1-Type Submanifolds of Non-Euclidean
Complex Space Forms

Ivko Dimitrié¢

1 Introduction

The purpose of this paper is to prove a classification result for submanifolds of
complex space forms which are immersed into a suitable Euclidean spaces of complex
matrices in such way that the immersion of each submanifold is of 1-type, i.e. up
to a translation, all components of the immersion vector are eigenfunctions of the
Laplacian from a single eigenspace.

Throughout this paper, by a complex space form CQ™(4c), ¢ = £1 (m > 2), we
mean a complete, simply connected model space form i.e. either the complex pro-
jective space CP™(4) of constant holomorphic sectional curvature 4, or the complex
hyperbolic space CH™(—4) of holomorphic sectional curvature —4.

It is well known that any bounded domain in C™ can be given a Kéahler met-
ric, the so called Bergman metric. Accordingly, the complex hyperbolic space
CH™(—4) can be realized as the open unit ball in C”™ with Bergman metric g =
=31 0a0sIn(1 — |2]?) dzq ® dZg, where z = (21,...,2m) € C™ (see [13, vol.II,
p.162]). There is also another (equivalent) definition of CH™(—4) particularly
suitable for a study of submanifolds of that space. Namely, recall that the com-
plex projective space CP™(4) can be defined by means of the Hopf fibration 7 :
S#m+l — CP™(4), which is also a Riemannian submersion with totally geodesic
fibers. This approach enables us to embed CP™(4) isometrically into a suit-
able Euclidean space RY of Hermitian matrices by the map ¢(p) = zz', where
p € CP™and z € 7 !(p) C S C C™! is regarded as a column vector. This
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embedding turns out to be the first standard embedding of CP™(4) and has par-
allel second fundamental form (see e.g. [3]). By analogy, CH™(—4) is obtained
by a fibration from the anti - de Sitter space, © : Hi™™ — CH™(—4), and by
identifying a complex line with the projection operator onto it one gets an isometric
embedding ¢ into some pseudo-Euclidean space R [10]. Therefore, for any sub-
manifold z : M™ — CQ™ there is an associated immersion & = ¢ox : M"™ — Rf}’()
into a (pseudo) Euclidean space which immerses M™ as a spacelike submanifold of
Rf}’(). By agreement, parentheticized characters appear only in the hyperbolic case.
On the other hand, for a submanifold of a pseudo-Euclidean space there is a theory
of finite type immersions of B.Y. Chen [3], [4], whereby a submanifold M is said
to be of finite type if its position vector is globally decomposable into a finite sum
of vector eigenfunctions of the Laplacian on M. In particular, T is said to be of
1-type if = = %o+ T; where Ty = const, AZ; = \T;, T; # const. Here, A is the
Laplacian of the induced metric on M acting on vector valued functions componen-
twise. 1-Type submanifolds of CQ™ have been studied by several authors. Ros [17]
had classified CR-minimal submanifolds of CP™ which are of 1-type via ¢, and the
present author generalized these results by assuming that a submanifold has only
parallel mean curvature vector, or that it is a CR - submanifold [6]. In addition,
1-type real hypersurfaces of CQ™ were studied in [15], [10]. In this paper we solve
the classification problem of 1-type submanifolds of CQ™ (up to the identification
of minimal totally real ones of half the dimension), immersed into an appropriate
set of complex matrices via ¢. Namely, we have

The Main Theorem Let z: M" — CQ™ (n, m > 2) be an isometric immer-
sion of a smooth connected Riemannian n-manifold into a non-Euclidean complex
space form of complex dimension m. Then T is of 1-type if and only if one of the
following cases occurs:
(i) niseven, and M™ is locally a complex space form CQ™? isometrically immersed
as a totally geodesic complex submanifold of CQ™.
(i) M™ is immersed as a totally real minimal submanifold of a complex totally
geodesic CQ™ C CQ™.
(iii) n is odd, and M™ is locally congruent to a geodesic hypersphere

T(S'(y/1/(n +3)) x S"(\/(n +2)/(n + 3)))

of radius p = cot™}(1/v/n +2) € (0,7/2) of a canonically embedded complex pro-
jective space CP™+1/2  CP™. This case happens only for submanifolds of the
complex projective space.

