Flag-transitive extensions of dual projective spaces

Cécile Huybrechts* ${ }^{* \dagger}$ Antonio Pasini

Abstract

We classify the flag-transitive circular extensions of line-point systems of finite projective geometries.

1 Introduction

We consider geometries belonging to the following diagram of rank 3 , where $0,1,2$ are the types, q, s are finite orders with $q>1$ and $s+1=\left(q^{n}-1\right) /(q-1)$ for some integer $n>1$, the label c denotes the class of circular spaces and PG^{*} stands for the class of dual projective spaces, namely geometries of lines and points of a projective geometry.

We call these geometries c.PG*-geometries. Given a c.PG*-geometry Γ with orders $1, s, q$ as above, we call q the order of Γ. As $s+1=\left(q^{n}-1\right) /(q-1)$, the residues of the elements of Γ of type 0 are dual n-dimensional projective spaces of order q. We call n the residual dimension of Γ.

A c.PG*-geometry of residual dimension 2 is a finite extended projective plane. It is well-known that just two finite extended projective planes exist, namely $\operatorname{AG}(3,2)$

[^0]and the Witt design $S(22,6,3)$ for the Mathieu group M_{22} (Hughes [12]). Thus, we only consider c.PG*-geometries of residual dimension $n>2$ in this paper. As $n>2$, the order q is a prime power and the residues of the elements of type 0 are isomorphic to the dual point-line system of $\mathrm{PG}(n, q)$.

In the next section we shall describe a flag-transitive c.PG*-geometry of order 2 and residual dimension n, for any $n>2$. We call that geometry Γ_{n}. It is a subgeometry of the D_{n+1}-building over $\mathrm{GF}(2)$ and it is related to the alternating form graph. One more flag-transitive example arises from the D_{4}-building over $\mathrm{GF}(2)$ (see §2.2). It has order 2 and residual dimension 3. We denote it Γ_{3}^{\prime}. In this paper we prove the following:

Theorem 1 The geometry Γ_{n} is the unique flag-transitive c.PG*-geometry of residual dimension $n>3$ and there are just two flag-transitive c.PG*-geometries of residual dimension 3, namely Γ_{3} and Γ_{3}^{\prime}.

The paper is organized as follows. In Section 2 we decribe the flag-transitive examples and also some non flag-transitive ones. Section 3 is devoted to the proof of Theorem 1.

It will be useful for the forthcoming descriptions to have stated some terminology. Given a c. PG^{*}-geometry Γ, the elements of Γ of type $0,1,2$ are called points, lines and planes, respectively. We say that two distinct points are collinear when there is a line incident with both of them. The collinearity graph of Γ is the graph with the points of Γ as vertices and the collinearity relation as the adjacency relation.

2 The known examples

2.1 The geometry Γ_{n}

Let Δ_{n+1} be the building of type D_{n+1} over $\mathrm{GF}(2)$, with $n>2$. Having marked the nodes of the D_{n+1}-diagram as follows

we choose an element a of type 0 if n is odd and of type 2 if n is even. Let H the set of elements of Δ_{n+1} of type 0 at non-maximal distance from a, the distance between two elements of Δ_{n+1} being defined as the minimal length of a gallery stretched between them, as in [20]. Then H is a geometric hyperplane of the partial linear space having as points and lines the elements of Δ_{n+1} of type 0 and 1 , respectively. For every element x of Δ_{n+1}, let $\sigma(x)$ be the 0 -shadow of x, namely the set of elements of Δ_{n+1} of type 0 that are incident with x. (Note that $\sigma(x)=\{x\}$ for all elements of type 0 .) If we remove from Δ_{n+1} all elements x with $\sigma(x) \subseteq H$, what is left is a flag-transitive geometry with diagram as follows and order 2 at all types $i>0$.

Next, we truncate to $\{0,1,2\}$, namely we remove all elements of type $i>2$. Thus, we obtain a c.PG*-geometry, say Γ_{n}, of order 2 and residual dimension n.

The collinearity graph. The collinearity graph of Γ_{n} is the alternating form graph $\operatorname{Alt}(n+1,2)$ (Munemasa, Pasechnick and Shpectorov [15]; also [3, 9.5.B]).

