Minimal covering of all chords of a conic in $P G(2, q), q$ even

A. Aguglia* G. Korchmáros * A. Siciliano *

Abstract

In this paper we determine the minimal blocking sets of chords of an irreducible conic \mathcal{C} in the desarguesian projective plane $P G(2, q), q$ even. Similar results on blocking sets of external lines, as well as of nonsecant lines, are given in [1], [3], and [2].

1 Introduction

In this paper a purely combinatorial question concerning a conic \mathcal{C} in $P G(2, q)$ with q even, is investigated, namely the classification of all point sets of minimum size in $P G(2, q)$ that meet every chord of \mathcal{C}. It is easy to see that such a point set \mathcal{B} (also called a minimal blocking set of chords of \mathcal{C}) has size q. Now, we describe a procedure for the construction of minimal blocking sets of chords. Assume that the conic \mathcal{C} has (affine) equation $Y=X^{2}$, that is, \mathcal{C} is a parabola in the affine plane $A G(2, q)$. For every $a \in G F(q)$,

$$
\varphi_{a}:(X, Y) \longrightarrow\left(X+a, Y+a^{2}\right)
$$

is a translation of the affine plane $A G(2, q)$. The center of φ_{a}, viewed as an elation in the projective closure $P G(2, q)$ of $A G(2, q)$, is the infinite point $B_{a}=(1, a, 0)$. The translation group of \mathcal{C} is $T=\left\{\varphi_{a} \mid a \in G F(q)\right\}$ and it is isomorphic to the additive group $(G F(q),+)$ of $G F(q)$. Take a subgroup $G=\left\{\varphi_{a} \mid a \in H\right\}$ of T where H is a subgroup in $(G F(q),+)$, and define Γ to be the set of all centers of all non-trivial translations in G. If $P=\left(u, u^{2}\right)$ is an affine point in \mathcal{C}, the orbit of P under G is

[^0]$\Delta_{u}=\left\{\left(a+u,(a+u)^{2}\right) \mid a \in H\right\}$. Then, $\mathcal{B}(G, u)=\left(\mathcal{C} \backslash \Delta_{u}\right) \cup \Gamma$ is a blocking set of chords of \mathcal{C}.

The following theorem is the main result in the present paper.
Theorem 1.1. Let \mathcal{C} be an irreducible conic of $P G(2, q)$, with $q=2^{h}$, and let \mathcal{L} be the set of all chords of \mathcal{C}. Any point set \mathcal{B} of $P G(2, q)$ meeting every line of \mathcal{L} has size at least q. If equality holds then $\mathcal{B}=\mathcal{B}(G, u)$ for some $\mathcal{B}(G, u)$ arising from an additive subgroup H of $G F(q)$ as in the above construction.

Two blocking sets of chords are linearly equivalent if there is a linear collineation preserving \mathcal{C} which sends one to the other. Since T acts transitively on the affine points of \mathcal{C}, while fixing the infinite line pointwise, there is a translation in T which sends $\mathcal{B}(G, u)$ to $\mathcal{B}\left(G, u^{\prime}\right)$ for any two $u, u^{\prime} \in G F(q)$. So, $\mathcal{B}(G, u)$ and $\mathcal{B}\left(G, u^{\prime}\right)$ are equivalent. Furthermore, for two additive subgroups H and H^{\prime} of $G F(q)$, the corresponding blocking sets $\mathcal{B}(G, u)$ and $\mathcal{B}\left(G^{\prime}, u\right)$ are equivalent if and only if there is an affinity preserving \mathcal{C} which sends Δ to Δ^{\prime}. This occurs when G and G^{\prime} have not only the same order, but they are also conjugate subgroups in the affine group $A G L(1, q)$ of the parabola \mathcal{C}.

2 Proof of Theorem 1.1

We keep the notations defined in the introduction. Furthermore, if A and B are two distinct points, $A B$ stands for the line through them.

We begin by noting that \mathcal{B} can coincide with \mathcal{C}, and if this occurs then \mathcal{B} has size $q+1$. We assume that \mathcal{C} has a point not lying on \mathcal{B}. If $A \in \mathcal{C} \backslash \mathcal{B}$ then every chord of \mathcal{C} through A meets \mathcal{B} in some point. Since distinct chords through A meet \mathcal{B} in distinct points, $|\mathcal{B}| \geq q$ follows.

