Flag-transitive extensions of dual projective spaces

Cécile Huybrechts^{*†} Antonio Pasini

Abstract

We classify the flag–transitive circular extensions of line–point systems of finite projective geometries.

1 Introduction

We consider geometries belonging to the following diagram of rank 3, where 0, 1, 2 are the types, q, s are finite orders with q > 1 and $s + 1 = (q^n - 1)/(q - 1)$ for some integer n > 1, the label c denotes the class of circular spaces and PG^{*} stands for the class of dual projective spaces, namely geometries of lines and points of a projective geometry.

We call these geometries c.PG^{*}-geometries. Given a c.PG^{*}-geometry Γ with orders 1, s, q as above, we call q the order of Γ . As $s + 1 = (q^n - 1)/(q - 1)$, the residues of the elements of Γ of type 0 are dual *n*-dimensional projective spaces of order q. We call n the residual dimension of Γ .

A c.PG^{*}-geometry of residual dimension 2 is a finite extended projective plane. It is well-known that just two finite extended projective planes exist, namely AG(3, 2)

Bull. Belg. Math. Soc. 5 (1998), 341-352

^{*}Chargé de Recherches du Fonds National Belge de la Recherche Scientifique

[†]This work was made possible thanks to support of the Fonds National Belge de la Recherche Scientifique

Received by the editors July 1997.

Communicated by Hendrik Van Maldeghem.

 $^{1991\} Mathematics\ Subject\ Classification.\ 51E24.$

Key words and phrases. diagram geometries, alternating form graphs.

and the Witt design S(22, 6, 3) for the Mathieu group M_{22} (Hughes [12]). Thus, we only consider c.PG^{*}-geometries of residual dimension n > 2 in this paper. As n > 2, the order q is a prime power and the residues of the elements of type 0 are isomorphic to the dual point-line system of PG(n, q).

In the next section we shall describe a flag-transitive c.PG^{*}-geometry of order 2 and residual dimension n, for any n > 2. We call that geometry Γ_n . It is a subgeometry of the D_{n+1} -building over GF(2) and it is related to the alternating form graph. One more flag-transitive example arises from the D_4 -building over GF(2) (see §2.2). It has order 2 and residual dimension 3. We denote it Γ'_3 . In this paper we prove the following:

Theorem 1 The geometry Γ_n is the unique flag-transitive c.PG^{*}-geometry of residual dimension n > 3 and there are just two flag-transitive c.PG^{*}-geometries of residual dimension 3, namely Γ_3 and Γ'_3 .

The paper is organized as follows. In Section 2 we decribe the flag-transitive examples and also some non flag-transitive ones. Section 3 is devoted to the proof of Theorem 1.

It will be useful for the forthcoming descriptions to have stated some terminology. Given a c.PG^{*}–geometry Γ , the elements of Γ of type 0, 1, 2 are called *points*, *lines* and *planes*, respectively. We say that two distinct points are *collinear* when there is a line incident with both of them. The *collinearity graph* of Γ is the graph with the points of Γ as vertices and the collinearity relation as the adjacency relation.

2 The known examples

2.1 The geometry Γ_n

Let Δ_{n+1} be the building of type D_{n+1} over GF(2), with n > 2. Having marked the nodes of the D_{n+1} -diagram as follows

we choose an element a of type 0 if n is odd and of type 2 if n is even. Let H the set of elements of Δ_{n+1} of type 0 at non-maximal distance from a, the distance between two elements of Δ_{n+1} being defined as the minimal length of a gallery stretched between them, as in [20]. Then H is a geometric hyperplane of the partial linear space having as points and lines the elements of Δ_{n+1} of type 0 and 1, respectively. For every element x of Δ_{n+1} , let $\sigma(x)$ be the 0-shadow of x, namely the set of elements of Δ_{n+1} of type 0 that are incident with x. (Note that $\sigma(x) = \{x\}$ for all elements of type 0.) If we remove from Δ_{n+1} all elements x with $\sigma(x) \subseteq H$, what is left is a flag-transitive geometry with diagram as follows and order 2 at all types i > 0.