Note that we do not make any a priori assumption on a 1-type submanifold.

As is well known [3], [4], a 1-type submanifold of CQ™ is minimal in certain
hyperquadric of an appropriately defined (pseudo) Euclidean space of Hermitian
matrices, thus, the study of 1-type submanifolds is a contribution to the theory of
minimal submanifolds of such hypersurfaces. The reason we do not study 1-type
submanifolds of the complex Euclidean space C™ = R?™ is that it is well known
by a result of Takahashi’s [20] that such submanifolds are either minimal in R?™
or minimal in some hypersphere. On the other hand the immersion composed of
products of coordinate functions in R*™ (as the standard embedding of CQ™ is
accomplished by products of coordinates in C™*!) is of 1-type only for spheres
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centered at the origin; see [7] for details.

The study of compact finite type submanifolds, and in particular those sub-
manifolds of compact rank-1 symmetric spaces which are of low type via standard
immersions, has proven valuable in obtaining some information on spectra of the
Laplace-Beltrami operators of these submanifolds. By showing that a certain com-
pact submanifold has type 1, 2, etc., one can usually extract one, two, etc. eigen-
values of the Laplacian from the equations involved. Also, this method yields some
interesting eigenvalue inequalities and produces sharp upper bound on A; for certain
classes of submanifolds. We refer to the works [3], [8], [17], [18], and also [11] where
those extrinsic bounds were reached at by using a related technique.

2 Preparation

Let us briefly recall the definition of CQ™ via submersion and the construction of
map ¢. Let ¥ be the standard Hermitian form in C™ ie. U(z,w) = cZowy +
S Zpwy, where 2 = (2;),w = (wx) € C™™ and ¢ = +1 corresponding to the two
cases. Then g := ReV is a (pseudo) Euclidean metric on R?*™™2 =~ C™*! which
is clearly S' invariant. The projective space CP™ is the set of complex lines [z]
through the origin and z € C™*!, appropriately equipped with a manifold structure,
and CH™ is the set of timelike complex lines (i.e. those C-lines on which g is negative
definite). To define CQ™ via submersion, let N?™* .= {> € C™"|U(z,2) = c}.
When ¢ = 1 then N?™+1 = §2m+1 ig the ordinary hypersphere and when ¢ = —1,
N?m+1 is a complete Lorentzian hypersurface H¥™ ™, the so-called anti - de Sitter
space. The circle group S! = {e?} naturally acts on N?"*!. The orbit through
w is a circle e®w = (cosf)w + (sinf)iw centered at the origin and lying in the
plane w A 7w with the vector iw tangent to the fiber. The orbit space N?m*1/5%
defines the complex space form CQ™ and we also have an associated fibration 7 :
N2mHl — CQ™(4c). Consequently, CQ™ naturally inherits the complex structure
J and Riemannian metric g of constant holomorphic sectional curvature 4c via this
fibration.

By identifying a complex line L = [z] (a J invariant plane in C™"!) with the
operator of the orthogonal projection P onto L we can obtain the embedding of CQ™
into the set of complex matrices M,,;1(C) = End(C™!). Namely, the orthogonal
projection onto a (timelike) complex line L with respect to the Hermitian form ¥ is
given by

P(v) = c¥(z,v) z =cg(z,v) z + cg(iz,v) iz = Awv,

where z € L is unit, v € C™*! and A is the matrix

|20|> cz0z1 ... C20Zm
21Z0 z1)? ... cziZm
ZmZ0 CZmZi .. C|lzm|?

It is easy to see that P satisfies the following properties: (i) P is C-linear ; (i7) P? =
P (iii) ¥(Pv,w) = V(v, Pw); (iv) trcP = 1. Conversely, an endomorphism P
satisfying (i) — (iv) is the orthogonal projection onto a C-line L = {v| Pv = v}.