From now on, we assume that the size of \mathcal{B} attains the lower bound. Since each point outside \mathcal{C} and different from its nucleus lies on exactly $\frac{1}{2} q$ chords of \mathcal{C}, any point set of size q which is disjoint from \mathcal{C} meets at most $\frac{1}{2} q^{2}$ chords. Hence \mathcal{B} contains some point from \mathcal{C}.

Therefore, \mathcal{B} splits into two non-empty subsets, namely $\Gamma=\mathcal{B} \backslash \mathcal{C}$ and $\Sigma=\mathcal{B} \cap \mathcal{C}$. Set $\Delta=\mathcal{C} \backslash \Sigma$. Note that every chord of Δ meets Γ, and that $|\Gamma|=|\Delta|-1$. Since \mathcal{B} has size q, a counting argument shows that
(*) every chord of Δ meets \mathcal{B} in exactly one point.
Now, fix one point A of Δ and consider the $|\Delta|-1$ secants through A. They all contain one point of Γ. Since $|\Gamma|=|\Delta|-1$, and since all secants to \mathcal{C} through A contain precisely one point of \mathcal{B}, it follows that a point of Γ only lies on secants to Δ. This implies that $|\Delta|$ is even.

It is easily seen that if $|\Delta|<4$, then either
(i) \mathcal{B} consists of all points of \mathcal{C} minus one;
(ii) \mathcal{B} arises from \mathcal{C} and a chord r of \mathcal{C} by replacing their two common points by a point of r outside \mathcal{C}.

From now on we assume $|\Delta| \geq 4$.

Lemma 2.1. Let A_{1}, A_{2}, A_{3} be distinct points of Δ. Then the points $B_{1}=\Gamma \cap A_{2} A_{3}$, $B_{2}=\Gamma \cap A_{1} A_{3}$ and $B_{3}=\Gamma \cap A_{1} A_{2}$ are collinear.

Proof. This proof follows the idea introduced by B. Segre in [5]. We choose a homogeneous coordinate system in such a way that $A_{1}=(1,0,0), A_{2}=(0,1,0)$ and $A_{3}=(0,0,1)$. Then

$$
B_{1}=\left(0, b_{1}, 1\right), B_{2}=\left(1,0, b_{2}\right), B_{3}=\left(b_{3}, 1,0\right),
$$

for some $b_{1}, b_{2}, b_{3} \in G F(q)$ with $b_{1} b_{2} b_{3} \neq 0$.
Let $P=\left(p_{0}, p_{1}, p_{2}\right)$ be a point of \mathcal{B} other than B_{1}, B_{2}, B_{3}. Then lines through P and the A_{i} 's are respectively

$$
X_{2}=\alpha_{P} X_{3}, \quad X_{3}=\beta_{P} X_{1} \quad X_{1}=\gamma_{P} X_{2}
$$

where $\alpha_{P}=p_{1} / p_{2}, \beta_{P}=p_{2} / p_{0}, \gamma_{P}=p_{0} / p_{1}$ and so, by Ceva's Theorem,

$$
\begin{equation*}
\alpha_{P} \beta_{P} \gamma_{P}=1 \tag{1}
\end{equation*}
$$

Let $\tau_{1}: X_{2}=t_{1} X_{3}, \tau_{2}: X_{3}=t_{2} X_{1}$ and $\tau_{3}: X_{1}=t_{3} X_{2}$ be the tangents to \mathcal{C} at the points A_{i}. For P in \mathcal{B} other than B_{1}, B_{2}, B_{3}, the coefficients α_{P} of the $q-3$ lines through A_{1} and P assume exactly once all non-zero values in $G F(q)$ other than t_{1} and b_{1}. The product of all the non-zero elements of $G F(q)$ is -1 , so

$$
\begin{equation*}
t_{1} b_{1} \prod_{P} \alpha_{P}=-1 \tag{2}
\end{equation*}
$$