The automorphism group. Let G be the stabilizer of a in $\operatorname{Aut}\left(\Delta_{n+1}\right)$. The group G acts flag-transitively and faithfully on Γ_{n}. It consists of the square matrices of order $2(n+1)$ of the following shape

$$
\left(\begin{array}{ll}
A & A B \\
O & \left(A^{t}\right)^{-1}
\end{array}\right)
$$

with A a non-singular square matrix of order $n+1, B$ an antisymmetric matrix of order $n+1$ and O the null square matrix of order $n+1$. Thus,

$$
G=(V \wedge V): L_{n+1}(2)=2^{(n+1) n / 2}: L_{n+1}(2)
$$

(where $V=V(n+1,2)$). It is known that G is the full automorphism group of the alternating form graph $[3,9.5 .3]$. Hence $G=\operatorname{Aut}\left(\Gamma_{n}\right)$. (We will obtain the same conclusion in the case of $n>3$ as a by-product of the proof of Theorem 1; see Proposition 17.)

When $n>3$, none of the proper subgroups of G is flag-transitive on Γ_{n}. On the other hand, when $n=3$ there is a flag-transitive proper subgroup of G of the form $2^{6}: A_{7}$.

Non-existence of covers and quotients. Munemasa, Pasechnik and Shpectorov [15] have proved that the collinearity graph of Γ_{n}, namely $\operatorname{Alt}(n+1,2)$, does not admit any proper cover. Hence Γ_{n} is simply connected. (We cannot obtain this from our Theorem 1, as the simple connectedness of Γ_{n} will be exploited to finish the proof of that theorem.)

As Γ_{n} is simply connected, a proper flag-transitive quotient of Γ_{n}, if any, arises from a non-trivial subgroup H of $G=\operatorname{Aut}\left(\Gamma_{n}\right)$ acting semi-regularly on the set of elements of Γ_{n} and such that $N_{G}(H)$ acts flag-transitively on Γ_{n} ([18], Chapter 12). However, comparing the above description of G, it is straigthforward to check that no such subgroups of G exist. Thus, Γ_{n} does not admit any flag-transitive proper quotient.

An alternative description. Let $m=\binom{n+1}{2}$. Then Γ_{n} is the affine expansion to $\mathrm{AG}(m, 2)$ of the grassmannian of lines of $\mathrm{PG}(n, 2)$ naturally embedded in $\mathrm{PG}(m-$ 1,2) (see [5, Section 4] for affine expansions). Indeed, that affine expansion is a flag-transitive c. PG^{*}-geometry of order 2 and residual dimension n and it has as many points as Γ_{n}. Thus, in view of Theorem 1, it is isomorphic to Γ_{n}.

2.2 The geometry Γ_{3}^{\prime}

When $n=3$, the partial linear space of 0 - and 1-elements of Δ_{4} is the point-line system of the hyperbolic quadric $Q_{7}^{+}(2)$ and the hyperplane H we remove from Δ_{4} when constructing Γ_{3} is just a tangent hyperplane H of $Q_{7}^{+}(2)$. However, in this case, we can imitate the above conctruction by chosing a secant hyperplane of $Q_{7}^{+}(2)$ as H instead of a tangent one. Thus, let H be a secant hyperplane of $Q_{7}^{+}(2)$ and let Γ_{3}^{\prime} be the subgeometry of Δ_{4} obtained by removing H and all elements of Δ_{4} of type 3. Clearly, Γ_{3}^{\prime} is a c.PG*-geometry of order 2 and residual dimension 3. It has 72 points (whereas 64 is the number of points of Γ_{3}).

Simple connectedness. The complement $\Delta_{4} \backslash H$ of H in Δ_{4} is 2 -simply connected [18, Proposition 12.51]. Hence Γ_{3}^{\prime} is simply-connected, by [17, Theorem $1]$.

The automorphism group. We will see later (§3.3) that $\Delta_{4} \backslash H$ can be recovered from Γ_{3}^{\prime}. In turn, Δ_{4} can be recovered from $\Delta_{4} \backslash H$ (Cohen and Shult [7]). Consequently, the automorphism group of Γ_{3}^{\prime} is the stabilizer of H in $O_{8}^{+}(2)$, namely, $\operatorname{Aut}\left(\Gamma_{3}^{\prime}\right)=S_{6}(2)$. It acts flag-transitively on Γ_{3}^{\prime}.

Non-existence of proper quotients. As Γ_{3}^{\prime} is simply connected and $\operatorname{Aut}\left(\Gamma_{3}^{\prime}\right)$ is isomorphic to $S_{6}(2)$, which is a simple group, Γ_{3}^{\prime} does not admit any flag-transitive proper quotient.

