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Abstract

We classify all surfaces which are both, centroaffine-minimal and equiaffine-
minimal in R3.

1 Introduction.

In equiaffine differential geometry, the variational problem for the equiaffine area
integral leads to the equiaffine minimal surfaces, such surfaces have zero equiaffine
mean curvature H(e) = 0. These surfaces were called affine minimal by Blaschke
and his school ([1]). Calabi [2] pointed out that, for locally strongly convex surfaces
with H(e) = 0, the second variation of the area integral is negative, so he suggested
that the surfaces with H(e) = 0 should be called affine maximal surfaces. Wang [13]
studied the variation of the centroaffine area integral and introduced the centroaffine
minimal hypersurfaces, such hypersurfaces have the property that traceG∇̂T̂ ≡ 0,
where G is the centroaffine metric, ∇̂ the centroaffine metric connection and T̂ the
centroaffine Tchebychev form (see the definitions in §2). The study of Wang [13]
leads to the more general definitions (and the generalizations) of the Tchebychev
operator and Tchebychev hypersurfaces, see [5], [8], [9] and [10].

In this paper, we consider the centroaffine surfaces which are centroaffine-minimal
and equiaffine-minimal in R3. We give the following classification theorem.
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Theorem. Let x : M → R3 be a surface both centroaffine-minimal and equiaffine-
minimal. Then x is centroaffinely equivalent to one of the following surfaces in
R3:

(i) x3 = xα1x
β
2 ,

where α and β are constants satisfying:

α = 1, β 6= 0 or β = 1, α 6= 0 or α 6= 0, α + β = 0;

(ii) x3 = [exp(−α arctan
x1

x2

)](x2
1 + x2

2)
β,

where α and β are constants satisfying:

β = 0, α 6= 0 or α = 0, β = 1;

(iii) x3 = −x1(α log x1 + β log x2),

where α and β are constants satisfying:

α = 0, β 6= 0;

(iv) x = (v, a(v)eu, b(v)eu), v > 0,

where {a(v), b(v)} are the fundamental solutions of the differential equation y′′(v) -
ϑ(v)y(v) = 0 and ϑ(v) is an arbitrary differential function of v.

2 The centroaffine surfaces in R3.

Let x : M→ R3 be a surface and [ , , ] the standard determinant in R3. x is said
to be a centroaffine surface if the position vector of x, denoted again by x, is always
transversal to the tangent plane x∗(TM) at each point of M in R3. We define a
symmetric bilinear form G on TM by

(2.1) G = −
2∑

i,j=1

[e1(x), e2(x), eiej(x)]

[e1(x), e2(x), x]
θi ⊗ θj ,

where {e1, e2} is a local basis for TM with the dual basis {θ1, θ2}. Note that G
is globally defined. A centroaffine surface x is said to be nondegenerate if G is
nondegenerate. We call G the centroaffine metric of x. We say that a surface is
definite (indefinite) if G is definite (indefinite).

For the centroaffine surface x, let ∇ = {Γkij} and ∇̂ = {Γ̂kij} be the induced
connection and the Levi-Civita connection of the centroaffine metric G. We define
the cubic form C by (in the following, we use the Einstein summation convention)

(2.2) Γkij − Γ̂kij =: Ck
ij, Cijk := GkmC

m
ij , i, j, k,m = 1, 2.
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We know that C = Cijkθ
iθjθk is the centroaffine Fubini-Pick form for x which is

totally symmetric. The Tchebychev vector field and the Tchebychev form are defined
by

(2.3) T := T jej =
1

2
GikCj

ikej,

(2.4) T̂ := Tjθ
j = GijT

iθj.

It is well-known that T and T̂ are centroaffine invariants.

Definition. Let x : M→ R3 be a centroaffine surface. If traceG∇̂T̂ = Gij∇̂iTj ≡ 0,
x is called a centroaffine minimal surface. ([13])

Remark 2.1. ∇̂T̂ is symmetric ([13]).

Remark 2.2. From the definition of the centroaffine minimal surface we know that

1. (1) the proper affine spheres are centroaffine minimal surfaces;

2. (2) the centroaffine surfaces with parallel Tchebychev form are centroaffine
minimal surfaces ([9]).

Example 2.1. The surface defined by

(2.5) x3 = xα1x
β
2 ,

for any α, β ∈ R, αβ(α+ β− 1) 6= 0, is a centroaffine minimal surface in R3. It can
be written as

x = (eu, ev, eαu+βv).

The centroaffine metric is flat; it is given by

G =
α2 − α

α + β − 1
du2 + 2

αβ

α + β − 1
dudv +

β2 − β
α+ β − 1

dv2.

When 0 < α < 1, 0 < β < 1 − α or α < 0, β > 1 − α or α > 1, 0 > β > 1 − α,
the surface is positive definite; when α < 0, β < 0, the surface is negative definite;
otherwise, the surface is indefinite. For the Tchebychev form T̂ we have

T1 =
1

2
(1 + α), T2 =

1

2
(1 + β),

‖T̂‖2 = GijTiTj =
1

4
(6− α

β
− β

α
+

1

β
+

1

α
+ α+ β).

Obviously, ∇̂T̂ ≡ 0.

Example 2.2. The surface defined by

(2.6) x3 = [exp(−α arctan
x1

x2
)](x2

1 + x2
2)
β,



580 H. L. Liu

for any α, β ∈ R, (2β − 1)(α2 + β2) 6= 0, is a centroaffine minimal surface in R3. It
can be written as

x = (eu sin v, eu cos v, e2βu−αv).

