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1 Introduction and Basic Concepts

We assume the reader is familiar with the concepts of a partial linear rank two inci-
dence geometry Γ = (P,L) (also called a point-line geometry) and the Lie incidence
geometries. For the former we refer to articles in [B] and for the latter see the paper
[Co].

The collinearity graph of Γ is the graph (P, ∆) where ∆ consists of all pairs of points
belonging to a common line. For a point x ∈ P we will denote by ∆(x) the collection
of all points collinear with x. For points x, y ∈ P and a positive integer t a path of
length t from x to y is a sequence x0 = x, x1, . . . , xt = y such that {xi, xi+1} ∈ ∆ for
each i = 0, 1, . . . , t− 1. The distance from x to y, denoted by d(x, y) is defined to be
the length of a shortest path from x to y if some path exists and otherwise is +∞.

By a subspace of Γ we mean a subset S such that if l ∈ L and l ∩ S contains
at least two points, then l ⊂ S. (P,L) is said to be Gamma space if, for every
x ∈ P, {x} ∪ ∆(x) is a subspace. A subspace S is singular provided each pair of
points in S is collinear, that is, S is a clique in the collinearity graph of Γ. For a Lie
incidence geometry with respect to a “good node” every singular subspace, together
with the lines it contains, is isomorphic to a projective space, see [Co]. Clearly the
intersection of subspaces is a subspace and consequently it is natural to define the
subspace generated by a subset X of P, 〈X〉Γ, to be the intersection of all subspaces
of Γ which contain X. Note that if (P,L) is a Gamma space and X is a clique then
〈X〉Γ will be a singular subspace.
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1.1 The Grassmannian Geometries

Let F be a field. Let V be a vector space of dimension m over F. For 1 ≤ i ≤ m−1, let
Li(V ) be the collection of all i−dimensional subspaces of V. Now fix j, 2 ≤ j ≤ m−2
and set P = Lj(V ).

For pairs (C, A) of incident subspaces of V with dim(A) = a, dim(C) = c let S(C, A)
consist of all the j−subspaces B of V such that A ⊂ B ⊂ C.

Finally, let L consist of all the sets S(C, A) where dim A = j−1, dim C = j+1. The
rank two incidence geometry (P,L) is the incidence geometry of j−Grassmannians
of V, denoted by Gj(V ). We also use the notation Gm,j(F) for the isomorphism type
of this geometry.

1.2 The Symplectic Grassmannians

Now let W be a space of dimension 2n over the field F, f a non-degenerate alternating
form on W so that (W, f) is a non-degenerate symplectic space. For X ⊂ W let
X⊥ = {w ∈ W : f(x, w) = 0, ∀x ∈ X}. Recall that a subspace U of W is totally
isotropic if U ⊂ U⊥.

For 1 ≤ k ≤ n, let Ik consist of all totally isotropic k−dimensional subspaces of W.
Fix k with 2 ≤ k ≤ n − 1 and set P = Ik. For a pair of subspaces C ⊂ D ⊂ C⊥ (so
C is totally isotropic) where dim C = c < k < d = D = d let T (D, C) consist of
all the k−dimensional totally isotropic subspaces U such that C ⊂ U ⊂ D. When
c = k − 1, d = k + 1 we set l(D, C) = T (D, C) and set L = {l(D, C) : C ⊂ D,
dim C = k − 1, dim D = k + 1}. In this way we obtain another rank 2 incidence
geometry G = (P, L) which we refer to as the symplectic k−Grassmannians of W.
We denote the isomorphism type of this geometry by Cn,k(F). Note that two totally
isotropic k−subspaces are on a line if they span a totally isotropic k+1 dimensional
totally isotropic subspace. We remark that the automorphism group of the geometry
(P, L) is isomorphic to PSP2n(F).

1.3 Grassmannian Subspaces of Symplectic Grassmannians

When E ⊂ F ⊂ W, dim E = e, dim F = f satisfy e < k−1, f > k+1 with E, F to-
tally isotropic, the collection T (E, F ) is a subspace of (P, L) and is isomorphic to an
ordinary Grassmannian geometry Gf−e,k−e(F). Such a subspace is called “parabolic”
since the stablizer in Aut(P, L) is a parabolic subgroup of Aut(P, L). It is natural
to ask: Is every subspace of Cn,k(F) which is isomorphic to some Gm,j(F) parabolic?

