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Abstract

In this paper, we determine the collineation groups generated by Bol re-
flections, the core, the automorphism groups and the full direction preserving
collineation groups of the loops B4n and C4n given by R.P. Burn [6]. These
are infinite classes of Bol loops, whose left section S(L) = {λx : x ∈ L} is
invariant under conjugation with the left translations. We also prove some
lemmas and use new methods in order to simplify calculations in these groups.

1 Introduction

With any loop (L, ·), one can associate several groups, for example its multiplica-
tion groups Gleft(L) and Gright(L) and M(L) = 〈Gleft(L), Gright(L)〉, the groups of
(left or right) pseudo-automorphisms, the group of automorphisms, or the group
of collineations of the associated 3-net. Groups which are isotope invariants are of
special interest. For example, the groups Gleft(L), Gright(L) and M(L) are isotope
invariant for any loop L. These groups contain many information about the loop L,
the standard references on this field are [2], [4], [11].

For some special loop classes, other isotope invariant groups can be defined. For
Bol loops, M. Funk and P.T. Nagy [7] investigated the collineation group generated
by the Bol reflections. The notion of the core was first studied by R.H. Bruck [4] for
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Moufang loops and by V.D. Belousov [3] for Bol loops. Recently, this concept was
intensively used by P.T. Nagy and K. Strambach [9].

In the paper [6], R.P. Burn defined two infinite classes of Bol loops, namely the
loops B4n for n ≥ 2 and C4n for n ≥ 2, n even. These examples satisfy the left
conjugacy closed property, that is, their section

S(L) = {λx : x ∈ L}

is invariant under conjugation with elements of the group Gleft(L) = 〈λx|x ∈ L〉
generated by the (left) translations λx : y 7→ xy.

2 Basic concepts

A loop L is said to be a Bol loop, if

x · (y · xz) = (x · yx) · z

holds for all x, y, z ∈ L. This is equivalent with λxλyλx ∈ S(L) for all x, y ∈ L. In
any Bol loop, the group

N = 〈(λ−1
x ρ−1

x , λx)|x ∈ L〉 (1)

is a normal subgroup of the directions preserving collineation group of the 3-net
belonging to the loop L, cf. [7], [8]. Actually, the fact that (λ−1

x ρ−1
x , λx) is a direction

preserving collineation for all x ∈ L is equivalent with the Bol property for the
coordinate loop. As in [7], we define the epimorphism Φ by

Φ :

{
N → G(L) = Gleft(L)
(λ−1

x ρ−1
x , λx) 7→ λx.

(2)

This map Φ will help us to determine the group N , which acts transitively on the
set of horizontal lines and, in this way plays an important role in the description of
the full collineation group of the 3-net. In general, the only known fact about the
kernel of Φ is that it is isomorphic to a subgroup of the left nucleus of L (see [7],
Theorem 3.1).

The core of a Bol loop (L, ·) is the groupoid (L,+), where the binary operation
“+” is defined by

x+ y = x · y−1x, x, y ∈ L.
This groupoid satisfies the following identities:

x+ x = x
x+ (x+ y) = y ∀x, y, z ∈ L
x+ (y + z) = (x+ y) + (x+ z)

An altarnative way to define the core is via the action of the Bol reflections on the
set of vertical lines of the associated 3-net. In this way, the core turns out to be
strongly related to the group N .

We say that the loop L is left conjugacy closed, if S(L) is invariant under the
conjugation with the elements of G(L). This concept was introduced in the paper
[10] by P.T. Nagy and K. Strambach. They also defined the notion of Burn loop,
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which is a left conjugacy closed Bol loop. Examples for such loops are the following
constructions due to R.P. Burn [6].

The section S(L) of a loop L is a sharply transitive set of permutations. For
any x ∈ L, there is a uniquely defined λx mapping the unit element 1 to x. Thus,
by x · y = yλx, the multiplication of L is given by the set S(L) and the choice of
some unit element 1. Theorem 7 in [5] says that if the set S(L) is invariant under
conjugation with its own elements, different choices of the unit element still give
isomorphic loops, hence a Burn loop is completely determined by its section S(L)
(up to isomorphism).