Next, we truncate to $\{0, 1, 2\}$, namely we remove all elements of type i > 2. Thus, we obtain a c.PG^{*}-geometry, say Γ_n , of order 2 and residual dimension n.

The collinearity graph. The collinearity graph of Γ_n is the alternating form graph Alt(n + 1, 2) (Munemasa, Pasechnick and Shpectorov [15]; also [3, 9.5.B]).

The automorphism group. Let G be the stabilizer of a in Aut (Δ_{n+1}) . The group G acts flag-transitively and faithfully on Γ_n . It consists of the square matrices of order 2(n+1) of the following shape

$$\left(\begin{array}{cc} A & AB \\ O & (A^t)^{-1} \end{array}\right)$$

with A a non-singular square matrix of order n + 1, B an antisymmetric matrix of order n + 1 and O the null square matrix of order n + 1. Thus,

$$G = (V \wedge V):L_{n+1}(2) = 2^{(n+1)n/2}:L_{n+1}(2)$$

(where V = V(n + 1, 2)). It is known that G is the full automorphism group of the alternating form graph [3, 9.5.3]. Hence $G = \operatorname{Aut}(\Gamma_n)$. (We will obtain the same conclusion in the case of n > 3 as a by-product of the proof of Theorem 1; see Proposition 17.)

When n > 3, none of the proper subgroups of G is flag-transitive on Γ_n . On the other hand, when n = 3 there is a flag-transitive proper subgroup of G of the form $2^6: A_7$.

Non-existence of covers and quotients. Munemasa, Pasechnik and Shpectorov [15] have proved that the collinearity graph of Γ_n , namely $\operatorname{Alt}(n+1,2)$, does not admit any proper cover. Hence Γ_n is simply connected. (We cannot obtain this from our Theorem 1, as the simple connectedness of Γ_n will be exploited to finish the proof of that theorem.)

As Γ_n is simply connected, a proper flag-transitive quotient of Γ_n , if any, arises from a non-trivial subgroup H of $G = \operatorname{Aut}(\Gamma_n)$ acting semi-regularly on the set of elements of Γ_n and such that $N_G(H)$ acts flag-transitively on Γ_n ([18], Chapter 12). However, comparing the above description of G, it is straightforward to check that no such subgroups of G exist. Thus, Γ_n does not admit any flag-transitive proper quotient.

An alternative description. Let $m = \binom{n+1}{2}$. Then Γ_n is the affine expansion to AG(m, 2) of the grassmannian of lines of PG(n, 2) naturally embedded in PG(m - 1, 2) (see [5, Section 4] for affine expansions). Indeed, that affine expansion is a flag-transitive c.PG^{*}-geometry of order 2 and residual dimension n and it has as many points as Γ_n . Thus, in view of Theorem 1, it is isomorphic to Γ_n .

2.2 The geometry Γ'_3

When n = 3, the partial linear space of 0– and 1–elements of Δ_4 is the point–line system of the hyperbolic quadric $Q_7^+(2)$ and the hyperplane H we remove from Δ_4 when constructing Γ_3 is just a tangent hyperplane H of $Q_7^+(2)$. However, in this case, we can imitate the above conctruction by chosing a secant hyperplane of $Q_7^+(2)$ as H instead of a tangent one. Thus, let H be a secant hyperplane of $Q_7^+(2)$ and let Γ'_3 be the subgeometry of Δ_4 obtained by removing H and all elements of Δ_4 of type 3. Clearly, Γ'_3 is a c.PG^{*}–geometry of order 2 and residual dimension 3. It has 72 points (whereas 64 is the number of points of Γ_3).

Simple connectedness. The complement $\Delta_4 \setminus H$ of H in Δ_4 is 2–simply connected [18, Proposition 12.51]. Hence Γ'_3 is simply–connected, by [17, Theorem 1].

The automorphism group. We will see later (§3.3) that $\Delta_4 \setminus H$ can be recovered from Γ'_3 . In turn, Δ_4 can be recovered from $\Delta_4 \setminus H$ (Cohen and Shult [7]). Consequently, the automorphism group of Γ'_3 is the stabilizer of H in $O_8^+(2)$, namely, $\operatorname{Aut}(\Gamma'_3) = S_6(2)$. It acts flag-transitively on Γ'_3 .

