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Abstract

We consider a left-linear analogue to the classical Riemann problem:
Dau = 0 in Rn\Γ
u+ = H(x)u− + h(x) on Γ

|u(x)| = O(|x|n2−1) as |x| → ∞.
For this purpose, we state a Borel-Pompeiu formula for the disturbed Dirac
operatorDa = D+a with a paravector a and some functiontheoretical results.
We reformulate the Riemann problem as an integral equation:

Pau+HQau = h on Γ,

where Pa = 1
2(I + Sa) and Qa = I − Pa. We demonstrate that the essential

part of the singular integral operator Sa which is constructed by the aid of a
fundamental solution of D + a is just the singular integral operator S asso-
ciated to D. In case Sa is simply S and Γ = Rn−1, then under the assumptions

1.H=
∑
β
Hβeβ and allHβ are real-valued, measurable and essentially bounded;

2. (1 +H(x))(1 +H(x)) and H(x)H̄(x) are real numbers for all x ∈ Rn−1;
3. the scalar part H0 of H fulfils H0(x) > ε > 0 for all x ∈ Rn−1,

the Riemann problem is uniquely solvable in L2,C(Rn−1) and the successive
approximation

un := 2(1 +H)−1h− (1 +H)−1(1−H)Sun−1, n = 1, 2, . . . ,
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with arbitrary u0 ∈ L2,C(Rn−1) converges to the unique solution of

Pu +HQu = 1
2(1 +H)u+ 1

2(1−H)Su = h.

Further, we demonstrate that the adjoint operator S∗a = nS−a?n and describe
dense subsets of im Pa and im Qa using orthogonal decompositions. We
apply our results to Maxwell’s equations.

1 Introduction

The following boundary value problem was first formulated by Riemann in his in-
augural dissertation. Since a first attempt towards a solution was made by Hilbert
through the use of integral equations, what we will denote as Riemann problem is
in the literature sometimes also called Hilbert or Riemann-Hilbert problem.

Riemann problem

Let D− be a bounded and simply connected domain in the complex plane and denote
by D+ := C\D− its unbounded open complement. Then the Riemann problem
consists in finding a function f which is holomorphic in D− and D+, which can
be continuously extended from D+ into D+ and from D− into D− satisfying the
boundary condition

f− = Hf+ + h on Γ and f(z)→ 0, z →∞,

uniformly for all directions. Here, H and h are given functions on Γ.

Clifford generalization

Let G be a bounded and simply connected domain in Rn which is bounded by
a Liapunov surface ∂G = Γ. Then we want to investigate the following Clifford
analogue to the classical Riemann problem :

Dau = 0 in Rn\Γ

u+ = H(x)u− + h(x) on Γ

|u(x)| = O(|x|n2−1) as |x| → ∞,

where Da denotes the disturbed Dirac operator D + a, a being a paravector. Using
the Plemelj-Sokhotzki formulae this problem can be transformed into a singular
integral equation on the boundary Γ :

Pau + H(x)Qau = h(x).

The linear Riemann problem in the complex plane is well known, especially the
situation where D− is the unit disk. The main tools here are the existence of a
simple orthonormal system on the unit circle, namely eint, n ∈ N, and a multiplier
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theorem. An analogous orthonormal system can be constructed for the unit sphere
(see [4] or [6]). Unfortunately, it has a very complex structure. A similar multiplier
theorem does not exist. Hence, we have to look for other methods.

Fredholm properties of the singular integral equation which is equivalent to the Rie-
mann problem are investigated by Shapiro and Vasilevski in [17]. But in this paper
there are no results about computing a solution and about the uniqueness of the
solution.

Successive approximation for the singular integral equation in spaces of Hölder con-
tinuos functions was considered by Xu in [21]. However in these spaces it is difficult
to compute the norm of the singular integral operator S. Consequently all results
in [21] involve an unknown constant caused by the norm of the operator S. On the
other hand successive approximation is used straightforwardly such that solvability
is stated only for functions H with ”small” norm.

The best situation for the Riemann problem in Clifford analysis is when G is the up-
per or lower half space Rn and the singular integral operator S in the Hilbert module
L2,C is considered. Then the operator S is unitary and the norm is obviously 1. In
this case we extract an uncomplicated sufficient condition for the unique solvability
of the Riemann problem. Namely, if H =

∑
β

Hβ and all Hβ are real-valued, measur-

able and essentially bounded, (1 + H(x))(1 + H(x)) is a real number for all x and
the scalar part of H0 of H fulfils H0(x) > ε > 0 for all x ∈ Rn−1 then the Riemann
problem is uniquely solvable in L2,C by successive approximation.

