Polynomial characterization of Asplund spaces
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Abstract

We prove that, given an index m, if every Pietsch integral m-homogeneous
polynomial on a Banach space F is nuclear, then E is Asplund. The converse
was proved by Alencar.

A Banach space F is Asplund if every separable subspace of F has a separable
dual, equivalently, if the dual of F has the Radon-Nikodym property. A short
introduction to Asplund spaces may be seen in [DGZ, 1.5] and a more detailed one
is contained in [Y].

For Banach spaces E and F', we use the notation Lpi(F, F') for the space of all
Pietsch integral operators from E into F, and Ly(F, F') for the nuclear operators
(see definitions in [DU]). The following result is proved in [Al]:

Theorem 1. A Banach space E is Asplund if and only if, for every Banach space
F, we have Lpi(E, F) = Ly(E, F).

Given an integer m, we use the notation Ppi(™FE, F') for the space of m-homo-
geneous Pietsch integral polynomials from F into F', and Py(™FE, F') for the nuclear
polynomials (see definitions below). It is proved in [A2] that, if E is Asplund, and
m is an integer, then Ppi("E, F') = Px(™E, F) for every Banach space F.

Here we give a converse to this result, proving that the equality Ppi(™E, F) =
Pyn(™E, F) for some m implies Lpi(E, F) = Ly(E, F). As a consequence, if every
Pietsch integral polynomial on F is nuclear, then F is Asplund.
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To obtain this, we need to show that every 1-dominated polynomial on a C(K)
space is Pietsch integral, which extends a well-known result for linear operators.
We also prove that, if T' € Lpi(E, F), then the operator

Q" : QUE — Q'F

is well-defined and Pietsch integral.

Throughout, £ and F' denote Banach spaces, E* is the dual of E, and Bg stands
for its closed unit ball. By N we represent the set of all natural numbers. By an
operator we always mean a linear bounded mapping between Banach spaces. The
notation L£(FE, F') stands for the space of all operators from E into F. By E = F,
we mean that £ and F' are isometrically isomorphic. Given m € N, we denote by
P(™E, F) the space of all m-homogeneous (continuous) polynomials from E into F.
Recall that with each P € P("FE, F) we can associate a unique symmetric m-linear
P:Ex (M xFE — F so that

~

P(zx)=P (x, (”?).,:E) (x € B).

For the general theory of polynomials on Banach spaces, we refer to [D] and [Mu].

We use the notation @™ FE = E® ™) ®@F for the m-fold tensor product of F,
QME = E®, ™ ®.F for the m-fold injective tensor product of F, and @ FE for the
m-fold projective tensor product of E (see [DU] for the theory of tensor products).
By @™E = E®, (") ®,F we denote the m-fold symmetric tensor product of E, i.e.,
the set of all elements u € ®™F of the form

u=> Nz;® "™ Qu; (meN, N eKz; € E,1<j<n).
j=1

By @7';FE we denote the closure of ®'F in ®'F. For symmetric tensor products,
we refer to [F]. For simplicity, we write @z 1= 2® ™) ®z. For T € L(E, F), @™T
stands for the m-fold tensor product:

Q" :=T® ™ T : "E — Q™F.
Given P € P("E, F), let
P:®@"FE —F
be the linearization of P, defined by

P (lej ®---®xm]~) = Zﬁ(ﬁu,---,xm]‘)
j=1 Jj=1

where 2, € E (1 <k<m,1<j<n).
A polynomial P € P(™E, F) is nuclear [D, Definition 2.9] if it can be written in
the form

P(z) =3 [z(@)]"yi (v €E)

o)
i=1
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where (xf) C E* and (y;) C F are sequences such that
2™ lgill < oo
i=1
A polynomial P € P(™E, F) is Pietsch integral if it can be written in the form

P)= [ @]" dga)  (xe B)

where G is an F-valued regular countably additive Borel measure, of bounded varia-
tion, defined on Bg+, where By« is endowed with the weak-star topology. A similar
definition may be given for the Pietsch integral multilinear mappings (see [A2]).
Every nuclear polynomial is Pietsch integral.

