# Minimal covering of all chords of a conic in PG(2,q), q even

A. Aguglia<sup>\*</sup> G. Korchmáros <sup>\*</sup> A. Siciliano <sup>\*</sup>

#### Abstract

In this paper we determine the minimal blocking sets of chords of an irreducible conic C in the desarguesian projective plane PG(2,q), q even. Similar results on blocking sets of external lines, as well as of nonsecant lines, are given in [1], [3], and [2].

### 1 Introduction

In this paper a purely combinatorial question concerning a conic  $\mathcal{C}$  in PG(2,q) with q even, is investigated, namely the classification of all point sets of minimum size in PG(2,q) that meet every chord of  $\mathcal{C}$ . It is easy to see that such a point set  $\mathcal{B}$  (also called a *minimal blocking set of chords* of  $\mathcal{C}$ ) has size q. Now, we describe a procedure for the construction of minimal blocking sets of chords. Assume that the conic  $\mathcal{C}$  has (affine) equation  $Y = X^2$ , that is,  $\mathcal{C}$  is a parabola in the affine plane AG(2,q). For every  $a \in GF(q)$ ,

$$\varphi_a: (X, Y) \longrightarrow (X + a, Y + a^2)$$

is a translation of the affine plane AG(2,q). The center of  $\varphi_a$ , viewed as an elation in the projective closure PG(2,q) of AG(2,q), is the infinite point  $B_a = (1, a, 0)$ . The translation group of  $\mathcal{C}$  is  $T = \{\varphi_a \mid a \in GF(q)\}$  and it is isomorphic to the additive group (GF(q), +) of GF(q). Take a subgroup  $G = \{\varphi_a \mid a \in H\}$  of T where H is a subgroup in (GF(q), +), and define  $\Gamma$  to be the set of all centers of all non-trivial translations in G. If  $P = (u, u^2)$  is an affine point in  $\mathcal{C}$ , the orbit of P under G is

Bull. Belg. Math. Soc. 12 (2005), 651-655

<sup>\*</sup>Research supported by the Italian Ministry MURST, Strutture geometriche, combinatoria e loro applicazioni.

 $\Delta_u = \{(a+u, (a+u)^2) \mid a \in H\}$ . Then,  $\mathcal{B}(G, u) = (\mathcal{C} \setminus \Delta_u) \cup \Gamma$  is a blocking set of chords of  $\mathcal{C}$ .

The following theorem is the main result in the present paper.

**Theorem 1.1.** Let C be an irreducible conic of PG(2,q), with  $q = 2^h$ , and let  $\mathcal{L}$  be the set of all chords of C. Any point set  $\mathcal{B}$  of PG(2,q) meeting every line of  $\mathcal{L}$  has size at least q. If equality holds then  $\mathcal{B} = \mathcal{B}(G, u)$  for some  $\mathcal{B}(G, u)$  arising from an additive subgroup H of GF(q) as in the above construction.

Two blocking sets of chords are linearly equivalent if there is a linear collineation preserving  $\mathcal{C}$  which sends one to the other. Since T acts transitively on the affine points of  $\mathcal{C}$ , while fixing the infinite line pointwise, there is a translation in Twhich sends  $\mathcal{B}(G, u)$  to  $\mathcal{B}(G, u')$  for any two  $u, u' \in GF(q)$ . So,  $\mathcal{B}(G, u)$  and  $\mathcal{B}(G, u')$ are equivalent. Furthermore, for two additive subgroups H and H' of GF(q), the corresponding blocking sets  $\mathcal{B}(G, u)$  and  $\mathcal{B}(G', u)$  are equivalent if and only if there is an affinity preserving  $\mathcal{C}$  which sends  $\Delta$  to  $\Delta'$ . This occurs when G and G' have not only the same order, but they are also conjugate subgroups in the affine group AGL(1,q) of the parabola  $\mathcal{C}$ .

### 2 Proof of Theorem 1.1

We keep the notations defined in the introduction. Furthermore, if A and B are two distinct points, AB stands for the line through them.