In the first sections of this paper we state some function theoretical results for the
Dirac operator Da. The most important fact is the Borel-Pompeiu or Cauchy-Green
formula. The situation where a is a complex number is fully discussed by Xu in
[20]. In the quaternionic algebra the formula was proved by Kravcenko in [9]. We
take another proof based on the method used by Gürlebeck and Sprößig for the
operator D in [8]. From the Borel-Pompeiu formula we obtain the Cauchy formula
and Lusin’s theorem as was done in the case of D by Brackx, Delanghe and Sommen
in [4].

In the general situation with the operator Sa related to the Dirac operator Da we will
see that the main part of the operator is simply S. Unfortunatly, we are not able to
compute the norm of the singular integral operator Sa in L2,C. Nevertheless, taking
into account orthogonality in the Hilbert module L2,C we describe dense subsets of
the set of functions defined on the boundary which can be continuously extended to
functions of kerDa in the domain G and its complement Rn\G respectivly. Here,
we generalize a result of [8] and simplify the proof given there.

Finally, we discuss Maxwell’s equations in the Clifford algebra C0,3 as an application
of our considerations.
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2 Preliminaries

Let R0,n be the real Clifford algebra with generating vectors ei, i, . . . , n, where,
e2
i = −1, and eiej + ejei = 0 if i 6= j and i, j = 1, 2 . . . , n. Besides, let e0 be

the unit element. Further, let C0,n = R0,n ⊗ C be the associated complex Clifford
algebra. Then an arbitrary element b ∈ C0,n is given by b =

∑
β

bβeβ, where bβ ∈ C and

eβ = eβ1 ·eβ2 ·. . .·eβh, β1, β2, . . . βh ∈ {1, ..., n} and β1 < β2 < . . . < βh. A conjugation
is defined by b =

∑
β

bβeβ, eβ = eβh · . . . ·eβ2 ·eβ1 and e0 = e0, ej = −ej, j = 1, . . . , n.

By [b]0 = b0e0 we denote the scalar part of b, whereas Im b =
∑

β,β 6=0
bβeβ denotes the

imaginary or multivector part.
The following facts of Clifford algebras are contained in [7]. In the Clifford-algebra
C0,n we introduce a general substitute for the determinant. This is the norm function

4 : C0,n → C0,n, 4(x) = xx.

Since λx = λx for all λ ∈ C and x ∈ C0,n, clearly 4(λx) = λ24 (x); but, in general,
4 is not a quadratic form on C0,n since 4 is not C-valued on C0,n when n > 2. For
instance, take n ≥ 3 and x = 1 + e1e2e3; then x = x and

4(x) = x2 = 1 + 2e1e2e3 + (e1e2e3)
2 = 2 + 2e1e2e3 6∈ C.

Nevertheless, on the subset

N = {x ∈ C0,n : 4(x) ∈ C\{0}}

on which 4 is C-valued the basic properties of the norm function mirror those of
the determinant.

Theorem 1 (cf. [7]) The set N is a multiplicative subgroup in C0,n which is closed
under scalar multiplication as well as under conjugation. Furthermore

4(xy) = 4(x)4 (y), 4(x) =4(x), x, y ∈ N ,

and for x in N

x−1 =
1

4(x)
x, 4(x−1) =

1

4(x)
.

Additionally we introduce a complex-conjugation by on C0,n as follows :

if bα = b(1)
α + ib(2)

α

then we put b?α = b(1)
α − ib(2)

α and b? =

(∑
α

bαeα

)?
=
∑
α

bα
?eα, b ∈ C0,n,

where i denotes the imaginary unit.
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The sesqui-linear inner product on C0,n is given by

(u, v) =

∑
α

uαeα,
∑
β

vβeβ

 =
∑
α

uαv
?
α

and the Hilbert space norm by

|u| =
∣∣∣∣∣∑
α

uαeα

∣∣∣∣∣ =
(∑

α

|uα|2
) 1

2

They coincide with the usual Euclidean ones on C0,n as a space of complex dimension
2n. This Hilbert space norm will be said to be the Clifford norm on C0,n. But because
this norm is not submultiplicative, we introduce the Clifford operator norm

|b|Op = sup{|bu| : u ∈ C0,n, |u| ≤ 1}

that has the submultiplicative property |ab|Op ≤ |a|Op|b|Op ∀a, b ∈ C0,n. Now, C0,n

becomes equipped with an involution: the Clifford conjugation. But this involution
is complex linear, not conjugate-linear. So for B∗ algebra purposes, we shall take
as involution on C0,n the conjugate-linear extension b → b̃ of conjugation on real
Clifford algebras. Thus

b̃ =

(∑
α

bαeα

)̃
=
∑
α

bα
?(−1)

1
2
|α|(|α|+1)eα,

whereas

b =
∑
α

bαeα =
∑
α

bα(−1)
1
2
|α|(|α|+1)eα.