2.3 Some non flag-transitive examples

In this subsection we briefly describe the non flag-transitive c.PG*-geometries we are aware of.

More geometries from Δ_{n+1}. The construction of $\S 2.1$ can be repeated with H any hyperplane of the partial linear space of 0 - and 1 -elements of Δ_{n+1}, provided that the complement $\Delta_{n+1} \backslash H$ of H in Δ_{n+1} is connected. (The structure $\Delta_{n+1} \backslash H$ is connected when $n=3$ for both choices of H and when $n>3$ with H as in $\S 2.1$; maybe, the same is true for any n and any H, but we are not aware of any proof of this claim.)

In this way, when $n=3$ we obtain Γ_{3}^{\prime}. When $n>3$, we still obtain a c.PG*geometry of order 2 and residual dimension n. However, by our Theorem 1, no new flag-transitive examples arise.

Gluings. It is well known that a finite complete graph amits a 1 -factorization if and only if its number of vertices is even. An n-dimensional finite projective space admits a parallelism only if n is odd (Buekenhout, Huybrechts, Pasini [5, 5.4]). On the other hand, all odd dimensional projective spaces of order 2 and all n-dimensional projective spaces with $n+1$ a power of 2 , admit a parallelism (Baker [1], Buetelspacher [2], Denniston [10]).

Let \mathcal{P} be a finite n-dimensional projective space of order q, admitting a parallelism, and let \mathcal{K} be a complete graph with $v=2+q+\ldots+q^{n-1}$ vertices. As noticed above, n is odd. Hence v is even and \mathcal{K} admits a 1 -factorization. Thus, we can glue \mathcal{K} with \mathcal{S} (Buekenhout, Huybrechts and Pasini [5]). A c. PG^{*}-geometry of order q and residual dimension n is obtained in this way. However, by Theorem 1, that geometry is not flag-transitive.

2.4 Remarks on the graphs $\operatorname{Alt}(n+1,2)$ and $\operatorname{Quad}(n, 2)$

As we have noticed in $\S 2.1$, the alternating form graph $\operatorname{Alt}(n+1,2)$ is the collinearity graph of Γ_{n}. The quadratic form $\operatorname{graph} \operatorname{Quad}(n, 2)$ is considered by Munemasa, Pasechnick and Shpectorov [15] in combination with $\operatorname{Alt}(n+1,2)$. These two graphs have the same number of vertices and the same local structure. However, the graph $\operatorname{Quad}(n, 2)$ does not give rise to any c. PG^{*}-geometry. Indeed, there is no way of picking up a family of cliques from $\operatorname{Quad}(n, 2)$ to be taken as planes. This is implicit in Munemasa, Pasechnik and Shpectorov [16] (also in $\S 3.3$ of the present paper).

3 Proof of Theorem 1

In the sequel Γ is a c.PG*-geometry of order q and residual dimension $n>2$. We assume that Γ is flag-transitive and G is a flag-transitive subgroup of $\operatorname{Aut}(\Gamma)$. (However, for some of the lemmas we are going to state in this section there is no need to assume flag-transitivity.)

3.1 Point-stabilizers

Given an element x of Γ, let G_{x} be its stabilizer in G. By K_{x} we denote the elementwise stabilizer in G_{x} of the residue of x and we set $\bar{G}_{x}=G_{x} / K_{x}$. The following is a special case of [11, Lemma 2.8]:

Lemma 2 We have $K_{a}=1$ (hence, $\bar{G}_{a}=G_{a}$) for any point a of Γ.
The next statement is an assembling of results of Kantor [13] and Cameron and Kantor [6].

Lemma 3 Given a point a of Γ, either $G_{a} \leq L_{n+1}(q)$ or $(n, q)=(3,2)$ and $G_{a}=A_{7}$.

3.2 The properties (LL) and (T)

We firstly state some notation to be used in the sequel. Given an element x of Γ, we denote its residue by Γ_{x}, as usual. When x is a point, Γ_{x}^{*} stands for the dual of Γ_{x}.

Given two distinct points a, b, we write $a \perp b$ to mean that they are collinear. By a^{\perp} we mean the set of points collinear with or equal to a. We denote by $\delta(a, b)$ the distance between two points a, b in the collinearity graph of Γ. Accordingly, given a point a and a set of points A, the distance of a from A will be denoted by $\delta(a, A)$.

Lemma 4 The following holds in Γ :

(LL) distinct lines are incident with distinct pairs of points.