The loop B4n for n ≥ 2: Let the group G8n be generated by the elements α, β,
γ with the relations α2n = β2 = γ2 = (αβ)2 = id, αγ = γα and βγ = γβ. Clearly,
G8n is isomorphic to D4n × Z2, where D4n = 〈α, β〉 and Z2 = 〈γ〉. Denote by B4n

the set of right cosets of 〈β〉 in G8n and define the section S(B4n) by

S(B4n) = {α2i, α2j+1β, αkβγ : i, j ∈ {1, . . . , n}, k ∈ {1, . . . , 2n}}.
Then, the action of S(B4n) on B4n via right multiplication represents a Burn loop
which is non-Moufang, n ≥ 2. Even if slightly different in construction, it is easy to
verify that these loops are isomorphic to the loops in [6].

The loop C4n for n ≥ 2, n even: Let the group H8n be

H8n = 〈α, β, γ : α2n = β2 = γ2 = (αβ)2 = id, αγ = γα, βγ = γβαn〉.
Similarly to the previous construction, we denote by C4n the set of right cosets

of 〈β〉 in H8n and define the section S(C4n) by

S(C4n) = {α2i, α2j+1β, αkβγ : i, j ∈ {1, . . . , n}, k ∈ {1, . . . , 2n}}.
Again, the action of S(C4n) on C4n via right multiplication represents a Burn loop
which is non-Moufang, n ≥ 2, n even (cf. [6]).

In [10], the authors showed that the square of any element of a Burn loop belongs
to the intersection of the left and middle nuclei. In any Bol loop, these two nuclei
coincide (cf. [8], Proposition 2.1) and form a normal subgroup of the loop (see
Lemma 1). Thus, if L denotes a (left) Bol loop, one can speak of the factor loop
L/Nλ of L by the left nucleus Nλ.

Lemma 1
Let (L, ·) be a (left) Bol loop. Then its left nucleus Nλ is a normal subgroup of L.

Proof. Let (L, ·) be a left Bol loop and consider the groups Gleft(L) and Gright(L).
Let M(L) denote the group generated by Gleft(L) and Gright(L). The Bol identity
x · (y · xz) = (x · yx) · z can also be expressed by ρxzλx = ρxλxρz, or equivalently,
λxρzλ

−1
x = ρxzρ

−1
z ∈ Gright(L). This means that Gright(L) is a normal subgroup of

M(L).
Let now U be a permutation of L with 1U = u and let us suppose that U

centralizes the group Gright(L). Then we have for any x ∈ L
xU = 1ρxU = 1Uρx = ux,

that is, U = λu. Moreover, λuρx = ρxλu for all x ∈ L means exactly that u is
an element of the left nucleus Nλ(L) of L. Hence, T = {λu : u ∈ Nλ(L)} is the
centralizer of the normal subgroup Gright(L) in M(L), it is normal also. This implies
that Nλ(L) = 1T is a normal subgroup of L, see [1], Theorem 3. �



406 G. P. Nagy

Remark. Clearly, if L is a Burn loop, the factor loop L/Nλ is Burn as well. This
means that in the quotient loop L/Nλ of a Burn loop L every element has order 2.

3 The kernel of the map Φ in Burn loops

In this chapter, the kernel of the map Φ will be determined, for the case that the
loop is of Burn type. The elements of ker Φ are of the form (λ, id), with λ ∈ G(L);
thus ker Φ is isomorphic to a subgroup of G(L), say K. (By Theorem 3.1 of [7], even
K ≤ S(Nλ) holds.)

If a1, . . . , ak are elements of a group, then [a1, . . . , ak] denotes the commutator
a−1

1 · · · a−1
k a1 · · · ak. Let L be a Burn loop. For k ≥ 2, we define the following

subgroup Hk of G(L):

Hk = 〈[λx1 , . . . , λxk ]|x1, . . . , xk ∈ L, λx1 · · ·λxk ∈ S(L)〉.

Lemma 2
In any Bol loop, K = ∪kHk. If the loop is of Burn type, we have ker Φ C G(L).

Proof. An element of ker Φ is of the form (ρx0λx0 · · · ρxkλxk , λ−1
x0
· · · λ−1

xk
), where

λ−1
x0
· · ·λ−1

xk
= id, λx0 = λ−1

x1
· · · λ−1

xk
. Thus

x0 · (. . . · (xk−2 · xk−1xk) . . .) = 1.