Theorem 2 (cf. [7]) Under the involution b → b̃ and the Clifford operator norm,
C0,n is a complex C∗-algebra.

Lemma 1 (cf. [7]) We have the following usefull relations :

(i) (au, v) = (u, ãv)

(ii) |aub| ≤ |a|Op|u||b|Op

for all a, b, and u in C0,n.

In particular if a is an element of the real Clifford algebra R0,n,

(iii) |a|2 =4(a) = |a|2Op

whenever the ’norm’ 4(a) = aa is real-valued.

Furthermore, we identify an x ∈ Rn with x =
n∑
i=1

xiei ∈ C0,n.



562 S. Bernstein

3 Function sp aces

A function u =
∑
β

uβeβ belongs to the function space FC iff all real-valued functions

uβ belong to the function space F of real-valued functions.
We denote by C0,α

C (Γ), 0 < α < 1, the space of Hölder-continuous and by CC(Γ) the
space of continuous functions. Additionally L∞,C(Γ) is the space of all measurable
essentially bounded functions on Γ.
We also consider the right-Hilbert-module L2,C(Γ), with the inner product

(u, v) =
∫
Γ

ũvdΓ

which leads to the norm

||u||2L2,C
= [(u, u)]0.

For more details see [4].

4 Dirac-type operators and Cauchy-type integrals

We introduce the following operators :
the Dirac operator

D =
n∑
i=1

ei
∂

∂xi

and the Dirac-type operator

Da = D + a,

where a is a paravector, this means a =
n∑
j=0

ajej, aj ∈ C.

A fundamental solution of Da is given by (cf. [2])

−Ea(x) = −e[ax]0{(D− a0)Kia0(x)},

where

Kia0(x) = Kia0(|x|) =
−1

(2π)
n
2

(
ia0

|x|

)n
2
−1

Kn
2
−1(ia0|x|)

and Kn
2
−1 denotes a Bessel-function of third order, the so-called MacDonalds-func-

tion. Note that Kia0(|x|) is a fundamental solution of 4 + a2
0 (cf. [14]). With this

fundamental solution we define

(Tau)(x) =
∫
G
−Ea(x− y)u(y)dG,

(Fau)(x) =
∫
Γ

Ea(x− y)n(y)u(y)dΓ, x 6∈ Γ,
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where n(y) denotes the outward unit normal on Γ at the point y.
Furthermore, we put

(Sau)(x) = 2
∫
Γ

Ea(x− y)n(y)u(y)dΓ, x ∈ Γ,

and introduce the algebraic projections

Pa = 1
2
(I + Sa) and Qa = 1

2
(I − Sa).

If a = 0 we write E(x) instead of E0(x) an also S instead of Sa, etc. . . . . In
particular we have

E(x) =
1

An

x

|x|n , An =
2π

n
2

Γ
(
n
2

) .

5 Function theoretic results

The first principal application of our considerations is the following:

Lemma 2 Let u ∈ CC(Ḡ), then

(DaTau)(x) =

{
u(x), x ∈ G
0, x ∈ Rn\G.

Proof: We remark that −Ea(x) is a fundamental solution of Da. �

Theorem 3 (Cauchy-Green or Borel-Pompeiu formula) For u ∈ C1
C(G) ∩

CC(Ḡ) we have

(Fau)(x) + (TaDau)(x) =

{
u(x) in G
0 in Rn\Ḡ .

In particular we obtain a Cauchy-type formula

Lemma 3 (Cauchy formula) For u ∈ C1
C(G) ∩ CC(Ḡ) and Dau(x) = 0 in G we

have

(Fau)(x) = u(x) in G

and (Fau)(x) = 0 in G iff u(x) = 0 in G.

Thus functions of the kernel of Da are uniquely determined by their boundary values.
An effect of the Borel-Pompeiu formula is the following theorem.

Theorem 4 Let u ∈ CC(Rn) satisfy (4 + 2
n∑
j=1

aj
∂
∂xj

+ aa)u = 0, where a is a

paravector a =
n∑
k=0

akek. Then u can be represented as

u = ϕ + ψ

where ψ ∈ ker(D + a) in G and ϕ ∈ ker(D + a) in Rn\G.
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Proof: Applying the Borel-Pompeiu-formula twice we get

TaT−a(4 + 2
n∑
j=1

aj
∂

∂xj
+ aa)u = −TaT−a(D − a)(D + a)u =

−Ta(−F−a(D + a)u + (D + a)u) = TaF−a(D + a)u + Fau− u = 0.

