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Abstract

Lower bounds for the size of a complete partial ovoid in a non-degenerate
Hermitian surface are obtained. For even characteristic, a sharp bound is ob-
tained and all examples of this size are described. Next, a general construction
method for locally hermitian partial ovoids is explained, which leads to inter-
esting small examples. Finally, a conjecture is given for the size of the largest
complete strictly partial ovoid. By using partial derivation, several examples
of complete strictly partial ovoids of this size are provided.

1 Introduction

Let H = H(3, q2) be a Hermitian surface of the projective space PG(3, q2), where q
is any prime power. The lines lying on H are called its generators, and an ovoid of
H is defined to be a point set in H having exactly one common point with every
generator. Thus any ovoid must have q3 + 1 points. Any non-tangent plane of H
cuts out on H a Hermitian curve, which is an ovoid of H called the classical ovoid.
Non-classical ovoids of H were first constructed by Payne and Thas [14], and are
now known to exist in abundance.

A partial ovoid or cap of H is any point set in H which has at most one common
point with every generator. A partial ovoid is called complete if it is not contained
in a larger partial ovoid of H. Since ovoids are known to exist, we will be most
interested in complete strictly partial ovoids; that is, complete partial ovoids which
are not ovoids. In particular, we will be interested in the spectrum of sizes for such
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objects. Examples of complete strictly partial ovoids will be given, and the results
of various computer searches will be reported.

2 Lower Bounds

Let O be a complete partial ovoid of H. Any generator of H which contains no point
of O will be called a free generator of H. If X is a point of H that does not belong
to O, then X must be collinear with at least one point of O, for otherwise O∪{X}
would be a partial ovoid properly containing O, which contradicts the completeness
of O. The number of points of O collinear with X will be called the strength of X.
Note that O is an ovoid of H if and only if all points of H \O have strength q + 1.

Theorem 2.1. Let O be a complete strictly partial ovoid of the Hermitian surface
H = H(3, q2) in Σ = PG(3, q2). Then the number of points in O is at least q2 + 1.

Proof. Let g be a free generator of H, the existence of which follows from the
assumption that O is not an ovoid of H. Let P be a point of g. Then there must
be a generator through P , say gP , whose intersection with O is not empty, since P
has strength at least 1.

Now the set {gP |P ∈ g} consists of q2 +1 skew generators of H as the Hermitian
surface does not contain any triangle. Since each of these generators meets O, we
see that |O| ≥ q2 + 1. �

It should be noted that in [8] it is shown that the above lower bound holds in
H(n, q2) for all dimensions n ≥ 3.

If q is even, then there are complete partial ovoids of size q2 + 1. For instance,
let Q be an elliptic quadric of a Baer subspace Σ0 = PG(3, q) of Σ, and let L be
the set of tangent lines to Q in Σ0. Since q is even, L is a general linear complex of
PG(3, q). As shown in [1], the lines of any general linear complex L, when extended
over GF (q2), cover the points of a Hermitian surface H. Moreover, the generators
of the resulting Hermitian surface are either extended lines of L or they are skew
to the Baer subspace Σ0. Therefore, no generator meets Q in more than one point,
and Q is a partial ovoid of size q2 + 1. To show that Q is complete, observe that
every point of Σ0 lies on q + 1 tangents to Q and every point of H \ Σ0 lies on a
unique (extended) tangent line to Q.

We will proceed to show that there are no other examples of size q2 + 1, which
will imply an increase of the lower bound if q is odd.

Lemma 2.2. Let O be a complete partial ovoid of H. Then |O| = q2 +1 if and only
if all points of H \ O have strength 1 or q + 1, where both strengths occur.

Proof. Let O be a complete partial ovoid of H of size q2 + 1. As O is not an
ovoid, there exists a free generator g of H, and every point of g is collinear with at
least one point of O. Since g has q2 + 1 points and |O| = q2 + 1, it follows that
every point of g must be collinear with exactly one point of O, so all points of g
have strength 1. In particular, there exist points of strength 1.

Let P , Q be two points of O and denote the polarity associated with H by τ .
Then every point of P τ∩Qτ has strength at least 2. Consider a point X of H\O with
strength at least 2. If there exists a free generator g on X, then the completeness of
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O implies that every point of g must be collinear with at least one point of O, and
consequently |O| ≥ q2 + 2. Since |O| = q2 + 1 by assumption, there cannot exist a
free generator containing X and X must have strength q + 1. In particular, there
also exist points of strength q + 1.