Actually, this is not quite the case as the following example demonstrates:

Assume char(F) = 2 and n − k ≥ 2. Let U be a totally isotropic subspace of
dimension k−1. Then T (U⊥, U) is a subspace of G and is isomorphic to a symplectic
polar space of rank n− k + 1 ≥ 3, Cn−k+1,1(F). Since the characteristic is two this is
isomorphic to the orthogonal polar space, Bn−k+1,1(F) (the space of singular points
and totally singular lines in a non-singular orthogonal space on a vector space of
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dimension 2(n − k + 1) + 1. In turn this contains subspaces which are isomorphic
to the hyperbolic orthogonal space on a vector space of dimension six, D3,1(F).
However, this is isomorphic to G4,2(F) via the Klein correspondence. As we shall
show in our main theorem, apart from the parabolic subspaces, these are the only
other examples of Grassmannians subspaces of a symplectic Grassmannian:

Main Theorem: Let S be a subspace of Cn,k(F), S ∼= Gm,j(F).

Then either S is parabolic or else char(F) = 2, (m, j) = (4, 2) and S is a subspace
of T (U⊥, U) for some totally isotropic subspace U, dim U = k − 1. Moreover, if Y
is the subspace spanned by all the elements of S then dim Y/U = 6.

Before proceeding to the proofs we introduce some notation:

Notation: Since we will generate all kinds of subspaces, of W the symplectic space,
of the geometry (P, L), etc. we need to distinguish between these. When X is some
collection of subspaces or vectors from W we will denote the subspace of W spanned
by X by 〈X〉F. When X is a subset of P we will denote the subspace (P, L) generated
by X by 〈X〉G. And, when X is a subset of (P,L) we will denote the subspace of
this geometry generated by X by 〈X〉Γ.

For a point p ∈ P we will denote by ∆(x) the collection of all points of P which
are collinear with x in (P, L) (including p). For a point p ∈ P we will use γ(p) to
indicate the points of P where are collinear with p.

2 Properties of Grassmannians

In this short section we recall some properties of a Grassmannian incidence geometry
Gj(V ) ∼= Gm,j(F). We omit the proofs because they are either well known or entirely
straightforward to prove.

Lemma 2.1. i) There are two classes of maximal singular subspaces of (P,L) with
representatives S(V, D) where dim D = j − 1 and S(E, 0) where dim E = j + 1.
S(V, D) ∼= PGm−j(F) and S(E, 0) ∼= PGj(F). Those of the first class will be referred
to as type one and the second class as type two.

ii) If M1 and M2 are maximal singular subspaces and M1 ∩ M2 is a line then M1

and M2 are in different classes. If M1 ∩ M2 is a point then they are in the same
class.

Lemma 2.2. Let M be a maximal singular subspace of P of type one. Then 〈M〉F =
V.

Now let U be a hyperplane of V and X a one space of V, X not contained in U. Set
P(U) = {x ∈ P : x ⊂ U} and PX = {x ∈ P : X ⊂ x}.

Lemma 2.3. i) P(U) is a subspace of P and P(U) ∼= Gm−1,j(F).

ii) PX is a subspace of P and PX
∼= Gm−1,j−1(F).
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iii) If x ∈ P(U) then γ(x)∩PX is a maximal singular subspace of PX isomorphic to
PGm−j−1(F). Furthermore, 〈x, γ(x) ∩ PX〉Gm,j

is a maximal singular subspace of P.

iv) If y ∈ PX then γ(y)∩ P(U) is a maximal singular subspace of P(U) isomorphic
to PGj−1(F). Futhermore, 〈y, γ(y)∩P(U)〉Gm,j

is a maximal singular subspace of P.

v) If x1, x2 ∈ P(U) are collinear then γ(x1) ∩ γ(x2) ∩ PX is a point. Similarly, if
y1, y2 ∈ PX are collinear then γ(y1) ∩ γ(y2) ∩ P(U) is a point.