Proof. Given a point a, the relation 'having the same points' is an equivalence relation on the set of lines of Γ_{a}^{*} and G_{a} permutes the equivalence classes of that relation. However, by Lemma 3, G_{a} acts primitively on the set of lines of Γ_{a}^{*}. Therefore, either (LL) holds or all lines of Γ have the same points. The latter being impossible, (LL) holds.

According to (LL), given two collinear points a, b, there is a unique line incident with both of them. We shall denote it by the symbol $a b$.

As the (LL) property holds in Γ, the Intersection Property also holds [18, Lemma 7.25]. Hence, no two distinct planes of Γ are incident with the same triple of points. Distinct planes of Γ being incident with distinct sets of points, the planes of Γ may be regarded just as sets of points. Accordingly, we write $a \in A$ (resp. $a \notin A$) to say that a point a and a plane A are (not) incident, we write $A \cap b^{\perp}$ to denote the set of points of A that are collinear with a given point b, and so on.

Lemma 5 The following holds:
(T) every 3-clique of the collinearity graph of Γ is incident with a (unique) plane.

Proof. Assume the contrary and let $\{a, b, c\}$ be a triple of mutually collinear points of Γ not contained in a common plane of Γ. The lines $a b$ and $a c$ are skew in Γ_{a}^{*}. Two cases are to examine.

Case 1. $G_{a} \geq L_{n+1}(q)$. Then G_{a} is transitive on the set of pairs of skew lines of Γ_{a}^{*}. Consequently, given any two lines $l=a x, m=a y$ through a skew in Γ_{a}^{*}, the points x, y are collinear in Γ. Clearly, the same conclusion holds if l and m are coplanar. Therefore, by the transitivity of G on the set of points of Γ, any two points of Γ are collinear. Consequently,

$$
N=1+\frac{\left(1+q+\ldots+q^{n}\right)\left(q+q^{2}+\ldots+q^{n}\right)}{(1+q) q}
$$

is the number of points of Γ. The number of planes of Γ is

$$
N \frac{1+q+\ldots+q^{n}}{2+s}=\frac{N\left(1+q+\ldots+q^{n}\right)}{2+q+\ldots+q^{n}}
$$

By comparing the previous two equalities we see that $2+q+\ldots+q^{n}$ divides the following:

$$
1+q+\ldots+q^{n}+\frac{\left(1+q+\ldots+q^{n}\right)^{2}\left(1+q+\ldots+q^{n-1}\right)}{1+q}
$$

It is straightforward to see that this contradicts the assumption $n>2$. Thus, (T) holds in this case.
Case 2. $(n, q)=(3,2)$ and $G_{a}=A_{7}$. A model of Γ_{a}^{*} can be constructed on $S=$ $\{1,2, \ldots 7\}$ as follows [19, chapter 6] (also [18, p. 279]): the lines of Γ_{a}^{*} are the 3subsets of S, two such subsets X, Y corresponding to skew (concurrent) lines of
Γ_{a}^{*} when $|X \cap Y|=0$ or 2 (respectively, 1). The points of Γ_{a}^{*} are 15 out of the 30 projective planes that can be drawn on S, forming one orbit for A_{7}.

The stabilizer of $a b$ in G_{a} has two orbits of size 12 and 4 respectively on the set of lines of Γ_{a}^{*} skew with $a b$. Assuming that $a b$ corresponds to the subset $\{1,2,3\}$ of S, one orbit, say O_{1}, corresponds to the family of 3 -subsets of S meeting $\{1,2,3\}$ in two points. The four 3 -subsets of S exterior to $\{1,2,3\}$ contribute the other orbit, say O_{2}. Every point of Γ_{a}^{*} (plane of Γ through a) non-incident with $a b$ is incident with exactly three lines of O_{1}, to one line of O_{2} and to exactly three lines concurrent with $a b$.

Let $\{i, j\}=\{1,2\}$ with $a c \in O_{i}$. If for some $l \in O_{j}$ the point of l different from a is collinear with b, then the same holds for all lines of O_{j} and a contradiction is reached as in Case 1. Therefore, given a point $x \in a^{\perp} \backslash\{a, b\}$, we have $x \perp b$ if and only if $a x \in O_{i}$. Thus, given a plane A of Γ incident with $a c$ (hence, not incident with $a b$), a point $x \in A$ is collinear with b if and only if the line $a x$ either belongs to O_{i} or is coplanar with $a b$.