Hence

u = Fau + TaF−a(D + a)u,

where Fau ∈ ker(D + a) in G and using the Borel-Pompeiu’s formula again,
TaF−a(D + a)u = −FaTa(F−a(D + a)u) ∈ ker(D + a) in Rn\G. �

Theorem 5 (Plemelj-Sokhotzki formulae) For u ∈ C0,α
C (G), 0 < α < 1, we

have

lim
G3x→x0∈Γ

(Fau)(x) = 1
2
{u(x0) + (Sau)(x0)} = (Pau)(x0)

lim
Rn\Ḡ3x→x0∈Γ

(Fau)(x) = −1
2
{u(x0)− (Sau)(x0)} = −(Qau)(x0).

An important consequence of the Plemelj-Sokhotzki formulae is the identity S2
a = I .

These results can be extended to functions of L2,C .

Theorem 6 (Lusin’s theorem) Let u ∈ C1
C(G)∩CC(G) and Dau = 0 in G ⊂ Rn.

Further, let γ ⊂ Γ be a (n-1)-dimensional submanifold and u(x) = 0 on γ. Then
u(x) = 0 in G.

Lemma 4 Let u ∈ CC(G) and Dau = 0 in G and u = 0 on a (n-1)-dimensional
submanifold γ ∈ G. Then u is identically zero in G.

The proofs may be found in [4, 6, 8, 11, 20].

6 Singular Cauchy-type operators

In this section we want to state some important properties of the operator Sa. First
we demonstrate that the essential part of the operator Sa is just the operator S.

Theorem 7 The operator S : L2,C(Γ)→ L2,C(Γ) is continuous.

The proof can be found e.g. in [8], [10], [11].

Theorem 8 The operator Sa − S is compact in L2,C(Γ).
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Proof: We have

(Sau)(x) = 2
∫
Γ

Ea(x− y)n(y)u(y)dΓ, x ∈ Γ,

(Su)(x) = 2
∫
Γ

E(x− y)n(y)u(y)dΓ, x ∈ Γ,

where

E(x− y) =
1

An

x− y

|x− y|n

and

Ea(x) = e[ax]0{(D − ao)Kia0(x)}

= e[ax]0

 1

(2π)
n
2

n∑
j=1

xjej
|x|n (ia0|x|)

n
2 Kn

2
(ia0|x|) +

ia0

(2π)
n
2

1

|x|n−2
(ia0|x|)

n
2
−1Kn

2
−1(ia0|x|)

 .

Using the properties of modified Bessel functions we get that

e[ax]0
1

(2π)
n
2
(ia0|x|)

n
2 Kn

2
(ia0|x|) =

1

An

+O(|x|α), α > 0, as x→ 0.

Thus

Ea(x)− E(x) =

{
e[ax]0

1

(2π)
n
2
(ia0|x|)

n
2 Kn

2
(ia0|x|)−

1

An

}
xjej
|x|n +

+e[ax]0
ia0

(2π)
n
2

1

|x|n−2
(ia0|x|)

n
2
−1Kn

2
−1(ia0|x|)

As the kernel Ea(x)− E(x) is weakly singular, the corresponding integral operator
Sa − S is compact. �

Theorem 9 The operator Sa : L2,C(Γ) → L2,C(Γ) is continuous.

Proof: We write Sa = S + (Sa − S). As S is continuous and Sa − S is compact, Sa
is also continuous. �

Remark 1 Theorems 7, 8 and 9 are also valid in the spaces Lp,C(Γ), 1 < p <∞.

7 Successive Approximation

In this section we demonstrate that under weak conditions the successive approxi-
mation for the left-linear Riemann problem converges. This means that the problem
is uniquely solvable for all right hand sides. We rewrite our problem into the form

Au = Pau + HQau = 1
2
(1 + H)u + 1

2
(1−H)Sau = h,

where H ∈ L∞,C(Γ). If (1+H) is invertible on Γ then we can investigate the problem

u + (1 + H)−1(1−H)Sau = 2(1 + H)−1h.

An immediate outcome appears in the situation where H(x) =
∑
β

Hβ(x), all Hβ

being real-valued, G is the lower half space Rn− and Sa is simply S.
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Theorem 10 Let G be the lower half space Rn− and assume that

(i) H(x) =
∑
β

Hβ(x)eβ, and all Hβ are real-valued;

(ii) (1 + H(x))(1 + H(x)) ∈ R and H(x)H(x) ∈ R for all x ∈ Rn−1

and

(iii) there exists an ε > 0 with 0 < ε < 1 such that H0(x) > ε for all x ∈ Rn−1.

Then the Riemann problem

Au = Pu + HQu = 1
2
(1 + H)u + 1

2
(1−H)Su = h

is uniquely solvable in L2,C(Rn−1) and the successive approximation

un := 2(1 + H)−1h− (1 + H)−1(1−H)Sun−1, n = 1, 2, . . .

with arbitrary u0 ∈ L2,C(Rn−1) converges to the unique solution u of

Au = Pu + HQu = 1
2
(1 + H)u + 1

2
(1−H)Su = h.