Non-existence of proper quotients. As Γ'_3 is simply connected and Aut(Γ'_3) is isomorphic to $S_6(2)$, which is a simple group, Γ'_3 does not admit any flag-transitive proper quotient.

2.3 Some non flag–transitive examples

In this subsection we briefly describe the non flag–transitive c.PG^{*}–geometries we are aware of.

More geometries from Δ_{n+1} . The construction of §2.1 can be repeated with H any hyperplane of the partial linear space of 0– and 1–elements of Δ_{n+1} , provided that the complement $\Delta_{n+1} \setminus H$ of H in Δ_{n+1} is connected. (The structure $\Delta_{n+1} \setminus H$ is connected when n = 3 for both choices of H and when n > 3 with H as in §2.1; maybe, the same is true for any n and any H, but we are not aware of any proof of this claim.)

In this way, when n = 3 we obtain Γ'_3 . When n > 3, we still obtain a c.PG^{*}– geometry of order 2 and residual dimension n. However, by our Theorem 1, no new flag-transitive examples arise.

Gluings. It is well known that a finite complete graph amits a 1-factorization if and only if its number of vertices is even. An *n*-dimensional finite projective space admits a parallelism only if n is odd (Buekenhout, Huybrechts, Pasini [5, 5.4]). On the other hand, all odd dimensional projective spaces of order 2 and all *n*-dimensional projective spaces with n + 1 a power of 2, admit a parallelism (Baker [1], Buetelspacher [2], Denniston [10]). Let \mathcal{P} be a finite *n*-dimensional projective space of order q, admitting a parallelism, and let \mathcal{K} be a complete graph with $v = 2 + q + ... + q^{n-1}$ vertices. As noticed above, n is odd. Hence v is even and \mathcal{K} admits a 1-factorization. Thus, we can glue \mathcal{K} with \mathcal{S} (Buekenhout, Huybrechts and Pasini [5]). A c.PG^{*}-geometry of order q and residual dimension n is obtained in this way. However, by Theorem 1, that geometry is not flag-transitive.

2.4 Remarks on the graphs Alt(n + 1, 2) and Quad(n, 2)

As we have noticed in §2.1, the alternating form graph Alt(n+1, 2) is the collinearity graph of Γ_n . The quadratic form graph Quad(n, 2) is considered by Munemasa, Pasechnick and Shpectorov [15] in combination with Alt(n+1, 2). These two graphs have the same number of vertices and the same local structure. However, the graph Quad(n, 2) does not give rise to any c.PG^{*}-geometry. Indeed, there is no way of picking up a family of cliques from Quad(n, 2) to be taken as planes. This is implicit in Munemasa, Pasechnik and Shpectorov [16] (also in §3.3 of the present paper).

3 Proof of Theorem 1

In the sequel Γ is a c.PG^{*}-geometry of order q and residual dimension n > 2. We assume that Γ is flag-transitive and G is a flag-transitive subgroup of Aut(Γ). (However, for some of the lemmas we are going to state in this section there is no need to assume flag-transitivity.)

3.1 Point–stabilizers

Given an element x of Γ , let G_x be its stabilizer in G. By K_x we denote the elementwise stabilizer in G_x of the residue of x and we set $\overline{G}_x = G_x/K_x$. The following is a special case of [11, Lemma 2.8]:

Lemma 2 We have $K_a = 1$ (hence, $\overline{G}_a = G_a$) for any point a of Γ .

The next statement is an assembling of results of Kantor [13] and Cameron and Kantor [6].

Lemma 3 Given a point a of Γ , either $G_a \leq L_{n+1}(q)$ or (n,q) = (3,2) and $G_a = A_7$.

3.2 The properties (LL) and (T)

We firstly state some notation to be used in the sequel. Given an element x of Γ , we denote its residue by Γ_x , as usual. When x is a point, Γ_x^* stands for the dual of Γ_x .

Given two distinct points a, b, we write $a \perp b$ to mean that they are collinear. By a^{\perp} we mean the set of points collinear with or equal to a. We denote by $\delta(a, b)$ the distance between two points a, b in the collinearity graph of Γ . Accordingly, given a point a and a set of points A, the distance of a from A will be denoted by $\delta(a, A)$.