676 Ivko Dimitrié

The condition (iii) says that the W-adjoint of P equals P, i.e P* = P, where
P* = P! in the projective case and P* = GP'G, G = diag(—1, I,,,), in the hyperbolic
case. Let HO(m + 1) := {A € M,,.1|A* = A}. This space is an (m + 1)*
dimensional real subspace of complex matrices M,,; which becomes a (pseudo)
FEuclidean space Rf\]’(), where N = (m +1)?, K = m? + 1, once it is equipped with
the metric §(A, B) = $tr(AB). Note that in the hyperbolic case this metric is
indefinite, of index m? + 1. The identification of a complex line [z], g(z,z) = ¢,
with the projection operator P onto that line gives rise to an isometric embedding
¢:CQ™ — HV(m +1), ¢([2])(v) = c¥(2,v) z with the image

P(CQR™) ={P € Mm+1|P2 =P P"=Pand trP =1},

lying fully in the hyperplane {tr P = 1} as a spacelike submanifold (having a timelike
normal bundle in the hyperbolic case). In the projective case this embedding is
simply given by ¢([z]) = zz'. The embedding ¢ is equivariant with respect to the
action of the W-unitary group UM (m +1) = {A € M,,.1|AA* = I}, and that fact
enables us to do the computations locally, at a suitably chosen point. That point,
called the “origin”, is taken to be the matrix Py = diag (1,0, ...,0) € HW(m + 1).

We shall hereafter identify CQ™ and its ¢-image. The tangent and normal space
of p(CQ™) at a point P are given below together with representative tangent and
normal vectors at the origin:

=t
Tp(CQ™) = {X € HD(m +1)| XP + PX = X}, X:(S C’g) weCm (1)

a 0O

TH(CQ™ ={Zec HY(m+1)|ZP =PZ};, Z= (0 D

), a€R, De H(m).
(2)

The second fundamental form ¢ of the embedding ¢ is parallel, and for tangent
vectors X, Y and a normal vector Z, the expressions for o and the shape operator
A are as follows:

o(X,Y)= (XY +YX)(I—2P), AzX = (XZ — ZX)(I - 2P) (3)
The complex structure J satisfies
JX =i(l -2P)X, o(JX,JY)=0(X,Y). (4)

One easily checks that

(0(X,Y),I) =0, (0(X,Y),P)=—(X,Y), (5)
where (A, B) = §tr (AB). For more details on the embedding ¢ and its properties
see [17], [3], [10] nd references there. The following formulas of Ros are also well
known [18]:

(0(X,Y),0(V,W)) = c[2X, YWV, W) + (X, V)Y, W) + (X, W)Y, V)
F (X, VY, W) + (JX, WYY, V)], (6)
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so that the shape operator of ¢ in the direction o(X,Y) is
Asx )V =c[2(X, )V + (Y, V)X + (X, V)Y + (JY,V)JX + (JX,V)JY]. (7)

Lemma 1.  The following is an orthonormal basis of the normal bundle of

»(CQR™) at P:

{\/ip, %[O’(@i,@i) +2CP]7 O'(@i,@j), U(eiaej*>}7

where 1 < 4,7 <m, i < j, e = Je;, and {e;, e} is a chosen J-basis. Conse-
quently, I = (m +1)P + (¢/2) 2L, o(es, €).

Proof. Proof follows directly by a dimension count and by using (4) - (6). Note that
dim HO(m+1) = (m+1)?, dim CQ™ = 2m, so that the dimension of the normal
space of the immersion ¢ is m? + 1. n