Lemma 2.4. The diameter of the collinearity graph of Gj(V ) is min{j, m− j}. For
x, y ∈ P, d(x, y) = dim (x/x ∩ y) = dim (y/x ∩ y).

3 Properties of Symplectic Grassmannians

In this short section we review some properties of symplectic Grassmannians. As
with the case of ordinary Grassmannians we omit the proofs because these are either
well known or easy to prove.

Lemma 3.1. i) The symplectic Grassmannian space (P, L) ∼= Cn,k(F) has two
classes of maximal singular subspaces with representatives T (B, 0) where B is a
totally isotropic subspace of W, dim B = k + 1, and T (C, A) where A and C are
incident totally isotropic subspaces of W, where dim A = k − 1, dim C = n. In the
former case T (B, 0) ∼= PGk(F) and in the latter T (C, A) ∼= PGn−k(F). We refer to
the first as type one maximal singular subspaces and the latter as type two.

ii) If M1 and M2 are maximal singular subspaces of different types then either M1 ∩
M2 is empty or a line.

iii) If M1 and M2 are type one maximal singular subspaces then M1 ∩ M2 is either
empty or a point.

Definition

A symp of (P, L) is a maximal geodesically closed subspace which is isomorphic to
a polar space.

Lemma 3.2. There are two classes of symps in (P, L). One class has representative
T (E, D) where D ⊂ E are totally isotropic subspaces, dim D = k−2, dim E = k+2.
In this case T (E, D) ∼= D3,1(F) the polar space of a non-degenerate six dimensional
orthogonal space with maximal Witt index. The second class has representative
T (C⊥, C) where C is a totally isotropic subspace, dim C = k − 1. In this case
T (C⊥, C) is isomorphic to the polar space of a non-degenerate symplectic space of
dimension 2(n − k + 1). We refer to the former as a type one symp and the latter
as a type two symp.

Lemma 3.3. There are two classes of points at distance two in G = (P, L). For
one pair (x, y) as subspaces of W, dim (x ∩ y) = k − 2 and x ⊥ y. The unique
symp on {x, y} is T (x + y, x ∩ y). For a representative (x, y) of the second type,
dim (x∩ y) = k − 1 and (x + y)/(x∩ y) is a non-degenerate two space. The unique
symp on such a pair is T ((x ∩ y)⊥, x ∩ y).
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4 Proof of the Main Theorem

In this section we prove our main theorem. Our proof is by induction on N =
n + k + m + min{j, m − j}.

Lemma 4.1. If S ∼= G4,2(F) then the main theorem holds.

Proof: Assume S ∼= G4,2(F). Since S is a polar space it is contained in some symp S
of (P, L). By Lemma (3.2) there are two possibilities for S : either there are totally
isotropic subspaces D ⊂ E, dim D = k − 2, dim E = k + 2 with S = T (E, D) or
there is a totally isotropic subspace C, dim C = k − 1 such that S = T (C⊥, C). In
the former case, since S ∼= T (E, D) we get equality and the main theorem holds. In
the latter case, let U = 〈S〉F a vector subspace of C⊥. The map taking x ∈ S to x/C
is an embedding of the polar space S into PG(U/C). Since S is strongly hyperbolic
(see [CS]) it follows that dim U/C = 6. Because we have an embedding from the
orthogonal polar space S into the symplectic polar space T (C⊥, C) it must also be
the case that char(F) = 2 which is one of the conclusions of the theorem. �

Lemma 4.2. Assume that min{j, m − j} = 2. Then the theorem holds.

Proof: Let S ′ be a subspace of S, S ′ ∼= G5,2(F) and let D be a symp of S ′. Since
D is a polar space it is contained in a symp of G. Suppose D is contained in a
type two symp T (C⊥, C), C a totally isotropic subspace of W, dim C = k − 1. Now
for every point x ∈ S ′ \ D, ∆(x) ∩ D is a maximal singular subspace of D (and
isomorphic to PG2(F)). The subspace ∆(x) ∩ D ⊂ T (C⊥, C) is a projective plane.
Let M be a maximal singular subspace of T (C⊥, C) containing ∆(x) ∩ D. Then it
follows from Lemma (3.1) that M is a type two maximal singular subspace of G.
Now by Lemma (3.1) (ii), x ∈ M ⊂ T (C⊥, C). Since the point x ∈ S ′ \ D was
arbitrary, it follows S ′ ⊂ T (C⊥, C). However, since S ′ is not a polar space we have
a contradiction.