The Bol property immediately implies that ρxλxρy = ρxyλx for all x, y ∈ L. Then

ρx0λx0 · · · ρxkλxk = ρx0·(...·(xk−2·xk−1xk)...)λx0 · · ·λxk
= λx0 · · ·λxk
= λ−1

x1
· · ·λ−1

xk
λx0 · · ·λxk

= [λx1, . . . , λxk ].

By the left inverse property, there exists an x0 ∈ L such that λx0 · · ·λxk = id if and
only if λx1 · · · λxk ∈ S(L). So we have

ker Φ = 〈[λx0, . . . , λxk ]|x0, . . . , xk ∈ L, λx0 · · ·λxk ∈ S(L)〉 =
⋃
k

Hk.

Since in a Burn loop, the set S(L) is invariant under the conjugation with elements
λy, we have ker Φ / G(L). �

As the square of any element of the Burn loop L is in Nλ, for all n ∈ Nλ,
x, y ∈ L, the commutators [λn, λx] and [λ2

x, λy] belong to H2. Using this we prove
the following lemma.

Lemma 3
Let α1, . . . , αk ∈ S(L) and ᾱi ∈ S(Nλ).

(i) [α1, . . . , αi, αi+1, . . . , αk] ≡ [α1, . . . , αi+1, α
αi+1

i , . . . , αk] (mod H2);

(ii) [α1, . . . , (αiᾱi), . . . , αk] ≡ [α1, . . . , ᾱi, αi, . . . , αk] (mod H2);

(iii) [α1 · · ·αk, ᾱi] ∈ H2;
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(iv) [α1, . . . , αi, ᾱi, . . . , αk] ≡ [α1, . . . , αk] (mod H2).

(v) If the element on the right side of the equivalence (i), (ii) or (iv) is in Hk,
then the element on the left side is in Hk, as well.

Proof. (i) We have α1 · · ·αiαi+1 · · ·αk = α1 · · ·αi+1α
αi+1

i · · ·αk. On the other hand,

α−1
1 · · ·α−1

i α−1
i+1 · · ·α−1

k = α−1
1 · · ·α−1

i+1(α−1
i )αi+1[α

αi+1

i (α−1
i )α

−1
i+1 ]α−1

i+2 · · ·α−1
k

= α−1
1 · · ·α−1

i+1(α−1
i )αi+1 · · ·α−1

k [α
αi+1

i (α−1
i )α

−1
i+1 ]β,

where β = α−1
i+2 · · ·α−1

k ∈ S(L). Now, it is sufficient to show that the expression in

the square bracket is an element of H2: α
αi+1

i (α−1
i )α

−1
i+1 = [α2

i+1, α
−1
i ]α

−1
i+1 ∈ H2.

(ii) By some similar calculation one can show that

[α1, . . . , (αiᾱi), . . . , αk] = [α1, . . . , ᾱi, αi, . . . , αk][αi, ᾱi]
αi+1···αk ,

and because of ᾱi ∈ S(Nλ), the last factor is an element of H2.

(iii) [α1 · · ·αk, ᾱi] = [α2 · · ·αk, ᾱα1
i ][α1, ᾱi]

≡ [α2 · · ·αk, ᾱα1
i ] ≡ · · · ≡ [αk, ᾱ

α1···αk
i ] ≡ id (mod H2).

(iv) [α1, . . . , αi, ᾱi, . . . , αk] = [α1, . . . , αk, ᾱ
αi+1···αk
i ]

= [α1, . . . , αk][α1 · · ·αk, ᾱαi+1···αk
i ]

(iii)
≡ [α1, . . . , αk] (mod H2).

(v) This follows from H2 / Hk / G(L). �

Proposition 1
Let L be a Burn loop and Φ and Hk (k ≥ 2) be defined as in the beginning of
this section and let s = |L : Nλ|. Then ker Φ = Hs−1 if s ≥ 3, and ker Φ = H2 if
s = 1 or 2.

