of hyperplanes of ∆ containing y, respectively z,
points of L. We obtain

τy + τz =
qn − 1

q − 1

τyy + τzz = x
qn−1 − 1

q − 1

τyy(y − 1) + τzz(z − 1) = x(x − 1)
qn−2 − 1

q − 1

Eliminating τy and τz from these equations yields equation (3). �

3 The case n = 3

In this section we suppose that the setup is as in the previous section with n = 3,
α = pi > 1 and i < m/2. Furthermore we use the same notations. We start by
handling some special cases.

We need the following theorem, which is due to Thas.
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Theorem 3.1 ([17]). Suppose K is a point set in PG(n, q), n ≥ 3, with the property
that a hyperplane contains either 1 or m > 1 points of K and such that there exists
at least one hyperplane containing exactly 1 point of K. Then K is the point set of
a line of PG(n, q) or K is an ovoid of PG(3, q).

In our setup this immediately translates into the following.

Theorem 3.2. The case y = 0 cannot occur.

Next we exclude the other end of the spectrum.

Theorem 3.3. The case z = q + 1 cannot occur.

Proof. In a z-plane of Π every point of K is clearly contained in q+1 (α+1)-secants.
There follows that a z-plane contains no tangent lines and hence that K induces a
maximal arc in every z-plane. This implies that α = pl − 1, in contradiction with
Lemma 2.3. �

We will now start with an analysis of equation (2), but first we introduce a new
notation. We will denote by O(pf ) any polynomial in p of degree at least pf with
coefficients in N. The calculations in the rest of this section are tedious, and can
easily be carried out in MAPLE. That is the reason why in most steps we only
mention the terms we need and use shortened expressions.

If n = 3 equation (2) becomes

p2m+4i+2k(p3m−i + p2m−i + pm−i − x)2 = U (4)

with

U = (x2 − 2x3 + x4)p4i + O(p4i+1)

Considering this equation modulo p4i+1 we find that p divides x2(x − 1)2. There
follows

Lemma 3.4. Either p divides x, or p divides x − 1.

Lemma 3.5. There holds that x ≡ y ≡ z (mod p).

Proof. We first show that every plane contains exterior lines. Assume that a z-
plane π would contain no exterior lines. It then follows that K induces in π either
a line, a Baer subgeometry or a unital (see Chapter 12 of [12]) yielding α ≥ pm/2,
a contradiction. Now let L be an exterior line to K, and suppose that there are δ
z-planes containing L. We obtain

δ(1 + zα) + (q + 1 − δ)(1 + yα) = 1 + xα

which yields

δpk + y + pm−i + ypm = x

Hence x ≡ y (mod p). As z − y = pk, with k > 0 the result follows. �

Notice that since there are z-planes and each z-plane must contain at least one
exterior line, δ 6= 0. The fact that δ 6= 0 will be of use later on.
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3.1 The case p divides x

We write x = ap and substitute this in equation (4).

Lemma 3.6. There holds that p2m−2i−1 divides a.

Proof. This follows from equation (4) with direct Maple calculation and a congru-
ence argument. �

As an immediate consequence we can write from now on x = bp2m−2i. We will
now turn to the analysis of equation (3) which will allow us to exclude the case p
divides x.

Theorem 3.7. The case p divides x cannot occur.

Proof. Write y and z in p-ary representation, starting with the lowest order term:
y = yfp

f + · · · and z = zlp
l + · · · with yf 6= 0 (because of Theorem 3.2) and zl 6= 0.

After division by q − 1 equation (3) becomes

x2 − x(q(y + z − 1) + y + z) + yz(q2 + q + 1) = 0 (5)

with q = pm. Because of the previous lemma p4m−4i divides x2, the terms of lowest
degree in x(q(y + z − 1) + y + z) are

byfp
2m−2i+f and bzlp

2m−2i+l

while the term of lowest degree in yz(q2 + q + 1) is

yfzlp
f+l

where uv denotes multiplication of u and v modulo p. Clearly f + l < 4m− 4i, as l
and m are at most m (y and z are a number of lines through a point in a plane) and
i < m/2. Furthermore 2m− 2i + f ≤ f + l would imply l ≥ m + 1, a contradiction.
In an analogous way 2m−2i+ l ≤ f + l cannot occur. Hence if we consider equation
(5) modulo pf+l+1 we obtain that yfzl ≡ 0, the final contradiction. �
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3.2 The case p divides x − 1

The basic ideas for handling this case are the same as in the previous subsection, but
it will turn out that there are more subcases to deal with. We will write x = ap+1.

Lemma 3.8. There holds that pm−i−1 divides a.

Proof. This follows from equation (4) using direct Maple calculation and a congru-
ence argument. �

From now on we write x = bpm−i + 1.

Lemma 3.9. There holds that b = cp + 1 with c ∈ N \ {0}.