Proof: We have to show that

sup ess |(1 + H)−1(1−H)|Op < ||S||−1.

In Section 9 Lemma 11 we will find out that the Cauchy-type singular integral
operator S is unitary in L2,C(Rn−1) and thus ||S||L2,C = 1. Accordingly, we have to
prove

sup ess |(1 + H)−1(1−H)|Op < 1.

As stated in Theorem 1 and Lemma 1 we can simplify |(1 + H)−1(1 − H)|Op into
|(1 + H)−1(1−H)| if (1 + H)−1(1−H)(1 + H)−1(1−H) ∈ R.

By assumption (ii) (1 + H)(1 + H) ∈ R whence (1 + H)(1 + H) = 1 + 2H0 + |H|2.
As moreover (1 + H)(1 + H) + (1− H)(1−H) = 2 + 2HH we obtain by (ii) that
(1−H)(1−H) ∈ R.

If H0(x) > ε > 0 then 4(1 + H) > 1 + 2ε > 0. Therefore, we get

(1 + H(x))−1 =
(1 + H(x))

|1 + H(x)|2 .

Moreover (1−H)(1−H) = 1−H −H + HH = 1− 2H0 + |H|2 and consequently

(1 + H)−1(1−H)(1 + H)−1(1−H) =
(1 + H)(1−H)(1−H)(1 + H)

|1 + H|4

is real valued on Rn−1. Finally, as by (ii), Im(H + H) = 0 and Im(HH) = 0
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|(1 + H)−1(1−H)|2 =

∣∣∣∣∣(1 + H)(1−H)

(1 + H)(1 + H)

∣∣∣∣∣
2

=

∣∣∣∣∣1 + H −H −HH

1 + H + H + HH

∣∣∣∣∣
2

=

∣∣∣∣∣1− 2Im H − |H|2
1 + 2H0 + |H|2

∣∣∣∣∣
2

=
(1− |H|2 − 2Im H)(1− |H|2 + 2Im H)

(1 + 2H0 + |H|2)2

=
(1− |H|2)2 + 4Im HIm H

(1 + |H|2 + 2H0)2

If there exists an ε > 0 such that the last expression is less than 1 − ε on Rn−1

then the condition for the convergence of the successive approximation is fulfilled.
Assume

(1− |H|2)2 + 4Im HIm H

(1 + |H|2 + 2H0)
2 < 1− ε ⇐⇒

1− 2|H|2 + |H|4 + 4|Im H|2 < (1− ε){(1 + |H|2)2 + 4H0(|H|2 + 1) + 4(H0)
2}

We set

ε̃ := ε(1 + |H|2 + 2H0)
2 ≤ ε sup ess(1 + |H|2 + 2H0)

2;

then ε̃ is an arbitrary positive real number, because ε > 0 was arbitrary chosen.
Hence

1−2|H|2+|H|4+4|Im H|2 < 1+2|H|2+|H|4+4H0|H|2+4H0+4(H0)
2−ε̃

⇐⇒4|Im H|2 < 4|H|2 + 4H0|H|2 + 4H0 + 4(H0)
2 − ε̃

⇐⇒4|Im H|2 < 4(H0)
2 + 4|Im H|2 + 4H0|H|2 + 4H0 + 4(H0)

2 − ε̃

⇐⇒0 < 4H0(2H0 + |H|2 + 1)− ε̃

⇐⇒ε̃ < 4H0|1 + H|2

This condition is fulfilled if (iii) holds. �

Remark 2 The Theorem above tells us that the index of the Riemann problem is
zero under the assumptions made. Especially we need inf H0(x) > 0. In [3] we prove
that the index of the Riemann problem is zero not only in this situation.
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8 Examples

Example 1 Let G be the upper half plane R2
+. Then ∂R2

− = R1. Then we can use
the Clifford algebra R0,2 with the generating vectors e1, e2 to create the singular
Cauchy-type integral operator

Su(x) = − 1

π

∫
R1

(x− y)

|x− y|2 e1e2u(x)dy,

with

u(x) = u0(x)e0 + u1(x)e1 + u2(x)e2 + u12(x)e1e2.

We consider the operator Au = Pu + HQu of the Riemann problem where H has
the same structure as u and we suppose each Hβ(x) to be real-valued. This one-
dimensional problem can be compared with the classical situation by setting

u(x) = u0(x)e0 + u12e1e2 = v(x) + iw(x),

H(x) = H0(x)e0 + H12e1e2 = F (x) + iG(x).

Thus, the simple condition

H0(x) > ε̃ > 0 ∀x

is sufficient for the convergence of the successive approximation.