Lemma 4 The following holds in Γ : (LL) distinct lines are incident with distinct pairs of points.

Proof. Given a point a, the relation 'having the same points' is an equivalence relation on the set of lines of Γ_a^* and G_a permutes the equivalence classes of that relation. However, by Lemma 3, G_a acts primitively on the set of lines of Γ_a^* . Therefore, either (LL) holds or all lines of Γ have the same points. The latter being impossible, (LL) holds.

According to (LL), given two collinear points a, b, there is a unique line incident with both of them. We shall denote it by the symbol ab.

As the (LL) property holds in Γ , the Intersection Property also holds [18, Lemma 7.25]. Hence, no two distinct planes of Γ are incident with the same triple of points. Distinct planes of Γ being incident with distinct sets of points, the planes of Γ may be regarded just as sets of points. Accordingly, we write $a \in A$ (resp. $a \notin A$) to say that a point a and a plane A are (not) incident, we write $A \cap b^{\perp}$ to denote the set of points of A that are collinear with a given point b, and so on.

Lemma 5 The following holds:

(T) every 3-clique of the collinearity graph of Γ is incident with a (unique) plane.

Proof. Assume the contrary and let $\{a, b, c\}$ be a triple of mutually collinear points of Γ not contained in a common plane of Γ . The lines ab and ac are skew in Γ_a^* . Two cases are to examine.

Case 1. $G_a \ge L_{n+1}(q)$. Then G_a is transitive on the set of pairs of skew lines of Γ_a^* . Consequently, given any two lines l = ax, m = ay through a skew in Γ_a^* , the points x, y are collinear in Γ . Clearly, the same conclusion holds if l and m are coplanar. Therefore, by the transitivity of G on the set of points of Γ , any two points of Γ are collinear. Consequently,

$$N = 1 + \frac{(1+q+\ldots+q^n)(q+q^2+\ldots+q^n)}{(1+q)q}$$

is the number of points of Γ . The number of planes of Γ is

$$N\frac{1+q+\ldots+q^n}{2+s} = \frac{N(1+q+\ldots+q^n)}{2+q+\ldots+q^n}$$

By comparing the previous two equalities we see that $2 + q + ... + q^n$ divides the following:

$$1 + q + \dots + q^{n} + \frac{(1 + q + \dots + q^{n})^{2}(1 + q + \dots + q^{n-1})}{1 + q}$$

It is straightforward to see that this contradicts the assumption n > 2. Thus, (T) holds in this case.

Case 2. (n,q) = (3,2) and $G_a = A_7$. A model of Γ_a^* can be constructed on $S = \{1, 2, ..., 7\}$ as follows [19, chapter 6] (also [18, p. 279]): the lines of Γ_a^* are the 3-subsets of S, two such subsets X, Y corresponding to skew (concurrent) lines of

 Γ_a^* when $|X \cap Y| = 0$ or 2 (respectively, 1). The points of Γ_a^* are 15 out of the 30 projective planes that can be drawn on S, forming one orbit for A_7 .

The stabilizer of ab in G_a has two orbits of size 12 and 4 respectively on the set of lines of Γ_a^* skew with ab. Assuming that ab corresponds to the subset $\{1, 2, 3\}$ of S, one orbit, say O_1 , corresponds to the family of 3-subsets of S meeting $\{1, 2, 3\}$ in two points. The four 3-subsets of S exterior to $\{1, 2, 3\}$ contribute the other orbit, say O_2 . Every point of Γ_a^* (plane of Γ through a) non-incident with ab is incident with exactly three lines of O_1 , to one line of O_2 and to exactly three lines concurrent with ab.

Let $\{i, j\} = \{1, 2\}$ with $ac \in O_i$. If for some $l \in O_j$ the point of l different from a is collinear with b, then the same holds for all lines of O_j and a contradiction is reached as in Case 1. Therefore, given a point $x \in a^{\perp} \setminus \{a, b\}$, we have $x \perp b$ if and only if $ax \in O_i$. Thus, given a plane A of Γ incident with ac (hence, not incident with ab), a point $x \in A$ is collinear with b if and only if the line ax either belongs to O_i or is coplanar with ab.