Assume that $a c \in O_{2}$. Then exactly five points of A are collinear with b, namely a, c and three more points c_{1}, c_{2}, c_{3}, with $\left\{a, b, c_{i}\right\}$ contained in a plane for every $i=1,2,3$. Similarly, interchanging a with c, each of the triples $\left\{c, b, c_{i}\right\}$ is in a plane. Thus, replacing a with c_{i}, for $\{i, j, k\}=\{1,2,3\}$ exactly one of the triples $\left\{c_{i}, b, c_{j}\right\}$ and $\left\{c_{i}, b, c_{k}\right\}$ is not contained in a plane. Let the points c_{1}, c_{2}, b be noncoplanar, to fix ideas. Then, as a coplanar triple $\left\{c_{i}, b, c_{j}\right\}$ exists for $i=1,2$, each of $\left\{c_{1}, c_{3}, b\right\}$ and $\left\{c_{2}, c_{3}, b\right\}$ is contained in a plane. Therefore, no triple $\left\{c_{3}, b, c_{j}\right\}$ of non-coplanar points exists; contradiction.

The above forces $a c \in O_{1}$. That is, a point $c \in a^{\perp}$ is collinear with b but not coplanar with $a b$ if and only if the 3 -subsets of S corresponding to the lines $a b$ and $a c$ meet in a 2 -subset. Consequently, given a plane A incident with a but not with $a b, A \cap b^{\perp}$ contains all points of A but one; furthermore, just three out of the six points of $A \cap b^{\perp}$ different from a are coplanar with $a b$. This forces the relation $\not \perp$ ('being non-collinear') to be an equivalence relation.

Indeed, let x, x^{\prime} be distinct points non-collinear with b and assume $x \perp x^{\prime}$, by contradiction. Let X be a plane incident with the line $x x^{\prime}$. By the above, $\delta(b, X) \geq 2$. Consequently, some points of Γ have distance 2 from X. Let u be one of them and let v, w be points such that $u \perp v \perp w \in X$. According to the above, just three points of $X \backslash\{w\}$ are coplanar with the line $v w$. Hence, three of the planes through $v w$ meet X in a line. Let Y be one of those planes and $\left\{w, w^{\prime}\right\}=X \cap Y$. The point u, being collinear with $v \in Y$, is collinear with all but one points of Y. Therefore, $u \perp w^{\prime}$, as $u \not \perp w$. However, as $w^{\prime} \in X$, this contradicts the hypothesis that $\delta(u, X)=2$.

Thus, $\not \perp$ is an equivalence relation. It also induces an equivalence relation on the set of lines through the point a, a line $a x$ being equivalent to $a b$ precisely when $x \not \perp b$. However, $x \not \perp b$ if and only if $a x \in O_{2}$. Consequently, the lines of O_{2} join a with mutually non-collinear points. However, this is false: the 3 -subsets of S corresponding to the lines of S mutually intersect in a 2 -subset, hence they join a with mutually collinear points. We have reached a final contradiction.

3.3 Adding new elements

Given a maximal clique C of the collinearity graph of Γ and a point $a \in C$, let C_{a} be the set of lines joining a to the points of $C \backslash\{a\}$. By property (T), C_{a} is a maximal set of pairwise concurrent lines of Γ_{a}^{*}. Hence either C is the set of points of some plane A of Γ incident with a or C_{a} is the set of lines of a plane of the projective space Γ_{a}^{*}. In the latter case we call C a 3 -element.

Thus, we have two kinds of maximal cliques in the collinearity graph of Γ, namely the planes of Γ and the 3 -elements. It is easy to see that a 3 -element C and a plane A meet in 0,1 or $q+2$ points. When the latter occurs, then we say that A and C are incident. Furthermore, we declare C to be incident with all points and lines it contains. Thus, we obtain a geometry $\bar{\Gamma}$ of rank 4 , which we call the enrichment of Γ. It is straightforward to check that $\bar{\Gamma}$ belongs to the following diagram:

where $0,1,2,3$ are the types, $1, q, q, t$ are orders and $t+1=\left(q^{n-1}-1\right) /(q-1)$. We still call points and lines the elements of $\bar{\Gamma}$ of type 0 and 1 , as in Γ. Clearly, the residues of the points of $\bar{\Gamma}$ are isomorphic to the truncation of $\operatorname{PG}(n, q)$ to points, lines and planes. Hence,

Lemma 6 The residues of the $\{0,2\}$-flags of $\bar{\Gamma}$ are $(n-1)$-dimensional projective spaces of order q.