Proof. Let B be a set of representatives from the cosets of Nλ in L such that
1 ∈ B. Then any element of L can be written in a unique way as the product nb,
with n ∈ Nλ, b ∈ B. Let us choose elements x1, . . . , xk, xi = nibi, from L such
that λx1 · · ·λxk ∈ S(L). By Lemma 3 (ii) and (iv), [λx1, . . . , λxk ] ≡ [λb1, . . . , λbk ]
(mod H2). Applying Lemma 3 and b2

i ∈ Nλ several times, one gets [λx1, . . . , λxk ] ≡
[λb′1, . . . , λb′m ] (mod H2), where b′1, . . . , b

′
m are different elements ofB\{1}. Moreover,

λx1 · · ·λxk ≡ λb′1 · · · λb′m (mod S(Nλ)), hence [λx1, . . . , λxk ] ∈ Hm, with m ≤ |B| − 1.
�

Corollary

If the loop L is a group, then ker Φ ∼= H2 = L′.
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Lemma 4
Let the subset B of L be defined as before and let us choose elements b1, b2, b3 ∈ B
such that b3Nλ · (b2Nλ · b3Nλ) = Nλ holds in the quotient loop L/Nλ. Then the
following conditions are equivalent.

(i) λb1λb2λb3 ∈ S(L).

(ii) λbiλbjλbk ∈ S(L) with {i, j, k} = {1, 2, 3}.

(iii) λb1λb2 ∈ S(L).

(iv) λbiλbj ∈ S(L) for all i, j ∈ {1, 2, 3}.

Proof. (i) ⇒ (iii). From b3Nλ · (b2Nλ · b3Nλ) = Nλ we get λb1λb2λb3 = λn, n ∈ Nλ.
Hence λb1λb2 = λb−1

3 n ∈ S(L).

(iii) ⇒ (i). The quotient is a Burn loop, thus b3Nλ = b2Nλ · b1Nλ, b2b1 = b3n,
λb1λb2 = λnλb3 , and so λb1λb2λb3 = λb23n ∈ S(L).

The equivalence (ii)⇔ (iv) can be shown in the same manner. (iv)⇒ (iii) being
trivial, we still have to show (i) ⇒ (ii). Supposing (i), we have

λb2λb3λb1 = λ−1
b1
λb1λb2λb3λb1 ∈ S(L)

and

S(L) 3 λ−1
b3
λ−1
b2
λ−1
b1

= λb3λn3λb2λn2λb1λn1 = λb3λb2λb1λn,

with n1, n2, n3, n ∈ Nλ, and so λb3λb2λb1 ∈ S(L). This is sufficient to imply (ii). �

Proposition 2
If s = |L : Nλ| ≤ 7, then s ∈ {1, 2, 4} and

ker Φ = [S(Nλ), G(L)] = 〈[λn, λx]|n ∈ Nλ, x ∈ L〉.

Proof. The quotient L/Nλ is a Bol loop of order s ≤ 7, and so a group (cf. [5]). In
L, the square of any element is in Nλ, since L/Nλ is an elementary abelian 2-group,
s ∈ {1, 2, 4}. For s = 1 or 2 the statement follows directly from Proposition 1. Let
us suppose that s = 4. If b1Nλ, b2Nλ, b3Nλ are different nontrivial elements of L/Nλ,
then b3Nλ ·b2Nλ ·b1Nλ = Nλ. Suppose that λb1λb2 or λb1λb2λb3 is an element of S(L).
Then, by Lemma 4, for all i, j ∈ {1, 2, 3}, one has λbiλbj ∈ S(L). This means that
for any xi, xj ∈ L, xi,j = bi,jni,j with ni,j ∈ Nλ,

λxiλxj = λniλbiλnjλbj = λn′jniλbjbi ∈ S(L),

thus L is a group, which contradicts s = 4.

This shows that ker Φ = H3 = [S(Nλ), G(L)]. �
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4 The groups generated by the Bol reflections and the cores of

the loops B4n and C4n

Let us denote by σm the Bol reflection with axis x = m (see [7]), by N+ the
collineation group generated by these reflections and by N the subgroup generated
by products of even length of reflections. Since a Bol reflection interchanges the
horizontal and transversal directions, N+ does not preserve the directions, but the
group N does.

Clearly, N is a normal subgroup of index 2 of N+ and by the geometric properties
of Bol reflections, the set Σ = {σx|x ∈ L} is invariant in N+. Thus, the elements
σxσ1 generate N . Using coordinates, we get the form σxσ1 = (px, λx) for these
generators, where px = λ−1

x ρ−1
x , see [8].