Given 1 < r < oo, a polynomial P € P(™E,F) is r-dominated (see, e.g., [M,
MT]) if there exists a constant k > 0 such that, for all n € N and (z;)7.; C E, we
have

m
T

(jﬁlnmmn%) <k s (SleGer)

z*€Bpx* i=1

m
T

For m = 1 we obtain the absolutely r-summing operators.

Proposition 2. Let E, F', X, and Y be Banach spaces. Suppose that P € P("E, F)
is Pietsch integral, and let T € L(X, E) and S € L(F,Y). Then SoPoT € P("X,Y)
1s Pietsch integral.

Proof. Tt is enough to show that both P oT and S o P are Pietsch integral. If P is
Pietsch integral, so is P, by [A2, Proposition 2]. This implies that the linearization

E:@emE—>F

is well-defined and Pietsch integral [V, Proposition 2.6]. Since 7T : "X — QM"E
is continuous, we have that

Po(@T):@"X — F

is Pietsch integral. Using the polarization formula [Mu, Theorem 1.10], we easily
have

Po(®@"T)=PoT.

Hence, P o T is Pietsch integral. By [V, Proposition 2.6], so is P o T and, by [A2,
Proposition 2], sois Po T.
Using the fact that

SoP=So E,
a similar argument shows that S o P is Pietsch integral. ]

The following result may be of independent interest:

Lemma 3. Let T € Lpi(E, F) and m € N. Then the tensor product operator
QT : 'E — @ F

1s well-defined and Pietsch integral.
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Proof. By [DJT, Theorem 5.6], we can find a compact Hausdorff space K, a regular
Borel probability measure p on K, and operators a : E — C(K) and b : Li(K, u) —
F such that the following diagram commutes

where j is the natural inclusion.
The tensor product operator

@ @MC(K) = C (Kx M) xK) — @ Ly(K, 1) = Ly (Kx ) x K, px () xp1)

is the natural inclusion, so it is Pietsch integral (see the definition in [DJT, page 97]).
Hence, the composition

T : 9" E "% gmo(k) L @m Ly (K, p) &% g

is Pietsch integral. [ |

Proposition 4. Let E, F, and G be Banach spaces. Assume that T € Lpi(E, F),
and let Q € P(™F,G) be a polynomial. Then P := Qo T € P(™E,G) is Pietsch
integral.

Proof. By Lemma 3, the operator
5260(®mT) Qr'E — G

is Pietsch integral. By [V, Proposition 2.6], P is Pietsch integral and, by [A2,
Proposition 2|, so is P. ]

It is proved in [M, Proposition 3.1] that a polynomial P € P("E,F) is r-
dominated if and only if there are a constant C' > 0 and a regular Borel probability
measure i on B« (endowed with the weak-star topology) such that

m
T

IP@l<c|f waraw]  @en 0

The next result is stated in [P, Theorem 14| for the multilinear, scalar-valued
case, and in [S, Proposition 3.6] for the vector-valued case. It will be needed in
Proposition 6. Following the referee’s suggestion, for the sake of completeness, we
include the proof which is an easy modification of [G, 3.2.4].

Theorem 5. A polynomial P € P("E, F) is r-dominated if and only if there are a

Banach space G, an absolutely r-summing operator T € L(E,G) and a polynomial
Q € P(MG,F) such that P=QoT.
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Proof. Let P € P(™E, F') be r-dominated. Then there is a regular Borel probability
measure i on Bpg« such that the inequality (1) holds. Let Ty : E — L,.(Bg«, 1)
be given by Ty(z)(¢) = ¢(x) for all z € E and ¢ € Bg«. Clearly, Tj is linear.
Moreover,

T

Tl = | [, el aute)] < el

Let G be the closure of To(E) in L.(Bg«, ). Let T': E — G be given by
T(x) := Ty(x). Then T is linear and, by [DJT, Theorem 2.12], absolutely r-summing.
Define Qo : To(E) — F by Qo(To(z)) := P(z). Using the inequality (1), we have:

|<p(w)lrdu(s0)] " n@)

E*

ir@l=c|f,

so () is a continuous m-homogeneous polynomial. Let () : G — F' be its extension
to G. Then, P=QoT.
The converse is shown in [MT, Theorem 10]. ]

The following result extends the linear case [DU, Theorem VI.3.12].