Example 2 Let G be the upper half space R3
+. Then ∂R3

− = R2. Then we can use
the Clifford algebra R0,2 (Quaternions) with the generating vectors e1, e2 to create
the singular Cauchy-type integral operator

Su(x) = − 1

2π

∫
R2

(x1 − y1)e1 + (x2 − y2)e2

|x− y|3 e12u(x)dy,

with

u(x) = u0(x)e0 + u1(x)e1 + u2(x)e2 + u12(x)e12.

We consider the operator Au = Pu + HQu of the Riemann-problem where H has
the same structure as u and we suppose each Hβ(x) to be real-valued, H(x)H(x)
and (1 + H(x))(1 + H(x)) are real numbers for all x ∈ Rn−1. We get as a sufficient
condition for the convergence of the successive approximation H0(x) > ε > 0 ∀x.
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Example 3 Let G be again the upper half space R3
+. Then ∂R3

− = R2. Then we
use the Clifford algebra R0,3 with the generating vectors e1, e2, e3 and the singular
Cauchy-type integral operator

Su(x) = − 1

2π

∫
R2

(x1 − y1)e1 + (x2 − y2)e2

|x− y|3 e3u(x)dy,

with

u(x) =

u0(x)e0 + u1(x)e1 + u2(x)e2 + u3(x)e3 + u12(x)e12 + u13(x)e13 + u23(x)e23 + u123e123.

We consider the operator Au = Pu + HQu of the Riemann-problem where H has
the same structure as u and we suppose each Hβ(x) to be real-valued. To obtain
a simple criterion for the successive approximation we suppose H(x)H(x) and (1 +
H(x))(1 + H(x)) to be real numbers for all x ∈ Rn−1. Then we get that the condition
H0(x) > ε > 0 ∀x is sufficient for the convergence of the successive approximation.

9 Projections and orthogonal decompositions

It is easily seen that Pa and Qa are algebraic projections. But they are not orthogonal
in the sense of the inner product (., .) of L2,C(Γ). Because Pa and Qa are idempotent
we have orthogonal decompositions

L2,C(Γ) = kerP ∗a ⊕ im Pa,

L2,C(Γ) = kerQ∗a ⊕ im Qa,

where the star denotes the adjoint operator. Thus we are interested in the adjoint
operators. The following lemma helps us to construct the operator S∗a.

Lemma 5 Let z be a complex variable. Then we have (Kν(iz))? = Kν((iz)?) for all
ν ∈ R.

Proof: We mention that the star ? denotes complex conjugation. According to [1]
we have for a complex variable z and a real ν

Kν(iz) = 1
2
iπiνH(1)

ν (−z) = −1
2
iπ(−i)νH(2)

ν (z)

(H(1)
ν (z))? = H(2)

ν (z?), (H(2)
ν (z))? = H(1)

ν (z?).

Thus
(Kν(iz))? =

(
1
2
iπiνH(1)

ν (−z)
)?

= −1
2
iπ(−i)ν(H(1)

ν (−z))? = −1
2
iπ(−i)νH(2)

ν (−z?) =

Kν(i(−z)?) = Kν((iz)?). �

Lemma 6 The conjugate kernel is given by Ẽa(x) = E−a? (−x).

Proof: We have

Ea(x) =

e[ax]0

 1

(2π)
n
2

n∑
j=1

xjej
|x|n (ia0|x|)

n
2 Kn

2
(ia0|x|) +

ia0

(2π)
n
2

1

|x|n−2
(ia0|x|)

n
2
−1Kn

2
−1(ia0|x|)


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From Lemma 5 we get

(Kn
2
−1(ia0|x|))? = Kn

2
−1(−ia?0|x|) and (Kn

2
(ia0|x|))? = Kn

2
(−ia?0|x|).

and thus

Ẽa(x) = e[−a?(−x)]0

 1

(2π)
n
2

n∑
j=1

−xjej
|x|n (−ia?0|x|)

n
2 Kn

2
(−ia?0|x|)+

+
−ia?0
(2π)

n
2

1

|x|n−2
(−ia?0|x|)

n
2
−1Kn

2
−1(−ia?0|x|)

}
= E−a?(−x)

�

Theorem 11 We have

(S∗av)(y) = n(y)(S−a? nv)(y).

In particular for a = 0 we have S∗ = nSn and if Γ = Rn−1 we have S∗ = S.

Proof: We consider

(Sau, v) =
∫
Γ


2

∫
Γ

Ea(x− y)n(y)u(y)dΓy

̃
 v(x)dΓx

=
∫
Γ

2
∫
Γ

ũ(y) n(y) Ẽa(x− y)dΓyv(x)dΓx

=
∫
Γ

ũ(y) n(y) 2
∫
Γ

Ẽa(x− y)v(x)dΓxdΓy

=
∫
Γ

ũ(y) n(y) 2
∫
Γ

Ẽa(x− y) n(x)n(x)v(x)dΓxdΓy

=
∫
Γ

ũ(y)

−2 n(y)
∫
Γ

Ẽa(x− y)v(x)dΓx

 dΓy = (u, S∗av).

