Classification of Surfaces in R? which are
centroaffine-minimal and equiaffine-minimal
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Abstract

We classify all surfaces which are both, centroaffine-minimal and equiaffine-
minimal in R3.

1 Introduction.

In equiaffine differential geometry, the variational problem for the equiaffine area
integral leads to the equiaffine minimal surfaces, such surfaces have zero equiaffine
mean curvature H(e) = 0. These surfaces were called affine minimal by Blaschke
and his school ([1]). Calabi [2] pointed out that, for locally strongly convex surfaces
with H(e) = 0, the second variation of the area integral is negative, so he suggested
that the surfaces with H(e) = 0 should be called affine maximal surfaces. Wang [13]
studied the variation of the centroaffine area integral and introduced the centroaffine
minimal hypersurfaces, such hypersurfaces have the property that traceg V1 = 0,
where (G is the centroaffine metric, V the centroaffine metric connection and T the
centroaffine Tchebychev form (see the definitions in §2). The study of Wang [13]
leads to the more general definitions (and the generalizations) of the Tchebychev
operator and Tchebychev hypersurfaces, see [5], [8], [9] and [10].

In this paper, we consider the centroaffine surfaces which are centroaffine-minimal
and equiaffine-minimal in R3. We give the following classification theorem.
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Theorem. Let x : M — R3 be a surface both centroaffine-minimal and equiaffine-
minimal. Then x is centroaffinely equivalent to one of the following surfaces in
R3:

(1> T3 = .T?l‘g,

where o and B are constants satisfying:

a=1,0#0 or f=1a#0 or a#0,a+3=0;

(ii) x3 = [exp(—aarctan i—;)](xf + 22)P,

where o and B are constants satisfying:

6=0,a#0 or a=0,8=1;

(iii) x3 = —z1(alogxy + [log xs),
where o and B are constants satisfying:

a=0,6#0;

(iv) z = (v,a(v)e*,b(v)e"), v >0,

where {a(v),b(v)} are the fundamental solutions of the differential equation y"(v) -
Y()y(v) = 0 and I(v) is an arbitrary differential function of v.

2 The centroaffine surfaces in  R3.

Let z : M — R3 be a surface and [ , , ] the standard determinant in R3. z is said
to be a centroaffine surface if the position vector of x, denoted again by =z, is always
transversal to the tangent plane z,(TM) at each point of M in R3. We define a
symmetric bilinear form G on TM by

(2.1) P S G R CORCT1CO) ey

i,j=1 [61(1'),62(1'),1']

where {e1,es} is a local basis for TM with the dual basis {6',6?}. Note that G
is globally defined. A centroaffine surface z is said to be nondegenerate if G is
nondegenerate. We call G the centroaffine metric of x. We say that a surface is
definite (indefinite) if G is definite (indefinite). -

For the centroaffine surface z, let V = {T};} and V = {ffj} be the induced
connection and the Levi-Civita connection of the centroaffine metric G. We define
the cubic form C' by (in the following, we use the Einstein summation convention)
(2.2) Iy — T = Ch

. m
57 Cijk . kacz‘ja

i g k,m=1,2.
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We know that C' = C;;6'070% is the centroaffine Fubini-Pick form for z which is
totally symmetric. The Tchebychev vector field and the Tchebychev form are defined
by

. 1 . .
(23) T := Tjej = iG’kC’fkej,

(24) f = Tj@j = GUTZQJ
It is well-known that T and T are centroaffine invariants.

Definition. Let z : M — R3 be a centroaffine surface. If traceVT = GV, T; =0,
x is called a centroaffine minimal surface. ([13])

Remark 2.1. V7T is symmetric ([13]).

Remark 2.2. From the definition of the centroaffine minimal surface we know that
1. (1) the proper affine spheres are centroaffine minimal surfaces;

2. (2) the centroaffine surfaces with parallel Tchebychev form are centroaffine
minimal surfaces ([9]).

Example 2.1. The surface defined by
(25> L3 = .T?l‘g,

for any «, 3 € R, af(a+ 3 —1) # 0, is a centroaffine minimal surface in R3. Tt can

be written as

T = (eu’ ev’ eozu—i—ﬂv).

The centroaffine metric is flat; it is given by
2 _ 2 _
a+p—1 a+p—1 a+ -1

When0<a<1l,0<f<l—aora<0,>1—-aora>1,0>03>1-aq,
the surface is positive definite; when o < 0, 3 < 0, the surface is negative definite;
otherwise, the surface is indefinite. For the Tchebychev form T we have

1 1
T = 5(1 +a), Ty = 5(1 + ),

- . 1, o B 1 1
Hﬂﬁzamﬂzzw—g—a+g+a+a+m.