The following lemma will help us to determine the orbit of the y-axis under N .

Lemma 5
Let (L, ·) be a Burn loop and let us define the groups

F = 〈px|x ∈ L〉, U = 〈λ2
x|x ∈ L〉.

Then, the orbits 1F and 1U coincide.

Proof. Using the fact that L is left conjugacy closed, we have

1py1 ...pyk = 1λ
−1
yk
...λ−2

y1
...λ−1

yk = 1
λ−2

y′
1

...λ−2

y′
k ∈ 1U ,

which means 1F ⊆ 1U . On the other hand,

1py1 ...pykλ
2
z = 1

λzλ
−1

y′
k

...λ−2

y′
1

...λ−1

y′
k

λz
= 1

py′
1
...py′

k
p−1
z ∈ 1F

shows that 1F is invariant under U . Thus, 1F = 1U . �

Lemma 6
Let (L, ·) be a Burn loop and U ⊆ G(L) be an abelian group containing the left
translations {λm : m ∈ Nλ}. Then the group Φ−1(U) of collineations is abelian, too.

Proof. The action of an arbitrary collineation (u, v) on the set of transversal lines
is vλa, where a = 1u, see [2]. If (u, v) ∈ Φ−1(U), then by Lemma 5 a ∈ Nλ, hence
λa ∈ U and vλa ∈ U . And since U is abelian, this means that the commutator
elements of Φ−1(U) act trivially on the set of horizontal and vertical lines, thus on
the whole point set. �

In the remaining part of this chapter, we describe the structure of the group
invariants of the loops B4n and C4n.

Theorem 3
Let (L, ·) be one of the loops B4n or C4n, n ≥ 2. Then, N = ker Φ o Ḡ, where
Φ induces an isomorphism from the subgroup Ḡ to G(L). Denoting the respective
generators of Ḡ by ᾱ, β̄ and γ̄, and by δ the generator of the cyclic group ker Φ, ᾱ
and γ̄ act trivially on ker Φ, and β̄δβ̄ = δ−1.
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B4n,

n odd

B4n,

n even

C4n,

n ≡ 2 (mod 4)

C4n,

n ≡ 0 (mod 4)

ker Φ Zn Zn
2

Zn
2

Zn
2

|(y-axis)
N | n n

2
n n

2

Table 1: The kernel of Φ and the orbit of the y-axis under N

(L, ·) λx (px, λx)

(a) B4n, C4n, n ≥ 2 α2i ᾱ2iδi

α2j+1β ᾱ2j+1β̄

(b) B4n, n ≥ 2 αkβγ ᾱkβ̄γ̄

(c) C4n, n ≡ 0 (mod 4) αkβγ ᾱkβ̄γ̄δ
n
4

(d) C4n, n ≡ 2 (mod 4) αkβγ ᾱkβ̄γ̄

Table 2: Generating elements for G(L) and N

Proof. In each case of L, ker Φ is isomorphic to a subgroup of the cyclic group Nλ

of order n. Moreover, Proposition 2 implies the results of Table 1.
If L is either B4n, n ≥ 2 or C4n, n ≡ 0 (mod 4), then by Table 1, ker Φ acts

regularly on the orbit (y-axis)N . Hence, in these cases, Ḡ = Ny-axis is a good
choice.

Let us suppose L = C4n, n ≡ 2 (mod 4). Let m be 1α
2
. Then m has order n in

L, it is a generator of the cyclic group Nλ, and the generating element δ of ker Φ can
be assumed to be of the form (λ−2

m , id). Let X be the set of vertical lines of equation
x = 1 or x = m

n
2 . Let us define the subgroup Ḡ as the setwise stabilizer of X in

N . We associate the N -generator (px, λx) with the left translation λx = βγ. Since
1px = 1(βγ)2

= 1α
n

= m
n
2 , this generator interchanges the lines in X. Therefore

|Ḡ : Ny-axis| = 2 and |N : Ḡ| = n/2. Clearly, Ḡ ∩ ker Φ = {id}, and so, Ḡ is a
transversal to ker Φ.