Conversely, let O be a complete strictly partial ovoid of H with the property
that all points of H \ O have strength 1 or q + 1, and assume that both strengths
occur. Consider a point X 6∈ O with strength 1 and let g be a free generator on X.
The q2 + 1 points on g cannot have strength q + 1, so they must all have strength
1. On the other hand, every point of O must be collinear with exactly one point of
g, since H is a generalized quadrangle. Hence O has size q2 + 1. �

Theorem 2.3. Let O be a complete partial ovoid of H. Then |O| = q2 + 1 if and
only if q is even and O is an ovoid of some W3(q), which is the intersection of H
with a Baer subspace PG(3, q) of PG(3, q2) as in the model for H described above.

Proof. By Lemma 2.2, O has size q2 +1 if and only if every point of H off O has
strength 1 or q + 1. The generalized quadrangle H is isomorphic to the dual of the
generalized quadrangle Q−(5, q), and O corresponds to a maximal partial spread S
of Q−(5, q) of size q2 +1. Denote by S̃ the set of all points of Q−(5, q) on the lines of
S. Then every line of Q−(5, q) has either 1 or q +1 points in common with S̃, again
by Lemma 2.2. Define a substructure T := (P,B, I) of the generalized quadrangle
Q−(5, q) as follows. The point set P coincides with S̃, the set B of lines of T consists
of all lines of Q−(5, q) having q + 1 points in common with S̃, and incidence I is
the incidence of Q−(5, q). Since every line of Q−(5, q) either contains exactly one
point of S̃ or is a line of B, it follows that T = (P,B, I) satisfies the conditions
of [10, Theorem 2.3.1]. Since the lines of S are pairwise disjoint, one concludes
from [10, Theorem 2.3.1] that T is a subquadrangle of Q−(5, q). Moreover, the lines
of S partition the point set of this subquadrangle and hence S is a spread of T , so
that |P| = (q + 1)(q2 + 1). Consequently, T has order (q, q) and it is a generalized
quadrangle Q(4, q) having a spread S. By [11], a spread of Q(4, q) exists if and
only if q is even. Since Q(4, q) corresponds to a subquadrangle W3(q) which is the
intersection of H with a Baer subspace PG(3, q), the theorem follows. �

Corollary 2.4. If q is odd, then a complete partial ovoid of H has at least q2 + 2
points.

In fact, one can show that a complete partial ovoid of H cannot have exactly
q2 + 2 points. This was first pointed out to the authors by J. A. Thas [13], and can
easily be shown as follows.

Theorem 2.5. There are no complete partial ovoids of H with size q2 + 2. In
particular, if q is odd, then every complete partial ovoid has size at least q2 + 3.

Proof. Suppose O is a complete partial ovoid in H of size q2 +2. Then every free
generator has q2 points of strength 1 and one point of strength 2. Moreover, each
point of H \O with strength 2 lies on exactly q − 1 free generators. Since there are
(q + 1)(q3 − q2 − 1) free generators, we see that there are precisely (q + 1)(q3 − q2 −
1)/(q− 1) points of strength 2. But this is not an integer unless q = 2 or q = 3, and
computer searches show no such examples exist for these values of q. �
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We now improve the lower bound for complete partial ovoids under some very
special circumstances, when q is odd.

Theorem 2.6. Let q be an odd prime power, and let H be a Hermitian surface
in Σ = PG(3, q2) obtained by extending over GF (q2) the lines of a general linear
complex L in a Baer subspace Σ0 = PG(3, q). Let O be a complete partial ovoid of
H, and let O′ = O ∩ Σ0. Then |O′| ≤ q2 − q + 1. Moreover, if |O′| = q2 − q + 1,
then

|O| ≥
3

2
q2 −

1

2
q + 1.