3 Demonstration

Suppose now that x : M" — CQ™ is an isometric immersion of a connected
Riemannian manifold into a complex space form. Let T'(TM) and I'(T+ M) denote
the set of all (local) smooth sections (i.e vector fields) of the tangent and normal
bundle of M respectively. We consider a local adapted frame of orthonormal vector
fields ey, ..., en, €n11, ..., €2y, tangent to CQ™ where the first n vectors are tangent
to M and the remaining ones are normal to M. In general, index ¢ will range
from 1 to n and index r from n + 1 to 2m, so that e;, e, represent basis vectors
which are tangent to M and normal to M respectively. Let V, A, V+ denote the
Levi-Civita connection on CQ™, the Weingarten map in the direction Z, and the
connection in the normal bundle of ¢; V,A¢, V4 denote the induced connection
on M, the Weingarten map in the direction £ and the connection in the normal
bundle of the immersion z, and let h, h, H, H denote the second fundamental forms
and the mean curvature vectors of the immersions x and & = ¢ o x respectively, so
that H = (1/n) 3; h(e;, e;). All immersions are assumed smooth and all manifolds
are connected smooth Riemannian manifolds of dimension > 2. J will denote the
orthogonal almost complex structure on CQ™. A submanifold M is called a CR-
submanifold if the tangent bundle T'M splits into an orthogonal direct sum of two
differentiable distributions TM = D@® D+, such that JD C D and JD+ C T+ M. If
D+ = () a submanifold is said to be complex, and if D = (), M is called a totally real
submanifold. For a vector field V' tangent to CQ™ along M we denote by Vi and
Vy its components which are tangent and normal to M respectively. For a tangent
vector field X € T'(T'M) and a normal vector field ¢ € T'(T*M) we define operators
S, F, s, f by SX = (JX)r, FX = (JX)n, s€ = (JO)r, [€=(JE)n.

Let M™ be a 1-type submanifold of R{y, = HY(m 4 1) via ¢, ie. T =dox =
ZTo + 7 with Azy = A7y and Ty = const. Then by using the same argument as in
[6] , from the 1-type condition by eliminating Z; and differentiating with respect to
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a tangential vector field X, we get the following by comparing parts tangent and
normal to CQ™ :

nAgX —nVyH + 2c(n + 1)X —2¢J(JX)r = X, and (8)

> o(B,X,e) =0, where B, = (trA,)I + 24,. 9)

r

Because of the equivariancy of ¢ and formulas (1)-(3), it follows that Az = 0 if
and only if Z = al, so that the condition (9) is equivalent to ¥, Ay(p,x,e,)Y =
> As(Bx.e)§ = 0, which, by using (7) and (8) leads to the following characteriza-
tion:

Lemma 2. IfZ is of I-type then for every XY € I'(T'M) and every & €
[(T+M) we have
(10) ApX =bX + 252X, where b= 1[\—2c(n+ 1)

(

11) VxH = —-%F(5X)

(12) n(X,Y)YH +2h(X,Y) + n(JH,Y)JX
— (X, SY)JH — 2JApy X — 2Jh(X,SY) =0

(13) n(H, X + 24X +n(JX, O JH +n(JH,&)JX — 2JApeX — 2Jh(X, s) = 0.
Conversely, if (10)-(13) are satisfied and A # 0 is a constant, then & is of 1-type.

Proof. This lemma is essentially proved in [6, Lemma 2] where formulas (10) and
(11) of [6] when summation is carried out lead to formulas (12) and (13), and formula
(8) gives (10) and (11) when tangential and normal parts are separated. Conversely,
if (10)-(13) hold then the equivalent formulas (8) and (9) hold, and for A # 0, define
Zo := 2 — (1/X)AZ. Then by taking an arbitrary X € I'(T'M), since Z is the position
vector of M in HW(m + 1) we have Vxi = X and

Vxio =X+ (1/\)Vx[nH + Zo(ei, e;) ]

=X+ (1/N[no(X,H) —nAyX +nVH
N Aperen X +23" o(h(X, ), €:)]
=X+ (/N o(B.X,e,) —nAxH + VX —2c(n+1)X + 2¢ JSX]

r

= X + (1/A)(=AX) =0

by (7), (8) and (9) (cf. [6, p. 284]). Hence %, is a constant vector and AZ; = A7y
where Z; = T — g, proving that z is a 1-type immersion. [ ]

We are ready now to prove the main theorem :
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Proof of the Main Theorem. If for a local normal frame {e,}, r =n+1,...,2m, we
choose e,11 to be parallel to the mean curvature vector H, then H = «e,,11 deter-
mines the mean curvature « of the immersion which also equals o = (1/n) tr A,, 1.
Because of a different choice of direction of the normal and absence of orientability in
general, « is determined up to a sign, but o = (H, H) is well defined throughout.
Let us show first that the mean curvature « is constant and that JH is tangent to
M™. Noting that >; h(e;, Se;) = 0 since h is symmetric and S is skew-symmetric,
let X =Y =¢;in (12) and add on i to get