Proposition 6. Let Q be a compact Hausdorff space. Then, every 1-dominated
polynomial P € P("C(Q), E) is Pietsch integral.

Proof. Let P € P("C(R2), E) be 1-dominated. By Theorem 5, there are a Banach
space (G, an absolutely summing operator T' € L(C(2),G) and a polynomial Q) €
P(MG, E) such that P = Q o T. By [DU, Theorem VI.3.12], T is Pietsch integral.
By Proposition 4, P is a Pietsch integral polynomial. [ |

For a Banach space E, we denote by d,, : E — ®7' E the polynomial given by

Om(7) = 2@ (M) R

With each absolutely summing operator, the following lemma associates an m-
homogeneous 1-dominated polynomial.

Lemma 7. Let T € L(E, F) be absolutely summing. Then
(@"T) 00, : E — ®?7SF
1s an m-homogeneous 1-dominated polynomial.

Proof. Fixn € Nand zq,...,2, € E. Then

n

S lerT) e bl = 3 [P ) 67

i=1

1/m

- immu

< k sup Z|x*(xl)|

$*EBE* i=1

where we have used that T is absolutely summing. [ |
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Proposition 8. Given Banach spaces EE and F, and m € N, suppose that we have
Pei("E, F) = Py("E, F). Then Lpi1(E, F) = Ly(E, F).

Proof. Since Ly(E, F) C Lpi(E, F) is always true, we only need to prove the other
inclusion. Let T' € Lpi(E, F). By [DU, page 168], there is a regular Borel measure
i on Bgs« and an operator b : Ly(Bg+) = Li(Bg+, 1) — F such that the following
diagram commutes

E—r—F
l Tb
C(Bg-) — Ly(Bg-~)

where ¢ and j are the natural inclusions. B
Fix T € F and consider f = ji(T). Choose § € Loo(Bg+) with g(f) = 1. Observe
that

"5 @)](@) =" (@) (i(@) =3(5i[@) =5(f) = 1.

For every index i = 1,...,m — 1, we consider the operators (see [B, page 168]):

7 @ Ly (Bye) — &Ly (Bg-)

given by

m(@ ) = g(f)(®"f)
and

T @ B — & E
given by

m(@" ) = (i*5(9)) (x)(®'x).
The polynomials
TO’YTiO...O’YT;n_lOém:EHF

and
bomo...omp_10(®"j)odp0i: E— F

coincide. Indeed, we have
Torjo...om, 100,(x) = Tomjo...om, (")
= (("7" (@) ()" ' T(x)
= (("7"(@)())""bji(x)
and, on the other hand,
bomo...omp_10(®@"j)od,oi(r) = bomo...om, 1(®&"ji(x))
= (9(ji(2))" " bji().
Since j is absolutely summing, thanks to Lemma 7, the polynomial
(®™4) 00y, : C(Bpx) — @' L1(Bpg~)

is 1-dominated. Now, by Proposition 6, (®™7) o §,, is Pietsch integral and so are
(by Proposition 2) the polynomials

bomo...omp_10(®@"j)odpo0i=Tomo...om, |00n.

By our hypothesis, the latter is also nuclear. As shown in [CDG, pages 120-121],
this implies that 7" is nuclear and so we are done. [ |



Polynomial characterization of Asplund spaces 399

Theorem 9. For a Banach space E, the following assertions are equivalent:
(a) E is Asplund;
(b) for all m € N and every Banach space F, we have Ppi("E, F) = Px("E, F);
(c) there is m € N such that for every Banach space F, we have Pp("E, F) =
Pn("EF).

Proof. (a) = (b) is proved in [A2, Proposition 1].
(b) = (c) is obvious.
(¢) = (a). It is enough to apply Proposition 8 and Theorem 1. ]

It is shown in [CD] that (a) implies that the equality of (b) is an isometry.

We are grateful to Daniel Pellegrino for pointing out a gap in the first version of
this paper.
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