We begin by noting that  $\mathcal{B}$  can coincide with  $\mathcal{C}$ , and if this occurs then  $\mathcal{B}$  has size q + 1. We assume that  $\mathcal{C}$  has a point not lying on  $\mathcal{B}$ . If  $A \in \mathcal{C} \setminus \mathcal{B}$  then every chord of  $\mathcal{C}$  through A meets  $\mathcal{B}$  in some point. Since distinct chords through A meet  $\mathcal{B}$  in distinct points,  $|\mathcal{B}| \geq q$  follows.

From now on, we assume that the size of  $\mathcal{B}$  attains the lower bound. Since each point outside  $\mathcal{C}$  and different from its nucleus lies on exactly  $\frac{1}{2}q$  chords of  $\mathcal{C}$ , any point set of size q which is disjoint from  $\mathcal{C}$  meets at most  $\frac{1}{2}q^2$  chords. Hence  $\mathcal{B}$  contains some point from  $\mathcal{C}$ .

Therefore,  $\mathcal{B}$  splits into two non-empty subsets, namely  $\Gamma = \mathcal{B} \setminus \mathcal{C}$  and  $\Sigma = \mathcal{B} \cap \mathcal{C}$ . Set  $\Delta = \mathcal{C} \setminus \Sigma$ . Note that every chord of  $\Delta$  meets  $\Gamma$ , and that  $|\Gamma| = |\Delta| - 1$ . Since  $\mathcal{B}$  has size q, a counting argument shows that

(\*) every chord of  $\Delta$  meets  $\mathcal{B}$  in exactly one point.

Now, fix one point A of  $\Delta$  and consider the  $|\Delta| - 1$  secants through A. They all contain one point of  $\Gamma$ . Since  $|\Gamma| = |\Delta| - 1$ , and since all secants to C through A contain precisely one point of  $\mathcal{B}$ , it follows that a point of  $\Gamma$  only lies on secants to  $\Delta$ . This implies that  $|\Delta|$  is even.

It is easily seen that if  $|\Delta| < 4$ , then either

- (i)  $\mathcal{B}$  consists of all points of  $\mathcal{C}$  minus one;
- (ii)  $\mathcal{B}$  arises from  $\mathcal{C}$  and a chord r of  $\mathcal{C}$  by replacing their two common points by a point of r outside  $\mathcal{C}$ .

From now on we assume  $|\Delta| \ge 4$ .

**Lemma 2.1.** Let  $A_1$ ,  $A_2$ ,  $A_3$  be distinct points of  $\Delta$ . Then the points  $B_1 = \Gamma \cap A_2 A_3$ ,  $B_2 = \Gamma \cap A_1 A_3$  and  $B_3 = \Gamma \cap A_1 A_2$  are collinear.

**Proof.** This proof follows the idea introduced by B. Segre in [5]. We choose a homogeneous coordinate system in such a way that  $A_1 = (1, 0, 0), A_2 = (0, 1, 0)$  and  $A_3 = (0, 0, 1)$ . Then

$$B_1 = (0, b_1, 1), B_2 = (1, 0, b_2), B_3 = (b_3, 1, 0),$$

for some  $b_1, b_2, b_3 \in GF(q)$  with  $b_1b_2b_3 \neq 0$ .

Let  $P = (p_0, p_1, p_2)$  be a point of  $\mathcal{B}$  other than  $B_1, B_2, B_3$ . Then lines through P and the  $A_i$ 's are respectively

$$X_2 = \alpha_P X_3, \qquad \qquad X_3 = \beta_P X_1 \qquad \qquad X_1 = \gamma_P X_2.$$

where  $\alpha_P = p_1/p_2$ ,  $\beta_P = p_2/p_0$ ,  $\gamma_P = p_0/p_1$  and so, by Ceva's Theorem,

$$\alpha_P \beta_P \gamma_P = 1. \tag{1}$$

Let  $\tau_1 : X_2 = t_1 X_3$ ,  $\tau_2 : X_3 = t_2 X_1$  and  $\tau_3 : X_1 = t_3 X_2$  be the tangents to C at the points  $A_i$ . For P in  $\mathcal{B}$  other than  $B_1, B_2, B_3$ , the coefficients  $\alpha_P$  of the q-3 lines through  $A_1$  and P assume exactly once all non-zero values in GF(q) other than  $t_1$  and  $b_1$ . The product of all the non-zero elements of GF(q) is -1, so