Proof. The fact that b = cp + 1, with c ∈ N, follows once again from equation
(4) using direct Maple calculation and congruence arguments. If c = 0 we find
x < 1 + pm, a contradiction as any non-trivial two-weight set in ∆ must contain at
least 2 + pm points, i.e. |L| = x ≥ 2 + pm. �

We obtain x = 1 + pm−i + cpm−i+1.

Lemma 3.10. There holds that pi−1 divides c.

Proof. The lemma follows from equation (4) using direct Maple computation and
an easy congruence argument. �

There follows that x = 1 + pm−i + dpm with d ∈ N \ {0}. The final step in our
analysis of equation (2) yields the following lemma.

Lemma 3.11. If p 6= 2, then d ≡ 2 (mod p). If p = 2, then d is even; furthermore
in this case there holds that if 2f , with f > 1 divides d, and k > 1, then i = (m−1)/2.

Proof. Also this lemma can be obtained starting from equation (4) with a Maple
computation and a carefully carried out congruence analysis. �

Lemma 3.12. The case y = 1 cannot occur.

Proof. Suppose that y = 1. Then the set L in ∆ must either be a line, a Baer-
subplane or a unital [12]. As z = pm + 1 is impossible by Theorem 3.3 L cannot
be a line. If L is a Baer-subplane, respectively a unital, there follows that x =
1 + pm/2 + pm, respectively 1 + p3m/2, both in contradiction with the derived form
of x. �

Lemma 3.13. There holds that pk divides y − 1.

Proof. First notice that, since y, z ≤ pm, there holds that k < m. Using the equation
obtained in the proof of Lemma 3.5 and the form of x we find

δpk + (y − 1) + pm + (y − 1)pm = dpm

with δ the number of z-planes through an exterior line of K. The lemma follows
immediately. �
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There are three possibilities for y and z:

(I) y = 1 + upl and z = 1 + pk + upl, with u ∈ N, u not divisible by p and l > k
(notice that l < m);

(II) y = 1 + ykp
k + upk+1 and z = 1 + (1 + yk)p

k + upk+1, with 0 < yk < p− 1 and
u ∈ N (notice that p 6= 2 in this case);

(III) y = 1 − pk + upl and z = 1 + upl, with u ∈ N, u not divisible by p and l > k.

Lemma 3.14. There holds that k ≤ m − i.

Proof. Consider a tangent line L to K and let β be the number of y-planes through
L. We find

βy + (pm + 1 − β)z = x

which yields
−βpk + zpm + (z − 1) = pm−i + dpm.

Since pk divides z − 1, we see that k ≤ m − i. �

Lemma 3.15. The following cases cannot occur: l < m − i in (I), k < m − i in
(II) and l < m − i in (III).

Proof. The result follows by direct Maple computation and a congruence argument.�

Lemma 3.16. In case (I) l > m − i cannot occur.

Proof. This follows by direct Maple computation. �

Lemma 3.17. Case (I) cannot occur.

Proof. We are left with showing that also l = m − i is impossible in this case, so
assume the contrary. By Maple computation and an easy congruence argument we
obtain that u = 1. Equation (5) becomes, modulo p2m:

−dpm+k − p2m−i = 0

implying that pm−i−k > 1 divides d, which in view of Lemma 3.11 yields that p = 2.
Now first suppose that k = 1. It follows that the number of (α + 1)-secants (with
respect to K) in a y-plane equals

(1 + pi + pm)(1 + pm−i)

1 + pi

from which we deduce that 1 + pi divides 1 + pm−i. If we now count the number of
(α + 1)-secants in a z-plane we find

(1 + pi + pi+1 + pm)(1 + p + pm−i)

1 + pi

which implies (using the fact that 1 + pi divides 1 + pm−i and rewriting p + pm−i as
p − 1 + 1 + pm−i) that 1 + pi divides p − 1, clearly a contradiction. Now suppose
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that k > 1 with m− i−k 6= 1. From Lemma 3.11 it follows that i = (m−1)/2, and
hence the number of intersecting lines (with respect to K) in a y-plane can never be
an integer, a contradiction. Finally suppose that k > 1 with m− i− k = 1. Here as
well, 1 + pi divides 1 + pm−i and since the number of intersecting lines in a z-plane
must be an integer we find that 1 + pi divides pi+k + pm = pi+k(1 + p) and hence
1+pi divides 1+p, i.e. i = 1 and hence k = m−2. Equation (5) becomes 22md2−5∗
22m−2(2m+1)d+22m−1(3∗22m−2+2m+1+1) = 0. As this equation must have at least
one integer solution in d it follows that the square root of its discriminant D must
be an integer. We obtain D = 24m−4(22m−7∗2m+1−7) and hence 22m−7∗2m+1−7
has an integer square root. Rewriting this we see that (2m − 7)2 − 56 is a2 for some

a ∈ N with a + β = 2m − 7. There follows that a = 56−β2

2β
. We find that β must

divide 56 and must be even, so β ∈ {2, 4, 8, 14, 28,−2,−4,−8,−14,−28}. We now
easily see that β = 4, a = 5 and m = 4 is the only solution. The unique solution for
equation (5) is then given by x = 169, y = 9, z = 13 and q = 16. As we supposed
that K yields a semipartial geometry these values should also satisfy equation (1).
Plugging in these values in this equation we obtain the final contradiction (another
way to obtain a contradiction here is to check that µ /∈ N). �

Lemma 3.18. Case (II) cannot occur.