Hence,

(S∗av)(y) = −2n(y)
∫
Γ

Ẽa(x− y) v(x)dΓx

= −2n(y)
∫
Γ

E−a?(y − x) n(x)(−n(x))v(x)dΓx = n(y)(S−a? nv)(y).

If a = 0 then S = nS∗n. If moreover Γ = Rn−1 then n = en and E(x− y)en =
−enE(x− y) and thus

(S∗v)(y) = −2en

∫
Γ

(E(x− y))(−e2
n)v(x)dΓx

= −2e2
n

∫
Γ

E(y − x)env(x)dΓx = (Sv)(y). �

Using this we get P ∗a = 1
2
(I + S∗a) and Q∗a = 1

2
(I − S∗a).
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10 Dense subsets related to the orthogonal decomposition

In this section we want to describe dense subsets of im Pa and im Qa in L2,C.
Because S∗a can be expressed in terms of S−a? we find the following useful relations.

Lemma 7 Let v ∈ L2,C(Γ). Then

v ∈ kerP ∗a ⇐⇒ nv ∈ im P−a∗ and v ∈ kerQ∗a ⇐⇒ nv ∈ im Q−a∗ .

Proof: P ∗a v = 1
2
(I + S∗a)v = 0 ⇐⇒ S∗av = −v = nS−a?nv or nv = S−a?nv and this

means nv ∈ im P−a∗ . The other relation can be proved analogously. �

Theorem 12 Let Γa be a smooth Liapunov surface such that Γa ⊂ Rn\G and
dist(G, Γa) > 0 and let {x(e)

n }∞n=1 be a dense subset of Γa. Then {Ea(x− x(e)
n )}∞n=0 is

a dense subset of im Pa ∩ L2,C(Γ).

Proof: First, if v ∈ kerP ∗a then nv ∈ im Pa and thus

(Ea( . − x(e)
n ), v) =

∫
Γ

Ẽa(y − x(e)
n )v(y)dΓ =

∫
Γ

E−a?(x
(e)
n − y)n(y)(−n(y))v(y)dΓ

= − (F−a?(nv)) (x(e)
n ) = 0 ∀n ∈ N.

On the other hand, if

(Ea( . − x(e)
n ), v) =

∫
Γ

Ẽa(y − x(e)
n )n(y){−n(y)v(y)}dΓ

= − (F−a?(nv)) (x(e)
n ) = 0 ∀n ∈ N,

then F−a?(nv) = 0 on Γa and because of Lusin‘s theorem we have F−a?(nv) = 0 on
Rn\G and nv ∈ im P−a∗ and this is equivalent to v ∈ kerP ∗a . Thus

(Ea( . − x(e)
n ), v) = 0 ∀n ∈ N

implies v = 0 in im Pa and so {Ea(x− x(e)
n )}∞n is a dense subset in im Pa. �

In an analogous way we can prove the following theorem

Theorem 13 Let Γi be a smooth Liapunov-surface such that Γi ⊂ G and
dist(G, Γi) > 0 and let {x(i)

n }∞n=1 be a dense subset of Γi. Then {Ea(x − x(i)
n )}∞n=0

is a dense subset of im Qa ∩ L2,C(Γ).

Combining both theorems we can state

Theorem 14 Let Γ, Γi, Γa and x(i)
n and let x(e)

n be as in Theorems 12 and 13. Then
the set {Ea(x− x(i)

n )}∞n=0 ∪ {Ea(x− x(e)
n )}∞n=0 is dense in L2,C(Γ).

Proof: An arbitrary element u ∈ L2,C(Γ) may be written as

u =
1

2
(I + Sa + I − Sa)u = Pau + Qau.

�
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11 Application to Maxwell’s equations

In the physical setting of the problems we follow here [5].
Maxwell’s equations are the fundamental equations of electromagnetism. Electro-
magnetic phenomena in vacuo are described with the help of two functions E and
B defined on the hole space R3

x×Rt with vector values in R3-called respectively the
electric field and the magnetic induction.
These functions E and B are linked with two functions ρ and j defined likewise on
R3
x × Rt, with ρ(x, t) ∈ R and j(x, t) ∈ R3-called respectively charge density and

current density - by the equations, called Maxwell’s equations:



−∂E

∂t
+ rot B− j = 0 the Maxwell-Ampère law,

div E− ρ = 0 Gauss’ electric law,

∂B

∂t
+ rot E = 0 the Maxwell-Faraday law,

div B = 0 Gauss’ magnetic law,

with the usual notation (for E = (E1, E2, E3), x = (x1, x2, x3))


div E =

3∑
i=1

∂Ei

∂xi
,

rot E =

(
∂E3

∂x2
− ∂E2

∂x3
,
∂E1

∂x3
− ∂E3

∂x1
,
∂E2

∂x1
− ∂E1

∂x2

)

In many problems concerning Maxwell’s microscopic equations (in vacuo and in the
whole space R3

x×Rt) one uses, instead of the functions E and B, the two functions:


(x, t)→ A(x, t) ∈ R3 called ”the vector potential”,
and
(x, t)→ V (x, t) ∈ R called ”the scalar potential”,

which are related to E and B by
B = rot A,

E = −grad V − ∂A

∂t
.