$$t_1 b_1 \prod_P \alpha_P = -1. \tag{2}$$

Similarly, for the q-3 lines through  $A_2$  and  $A_3$  other than the sides of the triangle of reference and the tangents  $t_2$  and  $t_3$ ,  $t_2b_2\prod_P\beta_P = -1$  and  $t_3b_3\prod_P\gamma_P = -1$ . Hence,

$$t_1 t_2 t_3 b_1 b_2 b_2 \prod_P \alpha_P \beta_P \gamma_P = (-1)^3 = -1.$$

Since,  $\alpha_P \beta_P \gamma_P = 1$  for each P by (1), then

$$t_1b_1t_2b_2t_3b_3 = 1.$$

Furthermore, as q is even, the tangent lines  $\tau_1$ ,  $\tau_2$ ,  $\tau_3$  are concurrent at the nucleus of C. Thus  $t_1t_2t_3 = 1$ . Therefore,  $b_1b_2b_3 = -1 = 1$  and this implies that the points  $B_1$ ,  $B_2$ ,  $B_3$  are collinear.

Now, we assume that  $\Gamma$  contains two points  $B_1$ ,  $B_2$  not lying on the same tangent to  $\mathcal{C}$ . Since  $\mathcal{B}$  is a blocking set with respect to the chords of  $\mathcal{C}$ , some chord  $\ell$  of  $\Delta$ passes through  $B_1$ . Let  $A_2$ ,  $A_3$  denote the common points of  $\ell$  and  $\Delta$ . The line  $B_2A_3$ necessarily meets  $\Delta$  in a further point  $A_1$ . Let  $B_3$  be the common point of  $\Gamma$  and the line  $A_1A_2$ . By Lemma 2.1,  $B_1, B_2, B_3$  are collinear points.

We say that the triangle  $A_1A_2A_3$  is associated with the pair  $\{B_1, B_2\}$ . Furthermore, we note that for every chord  $\ell$  of  $\Delta$  through  $B_1$  there are two distinct triangles associated with  $\{B_1, B_2\}$  and sharing  $\ell$ , according as the point  $A_1$  arises from the line  $B_2A_3$  or from  $B_2A_2$ .

We first prove that different triangles associated with  $\{B_1, B_2\}$  define different points in  $\Gamma$  on the line  $B_1B_2$ . Let  $A_1^*A_2^*A_3^*$  be a triangle associated with  $\{B_1, B_2\}$  and different from  $A_1A_2A_3$ such that  $B_3^* = A_1^*A_2^* \cap \Gamma = A_1A_2 \cap \Gamma = B_3$ . There are three possibilities.

case (1): The triangles  $A_1A_2A_3$  and  $A_1^*A_2^*A_3^*$  have no common vertex.

By Desargues' Theorem the lines  $A_1A_1^*$ ,  $A_2A_2^*$ ,  $A_3A_3^*$  are concurrent at a point V which is neither on  $\mathcal{C}$  nor the nucleus of  $\mathcal{C}$ .

Let *h* denote the involutory perspectivity with center *V* which preserves *C*. Since *h* sends  $A_i$  to  $A_i^*$  for i = 1, 2, 3, it turns out that *h* fixes  $B_1$ ,  $B_2$  and  $B_3$ . As *q* is even, *h* is an elation and its axis is a tangent line *t* to *C*. Since the fixed points of *h* lie on *t*, it turns out that both  $B_1$  and  $B_2$  lie on *t*, a contradiction.

case (2): The triangles  $A_1A_2A_3$  and  $A_1^*A_2^*A_3^*$  share one side.