Similarly, for the $q-3$ lines through A_{2} and A_{3} other than the sides of the triangle of reference and the tangents t_{2} and $t_{3}, t_{2} b_{2} \prod_{P} \beta_{P}=-1$ and $t_{3} b_{3} \prod_{P} \gamma_{P}=-1$. Hence,

$$
t_{1} t_{2} t_{3} b_{1} b_{2} b_{2} \prod_{P} \alpha_{P} \beta_{P} \gamma_{P}=(-1)^{3}=-1
$$

Since, $\alpha_{P} \beta_{P} \gamma_{P}=1$ for each P by (1), then

$$
t_{1} b_{1} t_{2} b_{2} t_{3} b_{3}=1
$$

Furthermore, as q is even, the tangent lines $\tau_{1}, \tau_{2}, \tau_{3}$ are concurrent at the nucleus of \mathcal{C}. Thus $t_{1} t_{2} t_{3}=1$. Therefore, $b_{1} b_{2} b_{3}=-1=1$ and this implies that the points B_{1}, B_{2}, B_{3} are collinear.

Now, we assume that Γ contains two points B_{1}, B_{2} not lying on the same tangent to \mathcal{C}. Since \mathcal{B} is a blocking set with respect to the chords of \mathcal{C}, some chord ℓ of Δ passes through B_{1}. Let A_{2}, A_{3} denote the common points of ℓ and Δ. The line $B_{2} A_{3}$ necessarily meets Δ in a further point A_{1}. Let B_{3} be the common point of Γ and the line $A_{1} A_{2}$. By Lemma 2.1, B_{1}, B_{2}, B_{3} are collinear points.

We say that the triangle $A_{1} A_{2} A_{3}$ is associated with the pair $\left\{B_{1}, B_{2}\right\}$. Furthermore, we note that for every chord ℓ of Δ through B_{1} there are two distinct triangles associated with $\left\{B_{1}, B_{2}\right\}$ and sharing ℓ, according as the point A_{1} arises from the line $B_{2} A_{3}$ or from $B_{2} A_{2}$.

We first prove that different triangles associated with $\left\{B_{1}, B_{2}\right\}$ define different points in Γ on the line $B_{1} B_{2}$.

Let $A_{1}^{*} A_{2}^{*} A_{3}^{*}$ be a triangle associated with $\left\{B_{1}, B_{2}\right\}$ and different from $A_{1} A_{2} A_{3}$ such that $B_{3}^{*}=A_{1}^{*} A_{2}^{*} \cap \Gamma=A_{1} A_{2} \cap \Gamma=B_{3}$. There are three possibilities.
case (1): The triangles $A_{1} A_{2} A_{3}$ and $A_{1}^{*} A_{2}^{*} A_{3}^{*}$ have no common vertex.
By Desargues' Theorem the lines $A_{1} A_{1}^{*}, A_{2} A_{2}^{*}, A_{3} A_{3}^{*}$ are concurrent at a point V which is neither on \mathcal{C} nor the nucleus of \mathcal{C}.

Let h denote the involutory perspectivity with center V which preserves \mathcal{C}. Since h sends A_{i} to A_{i}^{*} for $i=1,2,3$, it turns out that h fixes B_{1}, B_{2} and B_{3}. As q is even, h is an elation and its axis is a tangent line t to \mathcal{C}. Since the fixed points of h lie on t, it turns out that both B_{1} and B_{2} lie on t, a contradiction.
case (2): The triangles $A_{1} A_{2} A_{3}$ and $A_{1}^{*} A_{2}^{*} A_{3}^{*}$ share one side.
We suppose that $A_{2} A_{3}=A_{2}^{*} A_{3}^{*}$. Therefore $B_{2} \in A_{1} A_{3} \cap A_{1}^{*} A_{2}$ and $B_{3} \in A_{1} A_{2} \cap$ $A_{1}^{*} A_{3}$. As q is even, the diagonal points of the complete quadrilateral $A_{1} A_{2} A_{3} A_{1}^{*}$ are collinear, see Thm. 2.24 in [4] pag. 43, and hence, we get $B_{1} \in A_{2} A_{3} \cap A_{1} A_{1}^{*}$. Let h be the involutory perspectivity preserving \mathcal{C} with center at one of the diagonal points, say B_{1}. As before h is an elation whose axis is the tangent t to \mathcal{C} through B_{1}. Since the points B_{2} and B_{3} are also fixed by h, it follows that B_{1} and B_{2} must lie on t, a contradiction.
case (3): The triangles $A_{1} A_{2} A_{3}$ and $A_{1}^{*} A_{2}^{*} A_{3}^{*}$ have a common vertex .
We may assume $A_{2}=A_{2}^{*}$. Then, also $A_{3}=A_{3}^{*}$ and we are in the case (2). Therefore distinct triangles associated with the same pair $\left\{B_{1}, B_{2}\right\}$ define distinct points in $B_{1} B_{2} \cap \Gamma$ other than B_{1} and B_{2}. Since through B_{1} there are $|\Delta| / 2$ chords of Δ, we get at least $|\Delta|+2$ distinct points in Γ, a contradiction. Hence, the points in Γ are collinear and lie on the tangent to \mathcal{C} through B_{1}.