Proof. Let W (3, q) denote the symplectic geometry (polar space) consisting of
the points of Σ0 and the lines in L. Since the (extended) generators of W (3, q) are
also generators of H, no two points of O′ determine a generator of W (3, q) and O′

is a partial ovoid of W (3, q). As q is odd, |O′| ≤ q2 − q +1 by a result of Tallini [11].
Now suppose that |O′| = q2−q+1. The number of free generators of W = W (3, q)

is q(q + 1). These generators may or may not intersect in Σ0, but they are certainly
mutually skew in Σ \ Σ0. Thus the number of points of H \ Σ0 lying on these free
(extended) generators of W is q(q + 1)(q2 − q) = q2(q2 − 1). We define these points
to be “free points”.

Let P be a point of O\O′. Then, by the construction of H, we know that P lies
on a unique free generator of W , say ℓ, and thus P is a free point. The q2 − q points
of ℓ \ Σ0, one of which is P , are free points that are now blocked by the addition of
P . The remaining q generators of H through P are all skew to Σ0 (see [1]), and we
let m be any one of them. There are exactly q2 + 1 W -generators that meet m and
they form a regular symplectic spread S of Σ0.

Since |O′| = q2 − q + 1, exactly q2 − q + 1 lines of S meet O′ (in one point each),
and hence q lines of S are skew to O′. Therefore there are q free generators of W
meeting m, one of which is ℓ. Thus we get another q − 1 points on m that are
now blocked by the addition of P to O′. Allowing m to vary over the q generators
through P skew to Σ0, we get a total of q(q−1) = q2−q free points not on ℓ that are
now blocked by P . So, adjoining P to O′ blocks a total of q2− q + q2− q = 2(q2− q)
previously free points.

Adding another point P ′ will block another 2(q2 − q) free points, not necessarily
disjoint from the above set of 2(q2 − q) free points. Now we must eventually block
all the free points since O is complete. Therefore we must adjoin to O′ at least
q2(q2−1)
2(q2−q)

= 1
2
q(q + 1) points. That is,

|O \ O′| ≥
1

2
q(q + 1)

and hence

|O| ≥ q2 − q + 1 +
1

2
q(q + 1) =

3

2
q2 −

1

2
q + 1,

proving the result. �

It should be noted that if O′ is “large”, say of size greater than 1
2
q2, then the

above lower bound for O still holds. In fact, the same argument gives an even
stronger bound. However, if O′ is “small”, this counting argument breaks down
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and the lower bound gets weaker. Eventually, it degenerates into the general lower
bound given in Theorem 2.1.

Perhaps more importantly, for odd q we have not been able to construct complete
partial ovoids of any size close to the bound given in Theorem 2.6. For instance, for
q = 5, the smallest complete partial ovoid we have been able to construct has size
61. It appears that much work remains in improving the general lower bound when
q is odd.

3 Complete Caps from Maximal Partial Spreads of PG(3, q)

In this section we present a construction method for maximal partial spreads of
Q−(5, q), starting from a maximal partial spread of PG(3, q). As the generalized
quadrangles H = H(3, q2) and Q−(5, q) are dual to each other, this is equivalent
to constructing complete caps of H. All partial spreads of Q−(5, q) we obtain will
be locally hermitian at some line L, which means that they are the union of (3–
dimensional) reguli pairwise meeting in L. The method is based on a known con-
struction for locally hermitian spreads of Q−(5, q), see [12], and was suggested to
the authors by J. A. Thas.

Consider the elliptic quadric Q−(5, q), with associated polarity ⊥. Let L be a line
of Q−(5, q), and thus L⊥ is a 3-dimensional projective space PG(3, q) intersecting
Q−(5, q) exactly in L. Consider a maximal partial spread S in L⊥, such that L ∈ S.
For every line M ∈ S \ {L}, M⊥ is a 3-dimensional projective space containing L
and meeting Q−(5, q) in a hyperbolic quadric Q+(3, q). If RM denotes the regulus
through L of this hyperbolic quadric, we let

SS :=
⋃

M∈S\{L}

RM .

Theorem 3.1. With the above notation, SS is a maximal partial spread of Q−(5, q).

Proof. Let K and M be any two distinct lines of S \ {L}. Then we have that
K⊥ ∩ M⊥ = 〈K, M〉⊥ = (L⊥)⊥ = L. As the reguli RK and RM share the line L, it
follows that no two lines of SS intersect. Hence SS is a partial spread of Q−(5, q).

