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A. Aguglia∗ G. Korchmáros ∗ A. Siciliano ∗

Abstract

In this paper we determine the minimal blocking sets of chords of an irre-
ducible conic C in the desarguesian projective plane PG(2, q), q even. Similar
results on blocking sets of external lines, as well as of nonsecant lines, are
given in [1], [3], and [2].

1 Introduction

In this paper a purely combinatorial question concerning a conic C in PG(2, q) with
q even, is investigated, namely the classification of all point sets of minimum size
in PG(2, q) that meet every chord of C. It is easy to see that such a point set B
(also called a minimal blocking set of chords of C) has size q. Now, we describe a
procedure for the construction of minimal blocking sets of chords. Assume that the
conic C has (affine) equation Y = X2, that is, C is a parabola in the affine plane
AG(2, q). For every a ∈ GF (q),

ϕa : (X, Y ) −→ (X + a, Y + a2)

is a translation of the affine plane AG(2, q). The center of ϕa, viewed as an elation in
the projective closure PG(2, q) of AG(2, q), is the infinite point Ba = (1, a, 0). The
translation group of C is T = {ϕa | a ∈ GF (q)} and it is isomorphic to the additive
group (GF (q), +) of GF (q). Take a subgroup G = {ϕa | a ∈ H} of T where H is
a subgroup in (GF (q), +), and define Γ to be the set of all centers of all non-trivial
translations in G. If P = (u, u2) is an affine point in C, the orbit of P under G is
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∆u = {(a + u, (a + u)2) | a ∈ H}. Then, B(G, u) = (C \ ∆u) ∪ Γ is a blocking set of
chords of C.

The following theorem is the main result in the present paper.

Theorem 1.1. Let C be an irreducible conic of PG(2, q), with q = 2h, and let L be

the set of all chords of C. Any point set B of PG(2, q) meeting every line of L has

size at least q. If equality holds then B = B(G, u) for some B(G, u) arising from an

additive subgroup H of GF (q) as in the above construction.

Two blocking sets of chords are linearly equivalent if there is a linear collinea-
tion preserving C which sends one to the other. Since T acts transitively on the
affine points of C, while fixing the infinite line pointwise, there is a translation in T
which sends B(G, u) to B(G, u′) for any two u, u′ ∈ GF (q). So, B(G, u) and B(G, u′)
are equivalent. Furthermore, for two additive subgroups H and H ′ of GF (q), the
corresponding blocking sets B(G, u) and B(G′, u) are equivalent if and only if there
is an affinity preserving C which sends ∆ to ∆′. This occurs when G and G′ have
not only the same order, but they are also conjugate subgroups in the affine group
AGL(1, q) of the parabola C.

2 Proof of Theorem 1.1

We keep the notations defined in the introduction. Furthermore, if A and B are two
distinct points, AB stands for the line through them.

We begin by noting that B can coincide with C, and if this occurs then B has
size q + 1. We assume that C has a point not lying on B. If A ∈ C \ B then every
chord of C through A meets B in some point. Since distinct chords through A meet
B in distinct points, |B| ≥ q follows.

From now on, we assume that the size of B attains the lower bound. Since each
point outside C and different from its nucleus lies on exactly 1

2
q chords of C, any

point set of size q which is disjoint from C meets at most 1

2
q2 chords. Hence B

contains some point from C.
Therefore, B splits into two non-empty subsets, namely Γ = B\C and Σ = B∩C.

Set ∆ = C \ Σ. Note that every chord of ∆ meets Γ, and that |Γ| = |∆| − 1. Since
B has size q, a counting argument shows that

(∗) every chord of ∆ meets B in exactly one point.

Now, fix one point A of ∆ and consider the |∆| − 1 secants through A. They all
contain one point of Γ. Since |Γ| = |∆| − 1, and since all secants to C through A
contain precisely one point of B, it follows that a point of Γ only lies on secants to
∆. This implies that |∆| is even.

It is easily seen that if |∆| < 4, then either

(i) B consists of all points of C minus one;

(ii) B arises from C and a chord r of C by replacing their two common points by
a point of r outside C.

From now on we assume |∆| ≥ 4.
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Lemma 2.1. Let A1, A2, A3 be distinct points of ∆. Then the points B1 = Γ∩A2A3,

B2 = Γ ∩ A1A3 and B3 = Γ ∩ A1A2 are collinear.

Proof. This proof follows the idea introduced by B. Segre in [5]. We choose a
homogeneous coordinate system in such a way that A1 = (1, 0, 0), A2 = (0, 1, 0) and
A3 = (0, 0, 1). Then

B1 = (0, b1, 1), B2 = (1, 0, b2), B3 = (b3, 1, 0),

for some b1, b2, b3 ∈ GF (q) with b1b2b3 6= 0.
Let P = (p0, p1, p2) be a point of B other than B1, B2, B3. Then lines through P

and the Ai’s are respectively

X2 = αP X3, X3 = βP X1 X1 = γP X2,

where αP = p1/p2, βP = p2/p0, γP = p0/p1 and so, by Ceva’s Theorem,

αP βPγP = 1. (1)

Let τ1 : X2 = t1X3, τ2 : X3 = t2X1 and τ3 : X1 = t3X2 be the tangents to C at
the points Ai. For P in B other than B1, B2, B3, the coefficients αP of the q−3 lines
through A1 and P assume exactly once all non-zero values in GF (q) other than t1
and b1. The product of all the non-zero elements of GF (q) is −1, so

t1b1

∏

P

αP = −1. (2)

Similarly, for the q−3 lines through A2 and A3 other than the sides of the triangle
of reference and the tangents t2 and t3, t2b2

∏
P βP = −1 and t3b3

∏
P γP = −1.