Obviously, VT =0.
Example 2.2. The surface defined by

(2.6) x3 = [exp(—aarctan i—:)](x% + 22)",
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for any «, 8 € R, (28 — 1)(a? + 3?) # 0, is a centroaffine minimal surface in R3. Tt
can be written as

r = (e“sinv, e cosv, e,
The centroaffine metric is flat; it is given by
28+ a?
23 — 1
When 23 > 1, the surface is positive definite; otherwise, the surface is indefinite.
For the Tchebychev form 7' we have

G = 2pdu?* — 2adudv + dv?.

1
lel—l—ﬁ, TQZ__O[,

2
IT|]* = G'T,T; = fot 8522<I£ﬁ+3 ;‘;‘25 4
Obviously, VT =0.
Example 2.3. The surface defined by
(2.7) 3 = —z1(alogxy + [log xs),

for any a, B € R, B(a+ 3) # 0, is a centroaffine minimal surface in R3. It can be
written as
x = (e" e, —e"(au + [v)).
The centroaffine metric is flat; it is given by
G= " a2 duao—
a+ [ a+p a+f

When o« > —(3 > 0 or a« < —( < 0, the surface is positive definite; otherwise, the
surface is indefinite. For the Tchebychev form T" we have

dv?.

T1:1,T2:%,
N g 80 — «
T =G'TT) = ———.
ITI* = GYTT; = =3

Obviously, VT =0.
Example 2.4. The surface defined by
(2.8) x = (e, a(v)e", b(v)e"),

where {a(v),b(v)} are the fundamental solutions of the differential equation y”(v) —
y'(v)—9(v)y(v) = 0 and ¥(v) is an arbitrary differential function of v, is a centroaffine
minimal surface in R3. The centroaffine metric is flat; it is given by

G = 2dudv.
The surface is indefinite. For the Tchebychev form T we have
=1, To =1,
1) = GYriy = 2.

Obviously, VT = 0. Let w = ¢?, then (2.8) can be written as the surface (iv) given
by Theorem.
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3 The Proof of the Theorem.
We need the following lemmata.

Lemma 3.1. Let 2 : M — R3 be an immersed surface. Then we have the following
relations between the equiaffine quantities and the centroaffine quantities (We mark
the equiaffine quantities by (e)):

(3.1) Gle) = p(e)G,

(3.2) p(e)S(e)(X) = eid(X) — VxT — C(T, X) + T(X)T,
where p(e) is the equiaffine support function, e = £1, X € TM.

Proof: (3.1) comes from (3.1) of [8]. By (5.1.3.iv) of [12] and (1.3.iv), (4.3.2) of [§],
we can get (3.2). ]

Lemma 3.2. Let 2 : M — R3 be a centroaffine surface. If x is both centroaffine-
minimal and equiaffine-minimal, its Tchebychev form satisfies

(3.3) IT|? = GIVT,T; = +2.

Proof: From (3.2) we have
(3.4) 2p(e)H(e) = 2¢ — traceg VT — 2||T* + ||T||,

where H (e) is the equiaffine mean curvature of z. By the definition, z is centroaffine-
minimal and equiaffine-minimal if and only if H(e) = tracegVT = 0. Therefore from
(3.4) we get 2e = ||T||*. m

Lemma 3.3. Let x : M — R3 be a centroaffine minimal surface with ||T||? =
constant # 0. Then T is parallel with respect to the centroaffine metric connection

V.

Proof: If the metric of x is definite, we can choose a complex coordinate z = u-+iv,
Z = u — v such that

(3.5) G =c¢ce’(dz®@dz +dz ®dz).

If the metric of z is indefinite, we can choose the asymptotic parameter (u,v) such
that

(3.6) G =e"(du ® dv + dv ® du).

In both cases, from the condition |T]|> = G¥T;T; = constant # 0 we know that
Ty # 0 and T3 # 0. The condition tracec,~V7A“ = (0 means

(3.7) ViTy = VT = 0.
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|T||> = constant yields

(3.8)

o~

(/V\1T1)T2 + (/V\1T2)T1 =
(VQTl)TQ + (v2T2)T1 =0

(3.7), (3.8) and Ty # 0, Ty # 0 give

/V\lTl = /V\ng = /V\ng = /V\QTQ = 0.

So VT = 0. ]

The Proof of the Theorem

By Lemma 3.2 and Lemma 3.3, we know that, in R3, the surfaces which are cen-
troaffine -minimal and equiaffine-minimal are the centroaffine surfaces with parallel
Tchebychev form T and ||T||> = £2. Therefore, from [9], we obtain the surfaces
given in Theorem. If we define the centroaffine metric by (2.1), we have ¢ = 1 in
Lemma 3.1. Therefore, from Example 2.1-2.3,

N g 1 a [/ 1 1
TIP=GTiTj=~(6——=—=+=+— =2
|7 j= 6= G- S5+ s tath)
yields
(a=1)(B = 1)(a+3)=0;
. y 4a? + 832 + 483 + o?B + 48
T|*>=GT,T; = =2
H H J 2(4/32 +OZ2)
yields
Bla® +4(8 — 1)%] = 0;
1) = GiTay = = o
4p
yields
a=0.
This completes the proof of the Theorem. [ ]
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