Assume that $ac \in O_2$. Then exactly five points of A are collinear with b, namely a, c and three more points c_1, c_2, c_3 , with $\{a, b, c_i\}$ contained in a plane for every i = 1, 2, 3. Similarly, interchanging a with c, each of the triples $\{c, b, c_i\}$ is in a plane. Thus, replacing a with c_i , for $\{i, j, k\} = \{1, 2, 3\}$ exactly one of the triples $\{c_i, b, c_j\}$ and $\{c_i, b, c_k\}$ is not contained in a plane. Let the points c_1, c_2, b be non-coplanar, to fix ideas. Then, as a coplanar triple $\{c_i, b, c_j\}$ exists for i = 1, 2, each of $\{c_1, c_3, b\}$ and $\{c_2, c_3, b\}$ is contained in a plane. Therefore, no triple $\{c_3, b, c_j\}$ of non-coplanar points exists; contradiction.

The above forces $ac \in O_1$. That is, a point $c \in a^{\perp}$ is collinear with b but not coplanar with ab if and only if the 3-subsets of S corresponding to the lines ab and ac meet in a 2-subset. Consequently, given a plane A incident with a but not with ab, $A \cap b^{\perp}$ contains all points of A but one; furthermore, just three out of the six points of $A \cap b^{\perp}$ different from a are coplanar with ab. This forces the relation $\not\perp$ ('being non-collinear') to be an equivalence relation.

Indeed, let x, x' be distinct points non-collinear with b and assume $x \perp x'$, by contradiction. Let X be a plane incident with the line xx'. By the above, $\delta(b, X) \geq 2$. Consequently, some points of Γ have distance 2 from X. Let u be one of them and let v, w be points such that $u \perp v \perp w \in X$. According to the above, just three points of $X \setminus \{w\}$ are coplanar with the line vw. Hence, three of the planes through vw meet X in a line. Let Y be one of those planes and $\{w, w'\} = X \cap Y$. The point u, being collinear with $v \in Y$, is collinear with all but one points of Y. Therefore, $u \perp w'$, as $u \not\perp w$. However, as $w' \in X$, this contradicts the hypothesis that $\delta(u, X) = 2$.

Thus, $\not\perp$ is an equivalence relation. It also induces an equivalence relation on the set of lines through the point a, a line ax being equivalent to ab precisely when $x \not\perp b$. However, $x \not\perp b$ if and only if $ax \in O_2$. Consequently, the lines of O_2 join a with mutually non-collinear points. However, this is false: the 3-subsets of Scorresponding to the lines of S mutually intersect in a 2-subset, hence they join awith mutually collinear points. We have reached a final contradiction.

3.3 Adding new elements

Given a maximal clique C of the collinearity graph of Γ and a point $a \in C$, let C_a be the set of lines joining a to the points of $C \setminus \{a\}$. By property (T), C_a is a maximal set of pairwise concurrent lines of Γ_a^* . Hence either C is the set of points of some plane A of Γ incident with a or C_a is the set of lines of a plane of the projective space Γ_a^* . In the latter case we call C a 3-element.

Thus, we have two kinds of maximal cliques in the collinearity graph of Γ , namely the planes of Γ and the 3-elements. It is easy to see that a 3-element C and a plane A meet in 0, 1 or q + 2 points. When the latter occurs, then we say that A and Care incident. Furthermore, we declare C to be incident with all points and lines it contains. Thus, we obtain a geometry $\overline{\Gamma}$ of rank 4, which we call the *enrichment* of Γ . It is straightforward to check that $\overline{\Gamma}$ belongs to the following diagram:

where 0, 1, 2, 3 are the types, 1, q, q, t are orders and $t + 1 = (q^{n-1} - 1)/(q - 1)$. We still call *points* and *lines* the elements of $\overline{\Gamma}$ of type 0 and 1, as in Γ . Clearly, the residues of the points of $\overline{\Gamma}$ are isomorphic to the truncation of PG(n,q) to points, lines and planes. Hence,

Lemma 6 The residues of the $\{0,2\}$ -flags of $\overline{\Gamma}$ are (n-1)-dimensional projective spaces of order q.