Hence,
t1t2t3b1b2b2

∏

P

αP βPγP = (−1)3 = −1.

Since, αPβP γP = 1 for each P by (1), then

t1b1t2b2t3b3 = 1.

Furthermore, as q is even, the tangent lines τ1, τ2, τ3 are concurrent at the nucleus
of C. Thus t1t2t3 = 1. Therefore, b1b2b3 = −1 = 1 and this implies that the points
B1, B2, B3 are collinear. �

Now, we assume that Γ contains two points B1, B2 not lying on the same tangent
to C. Since B is a blocking set with respect to the chords of C, some chord ℓ of ∆
passes through B1. Let A2, A3 denote the common points of ℓ and ∆. The line B2A3

necessarily meets ∆ in a further point A1. Let B3 be the common point of Γ and
the line A1A2. By Lemma 2.1, B1, B2, B3 are collinear points.

We say that the triangle A1A2A3 is associated with the pair {B1, B2}. Further-
more, we note that for every chord ℓ of ∆ through B1 there are two distinct triangles
associated with {B1, B2} and sharing ℓ, according as the point A1 arises from the
line B2A3 or from B2A2.

We first prove that different triangles associated with {B1, B2} define different
points in Γ on the line B1B2 .
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Let A∗

1A
∗

2A
∗

3 be a triangle associated with {B1, B2} and different from A1A2A3

such that B∗

3 = A∗

1A
∗

2 ∩ Γ = A1A2 ∩ Γ = B3. There are three possibilities.

case (1): The triangles A1A2A3 and A∗

1A
∗

2A
∗

3 have no common vertex.

By Desargues’ Theorem the lines A1A
∗

1, A2A
∗

2, A3A
∗

3 are concurrent at a point
V which is neither on C nor the nucleus of C.

Let h denote the involutory perspectivity with center V which preserves C. Since
h sends Ai to A∗

i for i = 1, 2, 3, it turns out that h fixes B1, B2 and B3. As q is
even, h is an elation and its axis is a tangent line t to C. Since the fixed points of h
lie on t, it turns out that both B1 and B2 lie on t, a contradiction.

case (2): The triangles A1A2A3 and A∗

1A
∗

2A
∗

3 share one side.

We suppose that A2A3 = A∗

2A
∗

3. Therefore B2 ∈ A1A3 ∩A∗

1A2 and B3 ∈ A1A2 ∩
A∗

1A3. As q is even, the diagonal points of the complete quadrilateral A1A2A3A
∗

1 are
collinear, see Thm. 2.24 in [4] pag. 43, and hence, we get B1 ∈ A2A3 ∩ A1A

∗

1. Let
h be the involutory perspectivity preserving C with center at one of the diagonal
points, say B1. As before h is an elation whose axis is the tangent t to C through
B1. Since the points B2 and B3 are also fixed by h, it follows that B1 and B2 must
lie on t, a contradiction.

case (3): The triangles A1A2A3 and A∗

1A
∗

2A
∗

3 have a common vertex .

We may assume A2 = A∗

2. Then, also A3 = A∗

3 and we are in the case (2).
Therefore distinct triangles associated with the same pair {B1, B2} define distinct
points in B1B2 ∩ Γ other than B1 and B2. Since through B1 there are |∆|/2 chords
of ∆, we get at least |∆|+ 2 distinct points in Γ, a contradiction. Hence, the points
in Γ are collinear and lie on the tangent to C through B1.

We now show that the points in Γ are the centers of the non-trivial elations of
a group of elations fixing C and fixing ∆. We choose a homogeneous coordinate
system in such a way that C has equation X2X3 = X2

1 and that the line B1B2 is the
infinite line ℓ∞: X3 = 0.

Let Ba = (1, a, 0) be a point in ℓ∞ with a ∈ GF (q). We denote by ϕa the elation
with center at Ba preserving C which maps the point (t, t2, 1) ∈ C to the point
(t + a, t2 + a2, 1) ∈ C. Let G = {ϕa|∆

ϕa = ∆}.
Clearly, a non-trivial elation ϕa is in G if and only if Ba = (1, a, 0) is in Γ. We

show that for each Ba, Bb ∈ Γ, the elation ϕa ◦ ϕb has center in Γ. In fact ϕa ◦ ϕb

maps the point (t, t2, 1) ∈ ∆ to the point (t + a + b, t2 + a2 + b2, 1) ∈ ∆, whence
ϕa ◦ ϕb = ϕa+b.

Therefore, the points in Γ are the centers of the non-trivial elations of a group
of elations fixing C and fixing ∆, and G is a group of order |Γ| + 1, isomorphic to
a subgroup of the additive group (GF(q), +). More precisely, G is an elementary
abelian group of order 2s, for some s ≤ h.
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