To complete the proof, we consider the action of Ḡ on ker Φ. Applying Lemma 6
to U = 〈α, γ〉 we see that ᾱ and γ̄ commute with ker Φ. Furthermore, since in each
cases of L, β̄ ∈ Ny-axis, hence β̄ = (β, β) ∈ N(1,1) and δβ̄ = δ−1. �

Lemma 7
The reflection σ1 is an automorphism of N , which inverts the generators (px, λx). It
always leaves ᾱ and β̄ invariant and acts on γ̄ and δ in the following way.

σ1 :

{
γ̄ 7→ γ̄, δ 7→ ᾱ−4δ−1 if L = B4n, n ≥ 2 or C4n, n ≡ 0 (mod 4).
γ̄ 7→ ᾱnγ̄, δ 7→ ᾱ−4δ−1 if L = C4n, n ≡ 2 (mod 4);

Proof. Since (px, λx) = σxσ1, the first statement is immediate. To determine the
action of σ1 on the elements ᾱ, β̄, γ̄ and δ, we have to express the generators (px, λx)
of N by these elements. We claim that this is done in Table 2. We therefore use the
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fact that two collineations (u, v) and (u′, v′) coincide if v = v′ and 1u = 1u
′
, see [2].

Moreover, if (u, v) is a generator element for N , then we have 1u = 1v
−2

.
Again, the cases L = B4n, n ≥ 2 or C4n, n ≡ 0 (mod 4) are trivial, since

then ᾱ, β̄ and γ̄ stabilize the y-axis and δ acts on it in a well known way. Let us
suppose L = C4n, n ≡ 2 (mod 4) and denote the N -generator associated to αkβγ
by (u, αkβγ). Then one has 1u = 1(αkβγ)2

= 1α
n

= m
n
2 , and so, (u, αkβγ) ∈ Ḡ. This

gives (u, αkβγ) = ᾱkβ̄γ̄. The results of Table 2 and the lemma follow. �

The core of an arbitrary Bol loop (L, ·) is the groupoid (L,+) with x+y = x·y−1x.
Isomorphic versions of the groupoid can be defined in the following ways.

(S(L),⊕), λx ⊕ λy = λxλ
−1
y λx;

(Σ,⊗), Σ = {σx : x ∈ L}, σx ⊗ σy = σxσyσx.

The isomorphism (L,+) ∼= (S(L),⊕) is trivial, and (S(L),⊕) ∼= (Σ,⊗) can be shown
using σxσ1 = (px, λx). Hence, the permutation group generated by the core acts on
L like N+ acts on Σ by conjugation and this action equals to the action of N+ on
the set of vertical lines. And since Σ generates N+, the group Gcore generated by
the core is isomorphic to N+/Z(N+).

These general properties of the core imply the following result for our special
loops B4n and C4n.

Theorem 4
Let L be equal to B4n or C4n. Then the group Gcore generated by the core is
isomorphic to N+/Z(N+) where

Z(N+) =



〈ᾱn, γ̄, σ1〉 if L = B8;
〈ᾱn, γ̄〉 if L = B4n, n 6≡ 0 (mod 4), n > 2;
〈ᾱn, γ̄, δ n4 〉 if L = B4n, n ≡ 0 (mod 4);
〈γ̄ᾱn

2 , δ
n
4 〉 if L = C4n, n ≡ 0 (mod 4);

〈ᾱn〉 if L = C4n, n ≡ 2 (mod 4).

Proof. One only has to compute the centre Z(N+). If L = B8, then σ1 acts
trivially on N . In any other case, σ1 is a non-trivial outer automorphism and we
have Z(N+) = CZ(N)(σ1), which is very easy to calculate. �

5 Automorphisms of Burn loops of type B4n and C4n

Let (L, ·) be a loop and let u denote an automorphism of L. Then, by conjugation,
u induces an automorphism of the group G(L). Moreover u leaves the section S(L)
and the stabilizer G(L)1 invariant. Conversely, let u be an automorphism of G(L),
normalizing the subgroup G(L)1 and the set S(L). Then u induces a permutation on
the cosets of G(L)1, hence on L. The induced permuation will fix 1 and normalize
S(L), thus u−1λxu = λy for all x ∈ L. Applying this to 1, one gets y = xu, hence
λux = λxu for all x ∈ L. This means u ∈ Aut(L).