The next statement is an easy consequence of Lemma 3.

Lemma 7 The geometry $\overline{\Gamma}$ is flag-transitive and the stabilizer in Aut($\overline{\Gamma}$) of a $\{0, 2\}$ -flag F of $\overline{\Gamma}$ induces on $\overline{\Gamma}_F$ a group containing $L_n(q)$.

Clearly, $\overline{\Gamma}$ inherits (LL) from Γ . Furthermore,

Lemma 8 The following holds in $\overline{\Gamma}$: (T') every 3-clique of the collinearity graph of Γ is incident with a (unique) $\{2,3\}$ -flag.

(Easy, by (T) in Γ .) We are now ready to prove the following:

Lemma 9 We have q = 2.

Proof. As residues of 3-elements of $\overline{\Gamma}$ are extended projective planes, either q = 2 or q = 4.

Assume q = 4. By Lemmas 6 and 7, the residues of the 2-elements of $\overline{\Gamma}$ are flag-transitive extensions of (n-1)-dimensional projective spaces of order 4 with at least $L_n(4)$ induced on point-residues. Then n = 3, by Delandtsheer [9] (see also [18, Theorem 9.22]). That is, $\overline{\Gamma}$ has diagram and orders as follows:

However, no flag-transitive geometry exists with diagram and orders as above and satisfying (LL) and the property (T') of Lemma 8 (Buekenhout and Hubaut [4]). Hence q = 2.

3.4 End of the proof in the case of n = 3

Assume n = 3. By Lemma 9, $\overline{\Gamma}$ has diagram and orders as follows, where we have replaced the label c with Af, as the circular space with 4 points is the affine plane of order 2:

By [18, Theorem 7.57], $\overline{\Gamma}$ is obtained from the D_4 -building over GF(2) by removing a hyperplane of its related polar space; namely, $\Gamma \cong \Gamma_3$ or Γ'_3 .

3.5 The case of n > 3

Let n > 3. Let a, l, π be a point, a line and a plane of Γ forming a chamber. We know that $K_a = 1$ (Lemma 2). Henceforth we write K for K_{π} .

Lemma 10 We have $G_a = L_{n+1}(2)$ and $G_{a,\pi} = K:L = ASL_n(2)$, the group K is elementary abelian of order 2^n and $L = L_n(2)$.

(Easy, by Lemmas 3 and 9.) Furthermore,

Lemma 11 We have $G_{\pi} = K.(T:L)$ with $T:L = ASL_n(2)$ and $T = 2^n$.

Proof. By lemma 3, G acts flag-transitively on $\overline{\Gamma}$, and so G_{π} acts flag-transitively on $\overline{\Gamma}_{\pi}$, which is an extension of an (n-1)-dimensional projective space of order 2. The statement follows from Delandtsheer [9] and from Lemma 10.

With L as above, let L_l be the stabilizer of l in L. The following is obvious:

Lemma 12 We have $G_{a,l,\pi} = K:L_l$ and the action of L on K is the dual of the action of L on $T \cong (KT)/K$. Furthermore, $G_{\pi} = (K.T):L$.

Let N = K.T. Then,

Lemma 13 We have $K \leq Z(N)$.

Proof. Given $v \in N$, let $f_v \in \operatorname{Aut}(V(n, 2)) = L_n(2)$ be the action of v on K. Clearly, $f_v = f_{vk}$ for every $k \in K$. Thus, given $V \in N/K$ and $v \in V$, we write f_V for f_v . Clearly, the function f sending $V \in N/K$ to f_V is a morphism from N/K to $L_n(2) = \operatorname{Aut}(K) = L$. Since N is normal in G_{π} and L is a subgroup of $G_{a,\pi}$ normalizing K, the image f(N/K) of N/K by f is normal in L. However, f(N/K) is a (possibly trivial) 2–group, as N/K is a 2–group. Hence f(N/K) = 1. The conclusion follows.

Given $v \in N \setminus K$, we have $v^2 \in K$. Therefore, $v^4 = 1$. As $K \leq Z(N)$, the elements v and vk have the same order for any $k \in K$. Thus, and by the transitive action of L on $(N/K) \setminus \{K\}$, one of the following holds:

- (i) all elements of $N \setminus \{1\}$ have order 2.
- (*ii*) all elements of $N \setminus K$ have order 4.