The next statement is an easy consequence of Lemma 3.
Lemma 7 The geometry $\bar{\Gamma}$ is flag-transitive and the stabilizer in $\operatorname{Aut}(\bar{\Gamma})$ of a $\{0,2\}-$ flag F of $\bar{\Gamma}$ induces on $\bar{\Gamma}_{F}$ a group containing $L_{n}(q)$.

Clearly, $\bar{\Gamma}$ inherits (LL) from Γ. Furthermore,
Lemma 8 The following holds in $\bar{\Gamma}$:
$\left(\mathrm{T}^{\prime}\right)$ every 3 -clique of the collinearity graph of Γ is incident with a (unique) $\{2,3\}-$ flag.
(Easy, by (T) in Γ.) We are now ready to prove the following:
Lemma 9 We have $q=2$.
Proof. As residues of 3 -elements of $\bar{\Gamma}$ are extended projective planes, either $q=2$ or $q=4$.

Assume $q=4$. By Lemmas 6 and 7 , the residues of the $2-$ elements of $\bar{\Gamma}$ are flag-transitive extensions of ($n-1$)-dimensional projective spaces of order 4 with at least $L_{n}(4)$ induced on point-residues. Then $n=3$, by Delandtsheer [9] (see also [18, Theorem 9.22]). That is, $\bar{\Gamma}$ has diagram and orders as follows:

However, no flag-transitive geometry exists with diagram and orders as above and satisfying (LL) and the property (T^{\prime}) of Lemma 8 (Buekenhout and Hubaut [4]). Hence $q=2$.

3.4 End of the proof in the case of $n=3$

Assume $n=3$. By Lemma $9, \bar{\Gamma}$ has diagram and orders as follows, where we have replaced the label c with Af, as the circular space with 4 points is the affine plane of order 2 :

By [18, Theorem 7.57$], \bar{\Gamma}$ is obtained from the D_{4}-building over GF(2) by removing a hyperplane of its related polar space; namely, $\Gamma \cong \Gamma_{3}$ or Γ_{3}^{\prime}.

3.5 The case of $n>3$

Let $n>3$. Let a, l, π be a point, a line and a plane of Γ forming a chamber. We know that $K_{a}=1$ (Lemma 2). Henceforth we write K for K_{π}.

Lemma 10 We have $G_{a}=L_{n+1}(2)$ and $G_{a, \pi}=K: L=\operatorname{ASL}_{n}(2)$, the group K is elementary abelian of order 2^{n} and $L=L_{n}(2)$.
(Easy, by Lemmas 3 and 9.) Furthermore,
Lemma 11 We have $G_{\pi}=K .(T: L)$ with $T: L=\operatorname{ASL}_{n}(2)$ and $T=2^{n}$.
Proof. By lemma 3, G acts flag-transitively on $\bar{\Gamma}$, and so G_{π} acts flag-transitively on $\bar{\Gamma}_{\pi}$, which is an extension of an $(n-1)$-dimensional projective space of order 2. The statement follows from Delandtsheer [9] and from Lemma 10.

With L as above, let L_{l} be the stabilizer of l in L. The following is obvious:
Lemma 12 We have $G_{a, l, \pi}=K: L_{l}$ and the action of L on K is the dual of the action of L on $T \cong(K T) / K$. Furthermore, $G_{\pi}=(K . T): L$.

Let $N=K . T$. Then,
Lemma 13 We have $K \leq Z(N)$.

Proof. Given $v \in N$, let $f_{v} \in \operatorname{Aut}(V(n, 2))=L_{n}(2)$ be the action of v on K. Clearly, $f_{v}=f_{v k}$ for every $k \in K$. Thus, given $V \in N / K$ and $v \in V$, we write f_{V} for f_{v}. Clearly, the function f sending $V \in N / K$ to f_{V} is a morphism from N / K to $L_{n}(2)=\operatorname{Aut}(K)=L$. Since N is normal in G_{π} and L is a subgroup of $G_{a, \pi}$ normalizing K, the image $f(N / K)$ of N / K by f is normal in L. However, $f(N / K)$ is a (possibly trivial) 2 -group, as N / K is a 2 -group. Hence $f(N / K)=1$. The conclusion follows.

Given $v \in N \backslash K$, we have $v^{2} \in K$. Therefore, $v^{4}=1$. As $K \leq Z(N)$, the elements v and $v k$ have the same order for any $k \in K$. Thus, and by the transitive action of L on $(N / K) \backslash\{K\}$, one of the following holds:
(i) all elements of $N \backslash\{1\}$ have order 2.
(ii) all elements of $N \backslash K$ have order 4.