As a consequence of this argument, all the symps of S are type one symps of G. From
this it follows that if x, y ∈ S, d(x, y) = 2 then as subspaces of W we have x ⊥ y
by Lemma (3.3). Since the diameter of S is two by Lemma (2.4) it then follows
that Y = 〈S〉F is a totally isotropic subspace of W. Consequently, S ⊂ T (Y, 0). By
Theorem (2.15) of [CKS] it follows that S is parabolic and the theorem holds. �

The completion of the proof

It now follows that we may assume that m ≥ 6 and min{j, m− j} ≥ 3. We continue
with the notation of the introduction where V was introduced as an m− dimensional
vector space and (P,L) is the Grassmannian geometry of j−dimensional subspaces
of V. Let τ : P → S be an isomorphism of geometries. As in section two let U
be a hyperplane of V and X a one-dimensional subspace of V such that X is not
contained in U and set P(U) = {x ∈ P : x ⊂ U} and PX = {x ∈ P : X ⊂ x}. Also,
set S1 = τ(P(U)) and S2 = τ(PX).
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Since S1
∼= Gm−1,j(F) and (m − 1) + min{j, m − 1 − j} < m + min{j, m − j} it

follows by our induction hypothesis that S1 = T (B1, A1) where A1 ⊂ B1 are totally
isotropic subspaces with dim A1 = a1, dim B1 = b1 and m− 1 = b1 − a1, j = k− a1.

Similarly, since S2
∼= Gm−1,j−1(F) and (m − 1) + min{j − 1, (m − 1) − (j − 1)} <

m+min{j, m−j} it follows that S2 = T (B2, A2) where A2 ⊂ B2 are totally isotropic
subspaces with dim A2 = a2, dim B2 = b2 and m − 1 = b2 − a2, j − 1 = k − a2.

Let x ∈ S1, y ∈ S2, x, y collinear. Then by Lemma (2.3), U1 = 〈x, S2 ∩ ∆(x)〉G and
U2 = 〈y, S1 ∩ ∆(x)〉G are maximal singular subspaces of S which meet in a line.

Let Mi be a maximal singular subspace of P containing Ui, i = 1, 2. Then M1 and
M2 come from different classes of G by Lemma (3.1). Consequently, at least one
of M1, M2 is of type 2. For the sake of argument, assume M1 is of type 2. Then
there is a maximal totally isotropic subspace B and a (k−1)−dimensional subspace
A ⊂ B such that M1 = T (B, A).

M1 ∩ S2 = T (B, A) ∩ T (B2, A2) = S2 ∩ ∆(x) is a maximal singular subspace of S2.
It follows that B2 ⊂ B and that M1 ∩ S2 = T (B2, A). Then B2 = 〈M1 ∩ S2〉F =
〈S2 ∩ ∆(x)〉F by Lemma (2.2) which implies that B2 ⊂ x⊥ since y′ ∈ ∆(x) implies
x ⊥ y′.

Now assume that x′ ∈ S1 such that x′, x are collinear. Then by Lemma (2.3) it
follows that S2 ∩ ∆(x) and S2 ∩ ∆(x′) are in the same class of maximal singular
subspaces of S2. Therefore it also follows that B2 ⊂ (x′)⊥.

Since the collinearity graph of S1 is connected, it follows that for all z ∈ S1, B2 ⊂ z⊥.
Since 〈S1〉F = B1 we have B1 ⊥ B2.

Set D = B1 + B2, a totally isotropic subspace. Now S1, S2 ⊂ T (D, 0). Since
〈S1, S2〉G = S (as follows from [BB], [CoSh], [RS]), it follows that S ⊂ T (D, 0),
for, if x, y are collinear points of P and x, y ⊂ D, then for every z ∈ T (x + y, x∩ y)
also z ⊂ D. Now we are done by Theorem (2.15) of [CKS].
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