Lemma 14 Case (ii) is impossible.

Proof. Assuming (*ii*), let $g: N/K \longrightarrow K$ be the function sending $V \in N/K$ onto v^2 , with v a representative of V in N. As $g(V) \neq 1$ for some $V \in N/K$ and since L acts transitively on $(N/K) \setminus \{K\}$, g is a bijection. Clearly, g commutes with the actions of L on N/K and K. That is, if $\lambda \in L$, then $(v^{\lambda})^2 = (v^2)^{\lambda}$. Therefore, and since g is a bijection, L acts in the same way on K and T. But this is a contradiction: indeed, by Lemma 12, the action of L on T = N/K is dual to the action of L on K.

As (ii) is impossible, (i) holds. Hence,

Lemma 15 We have $N = 2^{2n}$. Hence $N = K \times T$ and $G_{\pi} = (N \times T):L$.

We still need to describe G_l . The group $G_{a,l}$ has index 2 in G_l and, if b is the point of l other than a and $t \in G_l \setminus G_{a,l}$, then d permutes a and b. Furthermore, we can assume that t is the element of T permuting a and b. In order to determine G_l completely we only need to describe the action of t on $G_{a,l}$.

Lemma 16 We have $G_l = \langle t \rangle \times G_{a,l}$ and $G_{l,\pi} = \langle t \rangle \times G_{a,l,\pi}$.

Proof. Note that $t \in G_{\pi}$ (= $(K \times T):L$). In G_{π} we see that t centralizes $G_{a,l,\pi} = K:L_l$. The group $G_{a,l}$ is the stabilizer of a line of $\Gamma_a^* = \operatorname{PG}(n, 2)$ in $G_a = L_{n+1}(2)$. Hence $G_{a,l} = A:(B \times C)$ with $A = 2^{2(n-1)}$, $B = L_2(2)$ and $C = L_{n-1}(2)$. Moreover, $A = W_1 \times W_2$ with $W_1 \cong W_2 \cong V(n-1, 2)$ and C stabilizes both W_1 and W_2 , acting naturally on each of them. On the other hand, B acts faithfully on A. Furthermore, $G_{a,l,\pi} = A:C$.

The element t induces an automorphism τ on $G_{a,l}$ and an automorphism τ_A on $G_{a,l}/A$. As t centralizes $A : C, \tau_A$ also centralizes AC/A. Therefore, and since $n > 3, \tau_A$ stabilizes AB/A. The subgroups of $G_{a,l}$ isomorphic to B and acting as B on A form one conjugacy class. As t centralizes A, the automorphism τ stabilizes that conjugacy class. Therefore $B^{\tau} = B^{v}$ for some $v \in G_{a,l}$ and, as C centralizes B, we may assume that $v \in A$. Consequently, given $g \in B$, we have $g^{\tau} = uf$ for some

 $u \in A$ and some $f \in B$. As t centralizes C, we also have $(g^x)^{\tau} = (g^{\tau})^x$ for every $x \in C$. On the other hand, $g^x = g$ and $f^x = f$ (indeed C centralizes B). Thus, $g^{\tau} = (g^{\tau})^x$ for every $x \in C$. That is, $uf = (uf)^x$ for every $x \in C$. So (and since $f^x = f$), $uf = u^x f$ for every $x \in B$. This forces C to centralize u. However, it is clear from the information previously given on the action of C on A that 1 is the unique element of A centralized by C. Therefore u = 1. That is, $g^{\tau} \in B$ for every $g \in B$, namely $B^{\tau} = B$. Furthermore, for every $g \in B$ we have $(gug^{-1})^{\tau} = g^{\tau}ug^{-\tau}$ for every $u \in A$, because τ centralizes A. Hence, $g^{1-\tau}$ acts trivially on A for every $g \in B$. However, as we have remarked above, B acts faithfully on A. Therefore $g = g^{\tau}$ for every $g \in B$. So, t centralizes B.