(n*+2n)H +nY (JH, e)Je;—2)  JApee; =0,

from which it follows that JH is tangent to M. In fact JH = —=2/n(n+1)>; Ape,e;.
Then by (11) we have

nX{(H,H) =2n(VyH, H) = —4c(JSX, H) = 4c(J X, JH) = 0,

which implies that the mean curvature « is constant. We shall eventually show that
M must be a CR submanifold (in fact, complex, totally real, or a hypersurface) of
CQ™. There are two possibilities regarding av: (1°) a =0 or (2°) a # 0. lf a =0
then from (8) it follows that 2¢(JX)r = [A—2¢(n+1)]J X. Therefore, if A = 2¢(n+1)
then (JX)r = 0 for every X and consequently M is totally real. On the other hand
if A # 2¢(n+1) then (JX)n = 0, so that M is a J-invariant (complex) submanifold.
Case a # 0 is more interesting. Assume that the constant mean curvature is nonzero
so that JH is a nonzero tangent vector. For each point p € M denote by Dj the
maximal subspace of T}, M having the property that J Dj - TpiM , and let D, be the
orthogonal complement of sz in T,M and L, the orthogonal complement of JD;
in TpiM . Then we have the following orthogonal splitting:

T,CQ™ =D, ® Dy & JD, & L,,

where JD, C D, & L,. We are going to show that actually JD, = D,. Since
JH € D*, D, is nonempty, and since S(D,) = 0 we have 0 = (S(D,),D,) =
—(D,, S(D,)), which shows S(D,) C D,. Moreover, S(D,) = D,, for otherwise,
there exists a nonzero vector Y € D, such that Y L S(D,). Then (SY,D;-) = 0 and
(SY,D,) = —(Y,5(D,)) = 0, and hence SY = 0 = Y € D, which contradicts
the maximality of sz. Next we will show that | = dimD, and k = dim Dj do not
depend on p and hence they are constant. Putting & = H in (13) we get

na?X +2Ag X =n({X, JH)JH + 2Jh(X, JH).

Thus, na’X +2ApX € Dy for every X € I(TM). In particular for X € D, from
(10) we get

na’X +2ApX = (na’ + 2b)X + (4¢/n)S*X € D, .

However, both X and S?X are in D,, and therefore both sides of the equation
above are zero, hence Ay X = —(na?/2) X for X € D,. From (10) it is also clear
that AgX = bX for X € sz. Therefore, with respect to the splitting T,M =
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0

DPEB’Z);, Ap has the block form <_TOII o

of indicated order. Thus

) , where I's are the identity matrices

na® = trAy = —na®l/2 + bk = const (14)

and [+ k = n, therefore dimensions [, £ do not depend on a particular point. Differ-
entiability of the distributions D, D+ follows by an argument as in [13, vol 11, p.38].
Let Q be the fundamental Kahler 2-form on CQ™ ie. Q(X,Y) = (X, JY). Take
arbitrary vector fields X,Y € D+ and Z € D. Then since JX, JY € T+M and Q is
closed we get

0 =3dQX,Y, Z)
=XQVY,2)+YQZ,X)+ ZQ(X,Y)
- QX,Y],Z2) = QY, Z], X) — Q([Z, X],Y)
= —([X.Y],JZ) = —([X,Y],52),

and thus [X, Y]_: VXY_— VyX € D*. Since CQ™ is Kahler it follows that for
X,YE’DL, JVXY:VX(JY) i.e.

JVxY +Jh(X,Y) = —A; X + V%(JY).
Consequently,
J[X,Y] = (A;xY — Ay X) + Vx(JY) = VE(IX). (15)

Since [X,Y] € Dt, the tangent part in this equation vanishes, i.e. AjxY —
Ajy X = 0. In particular, when Y = JH then

AgX + Ayx(JH) =0, for every X € D . (16)

Suppose now that dim D+ > 2 and there exists a unit vector X € Dt such that
X 1 JH. By putting Y = JH in formula (12) and taking the inner product
(—, JX) we get

0=2(h(X,JH), JX) +na’ + 2(Ap X, X)

= 2(A;x(JH), X) +na® + 2(Ag X, X) = na?