In the case of the given loops the stabilizer of 1 consists of {id, β}. First we
calculate its normalizer in the automorphism groups of the left translation groups,
that is, the groups CAut(G)(β), where G is G8n or H8n.



412 G. P. Nagy

Lemma 8
Let G denote the group G8n, n odd. Then CAut(G)(β) ∼= Z∗n × S3, and the elements
of CAut(G)(β) normalize S(B4n).

Proof. Let us define the subgroups A = 〈α2〉 and B = 〈αn, β, γ〉 of G. As |A| = n
is odd, A is a characteristic subgroup of G = A × B. Moreover, B = Z(G)〈β〉 is
invariant in CAut(G)(β), as well. Hence, CAut(G)(β) = Aut(A)×CAut(B)(β) ∼= Z∗n×S3.

On the other hand, S(L) = A{id, αnβ, βγ, αnβγ}. Since the set

{id, αnβ, βγ, αnβγ}

is invariant under CAut(B)(β), the statement follows. �

Lemma 9
Let G denote the group G8n, n even. Then CAut(G)(β) ∼= Z∗n×D8, and the elements
of CAut(G)(β) normalize S(B4n).

Proof. It is enough to consider the possible images of α and γ, let us write them
as α̂ = αiγkβj and γ̂ = αpγqβs, respectively. Clearly, β̂ = β.

If j = 1 then α̂2 = id, which is impossible. The order of α̂ must be 2n, thus
i ∈ Z∗2n. The elements α̂ and γ̂ must commute, s cannot be 1. Also the elements β̂
and γ̂ commute, we must have p = ln with l ∈ Z2.

Let us now suppose that q = 0. Then l = 0 implies γ̂ = id and k = 0 implies
γ 6∈ 〈α̂, β̂, γ̂〉, hence we have l = k = 1. This means α̂n = αni = αn = γ̂, a
contradiction.

Let us denote by u(i, k, l) the automorphism induced by

α 7→ αiγk, β 7→ β, γ 7→ αlnγ,

with i ∈ Z∗2n, k, l ∈ Z2. It is easy to check that this is really an element of CAut(G)(β).
Moreover,

u(i, j, k)u(i′, j′, k′) = u(ii′ + lk′n, k + k′, l + l′),

where one calculates modulo 2n in the first and modulo 2 in the second and third
position.

Let us decompose Z∗2n into Z∗n × Z2 by i = i0 + i1n, i0 ∈ Z∗n, i1 ∈ Z2. Then the
group CAut(G)(β) decomposes into the direct factors

{u(i0, 0, 0) : i0 ∈ Z∗n} and {u(i1n, k, l) : i1, k, l ∈ Z2}.

An easy calculation shows that the second factor is isomorphic to the dihedral group
D8 of 8 elements.

Since we explicitely gave the elements of CAut(G)(β), it can be checked directly
that they leave S(L) invariant. �

Lemma 10
Let G denote the group H8n, n > 2 even. Then CAut(G)(β) ∼= Z∗2n × Z2, and the
elements of CAut(G)(β) normalize S(C4n).
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Proof. As in the preceding proof, we consider the images α̂ = αiγkβj, γ̂ = αpγqβs

of α and γ.
If j = 1, then α̂2 = αiγkβαiγkβ = (γkβ)2 = αkn, α̂4 = id, which is not possible

because of n > 2. If k = 1, then (α̂β̂)2 = (γβ)2 = αn 6= id, hence k = 0 and α̂ = αi,
with i ∈ Z∗2n.

As before, α̂γ̂ = γ̂α̂ implies s = 0 and γ ∈ 〈α̂, β̂, γ̂〉 implies q 6= 0. Finally,
p ∈ {0, n}, since γ̂ = (αpγ)2 = α2p = id.

Thus, any element of CAut(G)(β) is induced by

α 7→ αi, β 7→ β, γ 7→ αlnγ,

and it leaves S(L) invariant. �

Theorem 5
Let (L, ·) be one of the loops B4n or C4n defined at the beginning of this section.
Then

Aut(L) ∼=


Z∗n × S3 if L = B4n, n odd
Z∗n ×D8 if L = B4n, n even
Z∗2n × Z2 if L = C4n, n > 2, n even
D8 if L = C8

Moreover, in any of these loops, each left pseudo-automorphism is an automorphism.