By Lemmas 10, 12 and 16, the structures of G_a , G_l and G_{π} are completely determined, as well as their intersections (note that $G_{a,\pi}$ and $G_{a,l}$ are uniquely determined inside G_a). That is,

Proposition 17 The amalgam $(G_a, G_l, G_{\pi}; G_{a,l}, G_{a,\pi}, G_{l,\pi})$ is uniquely determined.

End of the proof of Theorem 1. By Proposition 17 and [18, Theorem 12.28], the universal cover of Γ is uniquely determined; namely, there is a unique simply connected flag-transitive c.PG^{*}-geometry of residual dimension *n*. That geometry is Γ_n , as Γ_n is indeed simply connected and flag-transitive (§2.1). Therefore, Γ is a quotient of Γ_n . On the other hand, Γ_n has no proper flag-transitive quotients (§2.1). Hence $\Gamma = \Gamma_n$.

References

- [1] R. Baker. Partitioning the planes of $AG_{2^m}(2)$ into 2-designs. *Discrete Math.*, 15:125-137, 1974.
- [2] A. Beutelspacher. On parallelism in finite projective spaces. *Geom. Dedicata*, 3:35-40, 1974.
- [3] A. Brouwer, A. Cohen and A. Neumaier. *Distance Regular Graphs*. Springer, Berlin, 1989.
- [4] F. Buekenhout and X. Hubaut. Locally polar spaces and related rank 3 groups. J. Algebra, 45:391-434, 1977.
- [5] F. Buekenhout, C. Huybrechts and A. Pasini. Parallelism in diagram geometry. Bull. Soc. Math. Belg. Sér. A, 1:355-397, 1994.
- [6] P. Cameron and W. Kantor. 2-transitive and antiflag transitive collineation groups of finite projective spaces. J. Algebra, 60:384-422, 1979.
- [7] A. Cohen and E. Shult. Affine polar spaces. *Geom. Dedicata*, 35:43-76, 1990.
- [8] J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson. Atlas of Finite Groups, Clarendon, Oxford, 1985.

- [9] A. Delandtsheer. Finite (line, plane)–flag transitive linear spaces. *Geom. Dedicata*, 41:145-153, 1992.
- [10] R. Denniston. Some packings of projective spaces. Rend. Accademia Lincei, 52:36-40, 1972.
- [11] C. Huybrechts and A. Pasini. A characterization of the Hall-Janko group J_2 by a $c.L^*$ -geometry. In *Groups and Geometries* (L. Di Martino et al. eds.) Birkhäuser, Basel, 91-106, 1998.
- [12] D. Hughes. Extensions of designs and groups: projective, symplectic and certain affine groups. *Math. Z.*, 89:199-205, 1965.
- [13] W. Kantor. Line transitive collineation groups of finite projective spaces. Israel J. Math., 14:229-235,1973.
- [14] D. Kőnig. Theorie der Endlichen und Unendlichen Graphen, Teibner, 1936.
- [15] A. Munemasa, D. Pasechnik and S. Shpectorov. A local characterization of the graphs of alternating forms and the graphs of quadratic forms over GF(2). In *Finite Geometry and Combinatorics* (F. De Clerck et al), pages 303-317, Cambridge Univ. Press,1993.
- [16] A. Munemasa, D. Pasechnick and S. Shpectorov. The automorphism group and the convex subgraphs of the quadratic form graph in characteristic 2. J. Algebraic Comb., 2:411-419, 1993.
- [17] A. Pasini. Covers of finite geometries with non-spherical minimal circuit diagram. In *Buildings and the Geometry of Diagrams* (L. Rosati ed.), Lecture Notes in Math. 1181, pages 218-241, Springer, 1986.
- [18] A. Pasini. *Diagram Geometries*. Oxford Univ. Press, 1994.
- [19] D. Taylor. The Geometry of the Classical Groups. Heldermann, Berlin, 1992.
- [20] J. Tits. Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Math. 386, Springer, Berlin, 1974.

Cécile Huybrechts Université Libre de Bruxelles, Département de Mathématique Campus Plaine, B–1050 Bruxelles, Belgique. e-mail: huyb@ulb.ac.be

Antonio Pasini University of Siena, Department of Mathematics Via del Capitano 15, I–53100 Siena, Italy. e–mail: pasini@unisi.it