In order to show that SS is maximal, suppose by way of contradiction that there
exists a line A of Q−(5, q) which is skew to all lines of SS. For every line M ∈ S\{L},
the lines of RM cover all points of M⊥ ∩Q−(5, q). Hence A is also skew to M⊥, and
consequently A⊥ is disjoint from M . But then A⊥ ∩ L⊥ is a line of L⊥, skew to all
lines of S, contradicting the maximality of S. �

By this construction, one can associate a maximal partial spread SS of Q−(5, q),
and equivalently a complete cap OS of H, with every maximal partial spread S of
PG(3, q). The resulting complete cap has size |OS| = |SS| = (|S| − 1)q + 1. By
relying on the known results concerning small maximal partial spreads of PG(3, q),
we obtain examples of “small” complete caps on H, as follows.

In [6], maximal partial spreads of sizes 13, 14, 15, . . . , 22 in PG(3, 5) are con-
structed by computer. Using the smallest one, our method above produces a maxi-
mal partial spread of size 61 on Q−(5, 5). This in turn yields a complete cap of size
61 on H(3, 25), the smallest one we have constructed so far. Similarly, in [5], maxi-
mal partial spreads of sizes 23, 24, 25 are constructed by computer in PG(3, 7). The
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smallest one produces a maximal partial spread of size 155 on Q−(5, 7) and hence
a complete cap of the same size on H(3, 49). Again, this is the smallest complete
cap we have been able to construct on this Hermitian surface. In general, maximal
partial spreads of size n in PG(3, q) for odd q ≥ 7 have been constructed for all
q2+1

2
+ 6 ≤ n ≤ q2 − q + 2 (see [7]). In fact, for certain values of q this result can be

slightly improved (again, see [7]). For each of these maximal partial spreads there
is a corresponding complete cap on H of size (n − 1)q + 1, see also [2].

The general construction producing the smallest maximal partial spreads in
PG(3, q) known to the authors is the one presented in [3]. In that paper (see the
comments at the end of Section 3 in [3]) a certain randomized selection process
guarantees the existence of a maximal partial spread in PG(3, q), for odd q, of size
(m + 1)q + 1, where m is the smallest integer greater than or equal to 2 log2(q).
Thus, using our method above, one obtains complete caps of size (m + 1)q2 + 1 on
H(3, q2) for any odd q, where m = ⌈2 log2(q)⌉. Of course, this is still much larger
than the general lower bound given in Theorem 2.5 for odd q.

4 Construction of Large Complete Caps

Randomized and biased computer searching in [4] found complete partial ovoids of
H for q = 5 with sizes between 78 and 119, inclusive, as well as sizes 121 = q3−q+1
and 126 = q3 + 1. For q = 7 the computer searches in [4] found complete partial
ovoids of various sizes between 195 and 337 = q3 − q + 1, as well as 344 = q3 + 1.
For q = 3 our random searching found complete partial ovoids of sizes 28 = q3 + 1
and 25 = q3 − q + 1 through 16, inclusive. There seems to be strong evidence
to conjecture that there are no complete partial ovoids of size between q3 − q + 1
and q3 + 1. In fact, the authors have recently been told that this has been proven
in [9]. In this section we provide several (related) construction methods for complete
strictly partial ovoids, valid for any prime power q. In particular, we produce several
examples of size q3 − q + 1, which is now known to be the largest possible size for a
complete strictly partial ovoid of H(3, q2).

Construction I

Let σ be a non-tangent plane of the Hermitian surface H, and let U be the
Hermitian curve cut out on H by σ. Consider two chords of U through a given point
P ∈ U , say ℓ and m. Then S := U \ (ℓ ∪ m) is a partial ovoid of H of size q3 − 2q.
We will complete S to a complete strictly partial ovoid O of U of size q3 − q + 1.