We suppose that  $A_2A_3 = A_2^*A_3^*$ . Therefore  $B_2 \in A_1A_3 \cap A_1^*A_2$  and  $B_3 \in A_1A_2 \cap A_1^*A_3$ . As q is even, the diagonal points of the complete quadrilateral  $A_1A_2A_3A_1^*$  are collinear, see Thm. 2.24 in [4] pag. 43, and hence, we get  $B_1 \in A_2A_3 \cap A_1A_1^*$ . Let h be the involutory perspectivity preserving  $\mathcal{C}$  with center at one of the diagonal points, say  $B_1$ . As before h is an elation whose axis is the tangent t to  $\mathcal{C}$  through  $B_1$ . Since the points  $B_2$  and  $B_3$  are also fixed by h, it follows that  $B_1$  and  $B_2$  must lie on t, a contradiction.

case (3): The triangles  $A_1A_2A_3$  and  $A_1^*A_2^*A_3^*$  have a common vertex.

We may assume  $A_2 = A_2^*$ . Then, also  $A_3 = A_3^*$  and we are in the case (2). Therefore distinct triangles associated with the same pair  $\{B_1, B_2\}$  define distinct points in  $B_1B_2 \cap \Gamma$  other than  $B_1$  and  $B_2$ . Since through  $B_1$  there are  $|\Delta|/2$  chords of  $\Delta$ , we get at least  $|\Delta| + 2$  distinct points in  $\Gamma$ , a contradiction. Hence, the points in  $\Gamma$  are collinear and lie on the tangent to C through  $B_1$ .

We now show that the points in  $\Gamma$  are the centers of the non-trivial elations of a group of elations fixing C and fixing  $\Delta$ . We choose a homogeneous coordinate system in such a way that C has equation  $X_2X_3 = X_1^2$  and that the line  $B_1B_2$  is the infinite line  $\ell_{\infty}$ :  $X_3 = 0$ .

Let  $B_a = (1, a, 0)$  be a point in  $\ell_{\infty}$  with  $a \in GF(q)$ . We denote by  $\varphi_a$  the elation with center at  $B_a$  preserving  $\mathcal{C}$  which maps the point  $(t, t^2, 1) \in \mathcal{C}$  to the point  $(t + a, t^2 + a^2, 1) \in \mathcal{C}$ . Let  $G = \{\varphi_a | \Delta^{\varphi_a} = \Delta\}$ .

Clearly, a non-trivial elation  $\varphi_a$  is in G if and only if  $B_a = (1, a, 0)$  is in  $\Gamma$ . We show that for each  $B_a, B_b \in \Gamma$ , the elation  $\varphi_a \circ \varphi_b$  has center in  $\Gamma$ . In fact  $\varphi_a \circ \varphi_b$  maps the point  $(t, t^2, 1) \in \Delta$  to the point  $(t + a + b, t^2 + a^2 + b^2, 1) \in \Delta$ , whence  $\varphi_a \circ \varphi_b = \varphi_{a+b}$ .

Therefore, the points in  $\Gamma$  are the centers of the non-trivial elations of a group of elations fixing  $\mathcal{C}$  and fixing  $\Delta$ , and G is a group of order  $|\Gamma| + 1$ , isomorphic to a subgroup of the additive group (GF(q), +). More precisely, G is an elementary abelian group of order  $2^s$ , for some  $s \leq h$ .

## References

- [1] A. Aguglia, G. Korchmáros, Blocking sets of external lines to a conic in PG(2,q), q odd, to appear in Combinatorica.
- [2] A. Aguglia, G. Korchmáros, Blocking sets of nonsecants lines to a conic in PG(2,q), q odd, to appear in J. Combin. Des.
- [3] M. Giulietti, Blocking sets of external lines to a conic in PG(2,q), q even, submitted.
- [4] D.R. Hughes, F.C. Piper, *Projective Planes*, Springer Verlag, 1982.
- [5] B. Segre, Ovals in a finite projective plane, Canad. J. Math. 7 (1955), 414–416.

Angela AGUGLIA Dipartimento di Matematica Politecnico di Bari Via Amendola 70126 Bari (Italy). E-mail: aguglia@dm.uniba.it Gábor KORCHMÁROS Dipartimento di Matematica Università della Basilicata Contrada Macchia Romana 85100 Potenza (Italy). E-mail: korchmaros@unibas.it

Alessandro SICILIANO Dipartimento di Matematica Università della Basilicata Contrada Macchia Romana 85100 Potenza (Italy). E-mail: sicilian@pzmath.unibas.it