by (16). Since we assumed « # 0 this is a contradiction, which means that k =
dimD+ = 1. From the block form of Ay we get by setting X € D, £ = H in
(13) that A(X,JH) = 0 for X € D, and by setting X =Y = JH in (12) we
have h(JH, JH) = bH, where b = n(n + 1)a?/2 # 0 is a constant. Since JH is
tangent to M and autoparallel [6, Th.2], and dim D+ = 1, it follows that V5V
and Vy(JH) are both in D whenever Y € D. Finally, we use (11) and the Codazzi
equation (Vxh)(Y,Z) — (Vyh)(X,Z) = (R(X,Y)Z)y with X =Z = JH, Y € D,
to conclude that VX H = 0 [6, Lemma 3]. Then (11) shows that F(SX) = 0 for
every tangent vector X, and since S(D) = D it follows that JD = D, i.e. D is
a holomorphic subbundle. Consequently, £ is holomorphic as well. Since e, | H
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for e, € L, by putting £ = e, in the formula (13) we get A, = —JA, where
e = Je, € L. On the other hand, the Kahler condition gives

Vxer = JVxe, = —AnX 4 Vxer = —JAX + JVxe,.

Since (H,e,) =0 and H is parallel, both Vxe,, JVxe, € L. Then the last equation
gives A~ X = JA,X and therefore A« = A, = 0 for e, € L. This implies that
the first normal space N; := Spanp{Imageh} equals JD+ = R{H} at each point.
Since Nj is parallel, the reduction of codimension theorem [5] (see also [12], [16] )
says that M must be a real hypersurface of a complex totally geodesic CQ"+1/2
in CQ™. By a result of [10] there is no real hypersurface of a complex hyperbolic
space which is of 1-type. On the other hand, a result of [15] says that a 1-type real
hypersurface of CP™ is locally congruent to a geodesic hypersphere as given in (iii)
of the Main Theorem. As a matter of fact, if £ is the unit normal of a hypersurface
of CQ"1)/2 and A = A the shape operator, then from dim D+ = 1, the block
form of Ap, its trace tr Ay, (14) and (10) we get o® = 4c/n*(n + 2). Thus, when
c = —1 we see that a? < 0 which is a contradiction. In the projective case we get
a=-=2/nyn+2and A =2(n+1)(n+3)/(n+2) and then the formulas (10)-(13)
reduce to

n+1 1
A(JE) = — JE, AX=—X, for X € D.
(7€) vn+2 ¢ vn+2
Therefore the hypersurface has two constant principal curvatures p; = —\7:712 of

multiplicity 1 and pu, = of multiplicity n — 1. According to the results of

1
Vn+2
Takagi [19] and Cecil-Ryan [2], this hypersurface is an open portion of the geodesic
hypersphere 7 (S'(1/1/(n + 3)) x S”(\/(n +2)/(n + 3))) of radius p with respective

curvatures 2cot(2p) and cotp, p € (0,7/2), where in our case cot p = 1/y/n + 2.
On the other hand this hypersurface is indeed of 1-type by Lemma 2.

Returning back to the case o = 0, we saw that then M"™ must be either a
complex submanifold or a totally real submanifold of CQ™. If M is minimal and
totally real in CQ™ then T+ M = J(TM) @ L . From (13) we have that for n €
L, A, X =JA;X =0 and thus Imh C J(T'M). For § € J(T'M), again by (13)
AeX = Jh(X, JE), and the Kéhler condition

Vx(JE) = JVxE & Vx(JE) + X, JE) = —JAX + JVE

then gives V& = —JVx(J€) € J(T'M). Thus J(TM) is a parallel subbundle and
TM & J(TM) is J invariant. By the reduction theorems of [5], [16] and [12], there
exists a complex totally geodesic CQ" C CQ™ such that T,(CQ™) = T,M & J(T,M)
for every p and M" is totally real submanifold of CQ". Now we check that such
submanifolds are indeed of 1-type. Let H denote the mean curvature vector of M"
in HY(n+1) ¢ HY(m+1). From Lemma 1 we have 3, o(e;, €;) = —2c(n-+1)742c 1,
so we get

AF—TI/(n+1)=AZ=—nH = —ia(ei,ei) =2c(n+1)(z—-1/(n+1)).