If a point X of H \ S is not collinear with any point of S, then either X is a
point of ℓ ∪ m, or Xτ ∩ σ ∈ {ℓ, m}, where τ denotes the polarity associated with
H. This means that the points of H \ S which are not collinear with any point of
S are precisely the points of (ℓ ∪ m ∪ ℓτ ∪ mτ ) ∩H. Since ℓ and m meet in P , the
chords ℓτ and mτ of H lie in the plane P τ , and ℓτ ∩ mτ is some point that does
not belong to H. Let g1, g2, . . . , gq+1 denote the q + 1 generators of H containing
P , and define X1 := g1 ∩ ℓτ and Yi := gi ∩ mτ for i = 2, 3, . . . , q + 1. Then the
points X1, Y2, Y3, . . . , Yq+1 are pairwise noncollinear in H, and they are contained in
(ℓτ ∪mτ )∩H. As a consequence, they are not collinear with any point of the partial
ovoid S. So O := S ∪{X1, Y2, Y3, . . . , Yq+1} is a partial ovoid of H of size q3 − q +1.
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In order to show that O is complete, recall that (ℓ ∪ m ∪ ℓτ ∪ mτ ) ∩H consists
of all the points of H \ S which are not collinear with any point of S. Every point
of ℓ ∩H is collinear with the point X1 of O, while every point of m∩H is collinear
with the q points Y2, Y3, . . . , Yq+1 of O. Finally, every point of (ℓτ ∪ mτ ) ∩H either
lies on g1 and hence is collinear with X1 ∈ O, or lies on the generator gi for some
i ∈ {2, 3, . . . , q + 1} and hence is collinear with the point Yi ∈ O. Thus we see that
all points of H \ O are collinear with at least one point of O, and the partial ovoid
O is complete.

This construction can be modified to obtain many examples of complete strictly
partial ovoids of H, all with the same size. If we define Xi := gi∩ℓτ and Yi := gi∩mτ

for all i ∈ {1, 2, . . . , q + 1}, then it is obvious that for any two nonempty subsets
I ⊆ {1, 2, . . . , q + 1} and J := {1, 2, . . . , q + 1} \ I, the set O′ := S ∪ {Xi | i ∈
I} ∪ {Yj | j ∈ J} also is a complete strictly partial ovoid of H of size q3 − q + 1.

Construction II

Consider three chords ℓ, m and n in σ, such that ℓ and m are as in the first
example, l ∩ n is a point Q of H, and m ∩ n is a point R not on H. Further, let O
be the complete partial ovoid in the first construction above, and define T := O\n.
Then T has size q3 − 2q + 1. Suppose that the generators gi and the points Xi and
Yi, i = 1, 2, . . . , q + 1, are defined as above, and let the generators of H through Q
be denoted by h1, h2, . . . , hq+1. Here we assume that the numbering has been chosen
such that Xi is a point of hi for all i ∈ {1, 2, . . . , q + 1}. Finally, let Zi be the point
nτ ∩ hi for i = 1, 2, . . . , q + 1. Since the common point R of m and n is not a point
of H, mτ and nτ are chords of the hermitian curve H ∩ Rτ , which implies that the
points Y1, Y2, . . . , Yq+1, Z1, Z2, . . . , Zq+1 are pairwise noncollinear. It thus follows by
similar arguments to those given above that the set O′′ := T ∪ {Z2, Z3, . . . , Zq+1} is
a complete strictly partial ovoid of H of size q3 − q + 1. Note that this procedure
can be applied repeatedly by considering other chords of H in σ which meet m in
R and meet ℓ in some point of H other than Q.

Construction III

Let ℓ1, ℓ2, . . . , ℓq+1 be q +1 distinct chords of H in σ through a common point P
of H. Then ℓτ

1, ℓ
τ
2, . . . , ℓ

τ
q+1 are chords of H in P τ containing a common point S = στ ,

which is not a point of H. For any nonempty proper subset I ⊂ {1, 2, . . . , q + 1},
it is possible to find q + 1 points X1, X2, . . . , Xq+1 of H in the plane P τ which are
pairwise noncollinear, and such that for every i ∈ I, ℓτ

i contains at least one point
Xj. By defining O := (U \ {li | i ∈ I})∪{X1, X2, . . . , Xq+1}, one obtains a complete
partial ovoid of H of size q3 − kq + 1, where |I| = k + 1.