Lemma 14 Case (ii) is impossible.
Proof. Assuming (ii), let $g: N / K \longrightarrow K$ be the function sending $V \in N / K$ onto v^{2}, with v a representative of V in N. As $g(V) \neq 1$ for some $V \in N / K$ and since L acts transitively on $(N / K) \backslash\{K\}, g$ is a bijection. Clearly, g commutes with the actions of L on N / K and K. That is, if $\lambda \in L$, then $\left(v^{\lambda}\right)^{2}=\left(v^{2}\right)^{\lambda}$. Therefore, and since g is a bijection, L acts in the same way on K and T. But this is a contradiction: indeed, by Lemma 12, the action of L on $T=N / K$ is dual to the action of L on K.

As (ii) is impossible, (i) holds. Hence,
Lemma 15 We have $N=2^{2 n}$. Hence $N=K \times T$ and $G_{\pi}=(N \times T): L$.
We still need to describe G_{l}. The group $G_{a, l}$ has index 2 in G_{l} and, if b is the point of l other than a and $t \in G_{l} \backslash G_{a, l}$, then d permutes a and b. Furthermore, we can assume that t is the element of T permuting a and b. In order to determine G_{l} completely we only need to describe the action of t on $G_{a, l}$.

Lemma 16 We have $G_{l}=\langle t\rangle \times G_{a, l}$ and $G_{l, \pi}=\langle t\rangle \times G_{a, l, \pi}$.
Proof. Note that $t \in G_{\pi}(=(K \times T): L)$. In G_{π} we see that t centralizes $G_{a, l, \pi}=$ $K: L_{l}$. The group $G_{a, l}$ is the stabilizer of a line of $\Gamma_{a}^{*}=\mathrm{PG}(n, 2)$ in $G_{a}=L_{n+1}(2)$. Hence $G_{a, l}=A:(B \times C)$ with $A=2^{2(n-1)}, B=L_{2}(2)$ and $C=L_{n-1}(2)$. Moreover, $A=W_{1} \times W_{2}$ with $W_{1} \cong W_{2} \cong V(n-1,2)$ and C stabilizes both W_{1} and W_{2}, acting naturally on each of them. On the other hand, B acts faithfully on A. Furthermore, $G_{a, l, \pi}=A: C$.

The element t induces an automorphism τ on $G_{a, l}$ and an automorphism τ_{A} on $G_{a, l} / A$. As t centralizes $A: C, \tau_{A}$ also centralizes $A C / A$. Therefore, and since $n>3, \tau_{A}$ stabilizes $A B / A$. The subgroups of $G_{a, l}$ isomorphic to B and acting as B on A form one conjugacy class. As t centralizes A, the automorphism τ stabilizes that conjugacy class. Therefore $B^{\tau}=B^{v}$ for some $v \in G_{a, l}$ and, as C centralizes B, we may assume that $v \in A$. Consequently, given $g \in B$, we have $g^{\tau}=u f$ for some
$u \in A$ and some $f \in B$. As t centralizes C, we also have $\left(g^{x}\right)^{\tau}=\left(g^{\tau}\right)^{x}$ for every $x \in C$. On the other hand, $g^{x}=g$ and $f^{x}=f$ (indeed C centralizes B). Thus, $g^{\tau}=\left(g^{\tau}\right)^{x}$ for every $x \in C$. That is, $u f=(u f)^{x}$ for every $x \in C$. So (and since $\left.f^{x}=f\right), u f=u^{x} f$ for every $x \in B$. This forces C to centralize u. However, it is clear from the information previously given on the action of C on A that 1 is the unique element of A centralized by C. Therefore $u=1$. That is, $g^{\tau} \in B$ for every $g \in B$, namely $B^{\tau}=B$. Furthermore, for every $g \in B$ we have $\left(g u g^{-1}\right)^{\tau}=g^{\tau} u g^{-\tau}$ for every $u \in A$, because τ centralizes A. Hence, $g^{1-\tau}$ acts trivially on A for every $g \in B$. However, as we have remarked above, B acts faithfully on A. Therefore $g=g^{\tau}$ for every $g \in B$. So, t centralizes B.