Proof. The case L = C8 is handled in [8], the others in Lemmas 8, 9 and 10. We
only have to prove the second statement. Therefore, let us suppose that u is a left
pseudo-automorphism of L with companion c, that is, for all x, y ∈ L,

(c · xu) · yu = c · (xy)u.

This can be expressed by uλcxu = λxuλc, which implies S(L)u = S(L)λ−1
c .

The following results can be found in [6]. If L = B4n, then the principal isotopes
of L have the four representations S(L), αβS(L), αβγS(L), and βγS(L). If n is
even, then these sections contain 3n + 1, n + 3, n + 3 and n + 1 elements of order
2. If n is odd, S(L) contains 3n elements of order 2 and the others contain n + 2
elements of order 2, n > 2. That means that c is a left companion element of L if
and only if S(L)λc = S(L), that is, c ∈ Nλ and u is an automorphism.

Let now L be equal to C4n. Again the principal isotopes are S(C4n), αβS(C4n),
αβγS(C4n), and βγS(C4n), they contain n + 1, n + 3, 3 and 1 involutions, respec-
tively. If n > 2, then one sees with the above argument that c ∈ Nλ and u is an
automorphism. �

6 Collineation gr oups of the given 3-nets

In this chapter, we determine the full collineation group Γ of the 3-nets belonging to
B4n, n ≥ 3, and C4n, n ≥ 4, n even. The cases B8 and C8 are completely descripted
in [8].

Denote by P the orbit (1, 1)Γ of the origin under Γ. As we know by Corollary
2.8 of [8], for any Burn loop, P is a union of vertical lines and its intersection with
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the x-axis constitute of the points belonging to the left companion elements. In our
cases, these are the elements of Nλ, see Theorem 5. Hence |P | = 4n2.

Let Λ0 be the subgroup 〈α, γ〉 of G(L). The centralizer element αiβγj 6∈ Λ0 in
Λ0 has order 4, that is, any abelian subgroup not contained in Λ0 has order at most
8. This means that if n > 2 then Λ0 is the only abelian subgroup of index 2 in G(L),
it must therefore be characteristic in G(L).

Now, we define the following subgroups of Γ.

T = {(λm, id) : m ∈ Nλ}, Λ = Φ−1(Λ0),
A = {(σ, σ) : σ ∈ Aut(L)}, M = TΛ.

Lemma 11
The subgroup M is an abelian normal subgroup of Γ. Moreover, it is isomorphic to
the direct product Nλ × Λ0 and acts regularly on the orbit P of the origin.

Proof. First we show that M is abelian. By Lemma 6, one sees that the permutation
action of the elements of Λ are all in 〈α, γ〉; the same can be said about the elements
of T . These actions commute, and so, all the elements must commute.

Clearly, T is normal in Γ. The subgroup Λ is invariant in Γ as well, for it is the
homomorphic preimage of a characteristic subgroup.

Suppose that (u, v) is an element of M(1,1). Then v = id, since v = β is not
possible. This implies u = λm, m ∈ Nλ; this yields u = id. Furthermore, on the
one hand, by Λ ∩ T = ker Φ, we have My-axis

∼= M/T ∼= Λ0. On the other hand,
T ⊂ Mx-axis acts transitively on P ∩ y-axis. This means that M acts transitively
on P , thus, regularly. Finally, M = T ×My-axis

∼= Nλ × Λ0. �

Theorem 6
Let Γ be the full collineation group of a 3-net, coordinatized by a loop L, with
L = B4n or C4n, n > 2. Then, Γ can be written as the semidirect product M o
Aut(L), where M is defined as above and the action of Aut(L) on M is defined by
(u, v)σ = (uσ, vσ).

Proof. Obviously, A is isomorphic to Aut(L). By Theorem 10.1 of [2], A is equal to
the stabilizer Γ(1,1) of the origin (1, 1) in Γ. By Lemma 11, M is a normal subgroup
of Γ, acting regularly on the orbit P = (1, 1)Γ. Then, Γ can be written as the
semidirect product M o A ∼= M oAut(L). �

Remark. Note that there is an interesting analogy with the case of group 3-nets:
then one has Γ ∼= (G×G) o Aut(G) (cf. [2], Theorem 10.1).
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