Construction IV

Consider three chords ℓ, m and n of H in σ such that P := ℓ ∩ m, Q := ℓ ∩ n,
and R := m ∩ n are distinct points of H. In P τ we pick one point X of ℓτ ∩H and
q points of mτ ∩H which are not collinear with X. In Qτ we pick the unique point
Z of nτ ∩ H which is not collinear with any of the chosen points of mτ ∩ H, thus
obtaining q +2 points in total. If one removes the 3q points of (ℓ∪m∪ n)∩H from
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U and adds these q + 2 points, one obtains a complete strictly partial ovoid of H
of size q3 − 2q + 3. Note that X and Z are not collinear in H for they are both
collinear with the point Y , which is the intersection of ℓτ and the generator PX of
H, and H does not contain triangles.

Remark 4.1. The general method underlying all of the above constructions may be
thought of as “partial derivation” of the classical ovoid of H, in the sense that chords
of H are replaced by parts of their images under the polarity of H. This replacement
procedure can be applied consecutively many times, thus yielding a wealth of complete
(strictly) partial ovoids of H. Moreover, partial derivation can be combined with the
usual derivation (see [14]) of ovoids of H, provided that one derives with respect
to chords which have not been affected by the partial derivation. Finally, partial
derivation can also be applied to nonclassical ovoids of H which contain a suitable
configuration of chords.

Extension of the method to T3(O)

The construction of complete caps of H(3, q2) by partial derivation can be formulated
for maximal partial spreads of the generalized quadrangle T3(O) as well, where O
is an arbitrary ovoid of PG(3, q). This generalized quadrangle can be described as
follows, see [10].

Let PG(3, q) be embedded as a hyperplane H in PG(4, q) and consider an ovoid
O of PG(3, q). Then points of T3(O) are of three types:

(i) the symbol (∞);

(ii) the 3-dimensional subspaces of PG(4, q) which meet H in the tangent plane of
O at some point;

(iii) the points of PG(4, q) \ H .

Lines of T3(O) are of two types:

(a) the points of O;

(b) the lines, not contained in H , through a point of O.

A point of type (iii) is only incident with lines of type (b); the incidence is inherited
from PG(4, q). A point of type (ii) is incident with all lines of type (b) that are
contained in it and with the unique line of type (a) corresponding to the point of
tangency. The point (∞) is incident with no lines of type (b) and with all lines of
type (a).

The generalized quadrangle T3(O), with O an arbitrary ovoid of PG(3, q), is
known to have spreads which are constructed in the following way, see [10]. Let
x be a point of O, and let π ⊆ H be a plane not containing x. Consider a 3-
dimensional subspace δ ⊆ PG(4, q) such that δ ∩ H = π. Define L = π ∩ πx,
where πx is the tangent plane to O at x, and consider a spread S of δ containing
L. For every point xi ∈ O \ {x}, i = 1, 2, . . . , q2, let yi be the point xxi ∩ π and
denote the line of S incident with yi by Li. If the lines of the plane 〈x, xi, Li〉,
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different from xxi, that are incident with xi are labelled Mij , j = 1, 2, . . . , q, then
S := {x}∪{Mij | i = 1, 2, . . . , q2; j = 1, 2, . . . , q} is a spread of T3(O). Similarly, if S
is a maximal partial spread of PG(3, q), by this construction one obtains a maximal
partial spread of T3(O), as was described in [2]. If O ∼= Q−(3, q), then this example
corresponds to the construction of Section 3.

In order to extend the notion of partial derivation to the setting of T3(O), we need
to introduce some more notation. Let the lines of the plane 〈x, xi, Li〉, different from
xxi, that are incident with the point x be denoted by M ij , j = 1, 2, . . . , q. Assume
furthermore that the labelling has been chosen such that for a fixed j ∈ {1, 2, . . . , q},
the 3-spaces 〈πx, M ij〉 coincide for all i ∈ {1, 2, . . . , q2}. Now we pick two distinct

points xk and xl of O\{x}, and define Skl := S \
(

{Mkj, Mlj | j = 1, 2, . . . , q}∪{x}
)

.

In order to extend Skl to a maximal partial spread of T3(O), consider a nontrivial
subset I ⊂ {1, 2, . . . , q}. Then the set of lines S ′ := Skl ∪ {Mkj | j ∈ I} ∪ {M lj |
j ∈ {1, 2, . . . , q} \ I} ∪ {xk} is a maximal partial spread of T3(O). If O ∼= Q−(3, q)
and S is the regular spread of δ, then this maximal partial spread is the dual of the
complete cap of H(3, q2) described in Construction I.
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