By Lemmas 10, 12 and 16, the structures of G_{a}, G_{l} and G_{π} are completely determined, as well as their intersections (note that $G_{a, \pi}$ and $G_{a, l}$ are uniquely determined inside G_{a}). That is,

Proposition 17 The amalgam $\left(G_{a}, G_{l}, G_{\pi} ; G_{a, l}, G_{a, \pi}, G_{l, \pi}\right)$ is uniquely determined.
End of the proof of Theorem 1. By Proposition 17 and [18, Theorem 12.28], the universal cover of Γ is uniquely determined; namely, there is a unique simply connected flag-transitive c.PG ${ }^{*}$-geometry of residual dimension n. That geometry is Γ_{n}, as Γ_{n} is indeed simply connected and flag-transitive ($\S 2.1$). Therefore, Γ is a quotient of Γ_{n}. On the other hand, Γ_{n} has no proper flag-transitive quotients (§2.1). Hence $\Gamma=\Gamma_{n}$.

References

[1] R. Baker. Partitioning the planes of $\mathrm{AG}_{2^{m}}(2)$ into 2-designs. Discrete Math., 15:125-137, 1974.
[2] A. Beutelspacher. On parallelism in finite projective spaces. Geom. Dedicata, 3:35-40, 1974.
[3] A. Brouwer, A. Cohen and A. Neumaier. Distance Regular Graphs. Springer, Berlin, 1989.
[4] F. Buekenhout and X. Hubaut. Locally polar spaces and related rank 3 groups. J. Algebra, 45:391-434, 1977.
[5] F. Buekenhout, C. Huybrechts and A. Pasini. Parallelism in diagram geometry. Bull. Soc. Math. Belg. Sér. A, 1:355-397, 1994.
[6] P. Cameron and W. Kantor. 2-transitive and antiflag transitive collineation groups of finite projective spaces. J. Algebra, 60:384-422, 1979.
[7] A. Cohen and E. Shult. Affine polar spaces. Geom. Dedicata, 35:43-76, 1990.
[8] J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson. Atlas of Finite Groups, Clarendon, Oxford, 1985.
[9] A. Delandtsheer. Finite (line, plane)-flag transitive linear spaces. Geom. Dedicata, 41:145-153, 1992.
[10] R. Denniston. Some packings of projective spaces. Rend. Accademia Lincei, 52:36-40, 1972.
[11] C. Huybrechts and A. Pasini. A characterization of the Hall-Janko group J_{2} by a $c . L^{*}$-geometry. In Groups and Geometries (L. Di Martino et al. eds.) Birkhäuser, Basel, 91-106, 1998.
[12] D. Hughes. Extensions of designs and groups: projective, symplectic and certain affine groups. Math. Z., 89:199-205, 1965.
[13] W. Kantor. Line transitive collineation groups of finite projective spaces. Israel J. Math., 14:229-235,1973.
[14] D. Kőnig. Theorie der Endlichen und Unendlichen Graphen, Teibner, 1936.
[15] A. Munemasa, D. Pasechnik and S. Shpectorov. A local characterization of the graphs of alternating forms and the graphs of quadratic forms over GF(2). In Finite Geometry and Combinatorics (F. De Clerck et al), pages 303-317, Cambridge Univ. Press,1993.
[16] A. Munemasa, D. Pasechnick and S. Shpectorov. The automorphism group and the convex subgraphs of the quadratic form graph in characteristic 2. J. Algebraic Comb., 2:411-419, 1993.
[17] A. Pasini. Covers of finite geometries with non-spherical minimal circuit diagram. In Buildings and the Geometry of Diagrams (L. Rosati ed.), Lecture Notes in Math. 1181, pages 218-241, Springer, 1986.
[18] A. Pasini. Diagram Geometries. Oxford Univ. Press, 1994.
[19] D. Taylor. The Geometry of the Classical Groups. Heldermann, Berlin, 1992.
[20] J. Tits. Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Math. 386, Springer, Berlin, 1974.

Cécile Huybrechts
Université Libre de Bruxelles, Département de Mathématique
Campus Plaine, B-1050 Bruxelles, Belgique.
e-mail: huyb@ulb.ac.be
Antonio Pasini
University of Siena, Department of Mathematics
Via del Capitano 15, I-53100 Siena, Italy.
e-mail: pasini@unisi.it

[^0]: *Chargé de Recherches du Fonds National Belge de la Recherche Scientifique
 ${ }^{\dagger}$ This work was made possible thanks to support of the Fonds National Belge de la Recherche Scientifique

 Received by the editors July 1997.
 Communicated by Hendrik Van Maldeghem.
 1991 Mathematics Subject Classification. 51E24.
 Key words and phrases. diagram geometries, alternating form graphs.