The centroaffine metric is flat; it is given by

G = 2βdu2 − 2αdudv +
2β + α2

2β − 1
dv2.

When 2β > 1, the surface is positive definite; otherwise, the surface is indefinite.
For the Tchebychev form T̂ we have

T1 = 1 + β, T2 = −1

2
α,

‖T̂‖2 = GijTiTj =
4α2 + 8β2 + 4β3 + α2β + 4β

2(4β2 + α2)
.

Obviously, ∇̂T̂ ≡ 0.

Example 2.3. The surface defined by

(2.7) x3 = −x1(α log x1 + β log x2),

for any α, β ∈ R, β(α+ β) 6= 0, is a centroaffine minimal surface in R3. It can be
written as

x = (eu, ev,−eu(αu+ βv)).

The centroaffine metric is flat; it is given by

G =
α

α+ β
du2 + 2

β

α + β
dudv − β

α + β
dv2.

When α > −β > 0 or α < −β < 0, the surface is positive definite; otherwise, the
surface is indefinite. For the Tchebychev form T̂ we have

T1 = 1, T2 =
1

2
,

‖T̂‖2 = GijTiTj =
8β − α

4β
.

Obviously, ∇̂T̂ ≡ 0.

Example 2.4. The surface defined by

(2.8) x = (ev, a(v)eu, b(v)eu),

where {a(v), b(v)} are the fundamental solutions of the differential equation y′′(v)−
y′(v)−ϑ(v)y(v) = 0 and ϑ(v) is an arbitrary differential function of v, is a centroaffine
minimal surface in R3. The centroaffine metric is flat; it is given by

G = 2dudv.

The surface is indefinite. For the Tchebychev form T̂ we have

T1 = 1, T2 = 1,

‖T̂‖2 = GijTiTj = 2.

Obviously, ∇̂T̂ ≡ 0. Let w = ev, then (2.8) can be written as the surface (iv) given
by Theorem.
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3 The Proof of the Theorem.

We need the following lemmata.

Lemma 3.1. Let x : M→ R3 be an immersed surface. Then we have the following
relations between the equiaffine quantities and the centroaffine quantities (We mark
the equiaffine quantities by (e)):

(3.1) G(e) = ρ(e)G,

(3.2) ρ(e)S(e)(X) = εid(X)− ∇̂XT − C(T,X) + T̂ (X)T,

where ρ(e) is the equiaffine support function, ε = ±1, X ∈ TM.

Proof: (3.1) comes from (3.1) of [8]. By (5.1.3.iv) of [12] and (1.3.iv), (4.3.2) of [8],
we can get (3.2). �

Lemma 3.2. Let x : M → R3 be a centroaffine surface. If x is both centroaffine-
minimal and equiaffine-minimal, its Tchebychev form satisfies

(3.3) ‖T̂‖2 = GijTiTj = ±2.

Proof: From (3.2) we have

(3.4) 2ρ(e)H(e) = 2ε− traceG∇̂T̂ − 2‖T̂‖2 + ‖T̂‖2,

where H(e) is the equiaffine mean curvature of x. By the definition, x is centroaffine-
minimal and equiaffine-minimal if and only ifH(e) ≡ traceG∇̂T̂ ≡ 0. Therefore from
(3.4) we get 2ε = ‖T̂‖2. �

Lemma 3.3. Let x : M → R3 be a centroaffine minimal surface with ‖T̂‖2 =
constant 6= 0. Then T̂ is parallel with respect to the centroaffine metric connection
∇̂.

Proof: If the metric of x is definite, we can choose a complex coordinate z = u+ iv,
z̄ = u− iv such that

(3.5) G = εew(dz ⊗ dz̄ + dz̄ ⊗ dz).

If the metric of x is indefinite, we can choose the asymptotic parameter (u, v) such
that

(3.6) G = ew(du⊗ dv + dv ⊗ du).

In both cases, from the condition ‖T̂‖2 = GijTiTj = constant 6= 0 we know that

T1 6= 0 and T2 6= 0. The condition traceG∇̂T̂ = 0 means

(3.7) ∇̂1T2 ≡ ∇̂2T1 ≡ 0.
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‖T̂‖2 = constant yields

(3.8)

(∇̂1T1)T2 + (∇̂1T2)T1 ≡ 0

(∇̂2T1)T2 + (∇̂2T2)T1 ≡ 0.

(3.7), (3.8) and T1 6= 0, T2 6= 0 give

∇̂1T1 ≡ ∇̂1T2 ≡ ∇̂2T1 ≡ ∇̂2T2 ≡ 0.

So ∇̂T̂ ≡ 0. �

The Proof of the Theorem

By Lemma 3.2 and Lemma 3.3, we know that, in R3, the surfaces which are cen-
troaffine -minimal and equiaffine-minimal are the centroaffine surfaces with parallel
Tchebychev form T̂ and ‖T̂‖2 = ±2. Therefore, from [9], we obtain the surfaces
given in Theorem. If we define the centroaffine metric by (2.1), we have ε = 1 in
Lemma 3.1. Therefore, from Example 2.1-2.3,

‖T̂‖2 = GijTiTj =
1

4
(6− α

β
− β

α
+

1

β
+

1

α
+ α + β) = 2

yields
(α− 1)(β − 1)(α+ β) = 0;

‖T̂‖2 = GijTiTj =
4α2 + 8β2 + 4β3 + α2β + 4β

2(4β2 + α2)
= 2

yields
β[α2 + 4(β − 1)2] = 0;

‖T̂‖2 = GijTiTj =
8β − α

4β
= 2

yields
α = 0.

This completes the proof of the Theorem. �
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