Thus, if we denote 7y = T —1/(n+1), it follows AZ; = 2¢(n+1)Z; and 7 is therefore
a 1-type immersion.
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If M is complex, from (12) we get h(X,Y) = Jh(X,JY). But from VxJY =
JVxY it follows h(X,Y) = —Jh(X,JY). Thus h = 0, i.e. submanifold is totally
geodesic and therefore an open portion of CQ™? (neven). But it is well known
that such submanifolds are of 1-type in the corresponding spaces H)(n/2 + 1) C
HM(m +1). See [17], [10], [3], or apply the same kind of reasoning as used above
for totally real submanifolds. [

Corollary 1. Let M™ be a complete connected Riemannian manifold and x :
M"™ — CQ™ an isometric immersion into a non-Euclidean complex space form.
Then x is of 1-type if and only if
(i) n is even , M™ is congruent to a complex space form CQ™? and x embeds M"
as a complex totally geodesic CQ™? c CQ™.

(ii) M™ is immersed as a totally real minimal submanifold of a complex totally
geodesic CQ™ C CQ™.

(iii) n is odd and M"™ is embedded by x as a geodesic hypersphere of radius p =
tan~!'v/n+2 of a complex, totally geodesic CP"t1)/2 c CP™.

Proof. We need to clarify only parts (i) and (iii). If M™ is complete, the proof
of the main theorem shows that z(M™") is either CQ™? C CQ™ of case (i), or a
geodesic (distance) hypersphere of case (iii). According to [13, vol.I, Th. IV.4.6]
and [9, Exercise 2.108] M™ is a covering space of z(M"). It is well known that
both CP™ and CH" are simply connected, and the same is true for a geodesic
hypersphere in CP"™ which has the diffeomorphic type of S**~!. As a matter of
fact, geodesic hyperspheres are models of the so called Berger spheres, i.e. odd
dimensional spheres with metric scaled along the fibers of the Hopf fibration [21].
Therefore M™ is isometric to x(M"™) and z is an embedding in cases (i) and (iii). m

Totally real minimal submanifolds M"™ C CQ™ of case (ii) play the role of
Lagrangian submanifolds and they seem to be ample in number [6, Remark 1]. At
present time there is no exhaustive classification of such submanifolds. Also, I would
like to point out that the hypersurface of case (iii) was mislabeled as Mg(n_l) /o In
one place in [6, Th.1 |. The notation ng is usually reserved for a minimal hy-
persurface of CP™ obtained by the Hopf projection of generalized Clifford surfaces
S2p+1(\/%) X qu“(\/%) C S+l ptg=m—1, where the spheres lie in com-
plex subspaces of C™! [14]. Thus, Mg(n_l) /2 would denote the minimal geodesic

hypersphere 7(S'(,/-45) x S™(,/725)) € CP™/2 of radius p = cot™'(1/y/n),
which is different than a nonminimal hypersphere in (iii).

From the considerations above it follows that the values A = 2¢(n+2), A = 2¢(n+
1) and A = 2(n+1)(n+3)/(n+2) are the corresponding eigenvalues of the Laplacian
for three cases (i)-(iii) of the Theorem. Thus, if Spec (M™) denotes the spectrum of
the Laplacian on a compact manifold M™, all eigenvalues are nonnegative and we

have

Corollary 2. If M™ is the geodesic hypersphere of case (iii) then 2(n + 1)(n +
3)/(n +2) € Spec(M™); if M™ is a compact totally real minimal submanifold of
CP"™ then 2(n + 1) € Spec(M™), and there exists no compact totally real minimal
submanifold M™ of CH™.
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We remark that for the geodesic hypersphere of case (iii), the eigenvalue listed
above is the first nonzero eigenvalue A; since for a geodesic hypersphere of radius p
in CP(”+1)/2,

)\lzmin< 1 n 2(n—|—1)>

cos2p sin’p’  sin?p
according to results of [1] and [11]. Moreover, the radius p = tan™' v/n + 2 is the

largest radius for which a geodesic hypersphere around a point in CP"+1/2 (n odd)
is stable in the sense of [1].
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