(1)

Substituting the expressions into Maxwell’s equations, we obtain the inhomogeneous
linear system:


∂2A

∂t2
−4A + grad

(
div A +

∂V

∂t

)
= j,

−4 V − ∂

∂t
(div A) = ρ.

(2)
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We observe that the functions A and V are not defined in a unique manner by (1)
starting from E and B: if A and V satisfy (1),then for any arbitrary function u of
x and t, A′ and V ′ defined by:

A′ = A + grad u,

V ′ = V − ∂u

∂t

(3)

also satisfy (1). The transformation (A, V )→ (A′, V ′) given by (3) is called a gauge
transformation. As a result of (3), we have (always in R3

x × Rt)

div A′ +
∂V ′

∂t
= div A +

∂V

∂t
+4u− ∂2u

∂t2
(4)

Taking for u a solution of the equation

4u− ∂2u

∂t2
= −

(
div A +

∂V

∂t

)

(where A and V are supposed to be known), we see that it is possible to choose a
pair (AL, VL) such that

div AL +
∂VL
∂t

= 0. (5)

This relation is called the Lorentz condition. With this choise, equations (2) can be
written:

∂2AL

∂t2
−4AL = j,

∂2VL
∂t2

−4VL = ρ.

(6)

Note that (4) with (6) does not determine a unique pair ( bAL, VL) when j and ρ
are known.

As an application of the Hilbert problem we want to consider stationary problems.
The expression ”stationary problems” demands a precise definition. We understand
by that the search for solutions of Maxwell’s equations in the whole space which are
of the form E(x, t) = E0(x)eiωt

B(x, t) = B0(x)eiωt
(7)

with ω a known non-zero real constant. An electromagnetic wave with such a solu-
tion is said to be monochromatic- the electric field then being made up of functions
which are periodic in time (but obviously not every periodic solution of Maxwell’s
equations is of this form). The constant ω is called the pulsation of the electromag-
netic field, and ω

2π
its frequency. We see the charge density ρ and current density j

can be represented by means of ρ(x, t) = ρ0(x)eiωt

j(x, t) = j0(x)eiωt.
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and also the vector and scalar potential: V (x, t) = V0(x)eiωt

A(x, t) = A0(x)eiωt.

Using these relations we obtain from (1) the equations B0(x) = rot A0(x) ,

E0(x) = − grad V0(x)− iωA0(x).

We want to put the relations into Clifford algebra language. For this purpose we

consider Du with the Dirac operator D in C0,3 and u a paravector u = u0e0+
3∑
i=1

uiei =

u0e0 + u. We get

Du =

 - div u
grad u0

rot u

 and (D + α0)u =

 - div u + α0u0

grad u0 + α0u
rot u

 .

Thus we interprete the scalar and the vector potential as a special paravector F (x) =
iV0(x) + A0(x) and the electric field and the magnetic induction as the element
U(x) = −iE0(x) + B0(x) of C0,3 and put

U(x) = (D − iω)F (x)

The scalar part of this equation is zero and represents the Lorentz condition. The
pseudoscalar part equals zero on both sides. The rest is easily seen from


0

−iE0(x)
B0(x)

0

= (D − iω)


iV0(x)
A0(x)

O
0

=


-div A0(x) + iiωiV0(x)
igrad V0(x) + iiωA0(x)

rot A0(x)
0

=


-div A0(x)− iωV0(x)

i(grad V0(x) + iωA0(x))
rot A0(x)

0

 .

The equations (6) for the scalar and vector potential are moved into

(4+ ω2)F (x) = R(x) (8)

where R(x) = (−iρ0(x),−j0(x)). In terms of the Dirac operator (8) is equivalent to

(D + ω)(D − ω)F (x) = −R(x).

If R(x) = 0 (this means there is no source) then our solution can be represented as

F (x) = Φ(x) + Ψ(x)
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where Φ fullfills (D + ω)Φ(x) = 0 in R3
+ and Ψ fullfills (D + ω)Ψ(x) = 0 in R3

−.

Then the Hilbert problem means to determine a F (x) that fullfills

(D + ω)(D − ω)F (x) = 0

and there is a linear relation between Ψ and Φ on ∂R3
+ = ∂R3

− = R2. That is

Φ(x) = H(x)Ψ(x) + h(x).
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