Proof. We are left with showing that also k = m − i is impossible in this case, so
assume the contrary. By direct Maple computation and a congruence argument we
obtain u = 0. We count the number of intersecting lines (with respect to K) in a
y-plane:

(1 + pi + pm)(1 + pm−i)

1 + pi

which implies that 1+pi divides 1+pm−i. Now we count the number of intersecting
lines in a z-plane:

(1 + pi + 2pm)(1 + 2pm−i)

1 + pi

from which we deduce (using the fact that 1+pi divides 1+pm−i) that 1+pi divides
2p2m−i and hence that 2/(1 + pi) ∈ N, a contradiction. �

Lemma 3.19. In case (III) l > m − i cannot occur.

Proof. Suppose l > m − i. Since equation (5) becomes

pm−i+k + p2m−2i + O(p2m−2i+1) = 0

we see that k = m−i and p = 2. Relying on direct Maple computations and the fact
that d is even, we can now obtain a contradiction using some congruence arguments.

�

Lemma 3.20. Case (III) cannot occur.

Proof. This lemma is proved analoguosly as Lemma 3.17. �
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4 Summary

Theorem 4.1. If K is a non-trivial set of points in PG(3, q) such that T ∗

n(K) is
an spg(q − 1, |K| − 1, α, µ), then either α = 1 and K is an ovoid or q is a square,
α =

√
q and K is the point set of a Baer-subgeometry.

Proof. Let q = pm. If α = 1 or α ≥ pm/2 Theorems 1.1 and 2.6 imply the result,
so suppose that 1 < α < pm/2. In Lemma 3.4 it was shown that if x is the number
of secant lines through a point of K, then either p divides x or x − 1. If p would
divide x, then Theorem 3.7 implies that such K cannot exist. If p would divide x−1
then Lemmas 3.12, 3.17, 3.18 and 3.20 yield that such K cannot exist. Hence there
follows that necessarily α = 1 or α ≥ pm/2. The theorem is proved. �

For constructions and the embedding of the semipartial geometry TQ(4, q) we
refer the reader to [9, 13]. This semipartial geometry is due to R. Metz (private
communication).

Theorem 4.2. If S is a semipartial geometry with α > 1, embedded in AG(4, q),
then either S ∼= TQ(4, q), with q = 2h, or S ∼= T ∗

3 (B).

Proof. By Corrolary 3.7 of [8] and Corrolary 3.3 of [11] we know that such a semipar-
tial geometry is either TQ(4, 2h) or a linear representation. The result now follows
immediately from the previous theorem. �

Remark. If S is a partial quadrangle embedded in AG(4, q), and is of type T ∗

3 (K),
then S ∼= T ∗

3 (O), with O an ovoid in the hyperplane Π∞ at infinity (see Theorem
1.1).

5 Some remarks on the case n > 3

The objective of this final section is to prove that the conclusions of Lemmas 3.4,
3.6, 3.8, 3.9, 3.10 and 3.11 remain valid in the higher dimensional case. We use the
same notations as before and we suppose that n ≥ 4.

Theorem 5.1. There holds that either p2m−2i divides x or that x = 1+ pm−i +dpm

with d ∈ N \ {0}. In the latter case d ≡ 2 (mod p) if p 6= 2 and d is even if p = 2;
furthermore if 4 divides d and k > 1 then i = (m − 1)/2.

Proof. This follows easily from equation (2). Since Un − U ≡ 0 (mod p4m) we
immediately see that the conclusions and proofs of Lemmas 3.4, 3.6, 3.8, 3.9, 3.10
remain valid in the higher dimensional case. In order to see that Lemma 3.11 remains
valid it suffices to notice that if p = 2 there holds that Un − U = 0 (mod p4m+1),
and so also that proof can be copied. �

Conjecture. If S is a semipartial geometry with α > 1, with the property that
S is the linear representation of a non-trivial point set in PG(n, q), n ≥ 4, then
S ∼= T ∗

n(B).

Although the techniques applied to proof this conjecture for n = 3 seem suitable
to attack the general case, the main problems when trying to do so arise from the
fact that k can be larger than m if n ≥ 4.
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