We now show that the points in Γ are the centers of the non-trivial elations of a group of elations fixing \mathcal{C} and fixing Δ. We choose a homogeneous coordinate system in such a way that \mathcal{C} has equation $X_{2} X_{3}=X_{1}^{2}$ and that the line $B_{1} B_{2}$ is the infinite line $\ell_{\infty}: X_{3}=0$.

Let $B_{a}=(1, a, 0)$ be a point in ℓ_{∞} with $a \in G F(q)$. We denote by φ_{a} the elation with center at B_{a} preserving \mathcal{C} which maps the point $\left(t, t^{2}, 1\right) \in \mathcal{C}$ to the point $\left(t+a, t^{2}+a^{2}, 1\right) \in \mathcal{C}$. Let $G=\left\{\varphi_{a} \mid \Delta^{\varphi_{a}}=\Delta\right\}$.

Clearly, a non-trivial elation φ_{a} is in G if and only if $B_{a}=(1, a, 0)$ is in Γ. We show that for each $B_{a}, B_{b} \in \Gamma$, the elation $\varphi_{a} \circ \varphi_{b}$ has center in Γ. In fact $\varphi_{a} \circ \varphi_{b}$ maps the point $\left(t, t^{2}, 1\right) \in \Delta$ to the point $\left(t+a+b, t^{2}+a^{2}+b^{2}, 1\right) \in \Delta$, whence $\varphi_{a} \circ \varphi_{b}=\varphi_{a+b}$.

Therefore, the points in Γ are the centers of the non-trivial elations of a group of elations fixing \mathcal{C} and fixing Δ, and G is a group of order $|\Gamma|+1$, isomorphic to a subgroup of the additive group $(\mathrm{GF}(q),+)$. More precisely, G is an elementary abelian group of order 2^{s}, for some $s \leq h$.

References

[1] A. Aguglia, G. Korchmáros, Blocking sets of external lines to a conic in $P G(2, q), q$ odd, to appear in Combinatorica.
[2] A. Aguglia, G. Korchmáros, Blocking sets of nonsecants lines to a conic in $P G(2, q), q$ odd, to appear in J. Combin. Des.
[3] M. Giulietti, Blocking sets of external lines to a conic in $P G(2, q), q$ even, submitted.
[4] D.R. Hughes, F.C. Piper, Projective Planes, Springer Verlag, 1982.
[5] B. Segre, Ovals in a finite projective plane, Canad. J. Math. 7 (1955), 414-416.

Angela AGUGLIA
Dipartimento di Matematica
Politecnico di Bari
Via Amendola
70126 Bari (Italy).
E-mail: aguglia@dm.uniba.it

Gábor KORCHMÁROS
Dipartimento di Matematica
Università della Basilicata
Contrada Macchia Romana
85100 Potenza (Italy).
E-mail: korchmaros@unibas.it

Alessandro SICILIANO

Dipartimento di Matematica
Università della Basilicata
Contrada Macchia Romana
85100 Potenza (Italy).
E-mail: sicilian@pzmath.unibas.it

[^0]: *Research supported by the Italian Ministry MURST, Strutture geometriche, combinatoria e loro applicazioni.

