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Abstract

Let Σ′ = PG(4, q), Σ be a hyperplane of Σ′ and F be a regular spread of
Σ. Denote by π(Σ′,Σ,F ) ' PG(2, q2) the projective plane constructed using
F . We give a simple proof that if U is a Buekenhout–Metz unital of the plane
π(Σ′,Σ,F ) defined by an elliptic cone U of Σ′, then there is a regular spread
F ′ of Σ such that U defines a hermitian curve of π(Σ′,Σ,F ′) ' PG(2, q2).

A Baer subplane of PG(2, q2) is a subplane of order q. It has the property that a
line of PG(2, q2) meets a Baer subplane in 1 or in q+ 1 points. A set of q+ 1 points
which is the intersection of a line with a Baer subplane is a Baer subline .

A unital of PG(2, q2) is a set U of q3 + 1 points such that a line of PG(2, q2)
contains either 1 or q + 1 points of U. If the line l of PG(2, q2) contains exactly one
point of U, the unital is said to be parabolic with respect to l. A hermitan curve is
a unital, which will be called classical.

A regulus of Σ = PG(3, q) is a ruling of a non-singular hyperbolic quadric of
Σ = PG(3, q). If l,m, n are three mutually disjoint lines of Σ, there is a unique
regulus R(l,m, n) containing l, m and n. A spread of Σ = PG(3, q) is a set F
of q2 + 1 lines which are mutually disjoint. When the regulus R(l,m, n) of Σ is
contained in F for all lines l, m and n of F , the spread F is said to be regular.

Let Σ′ = PG(4, q), Σ a hyperplane of Σ′. We always suppose F is a regular
spread of Σ. Define a translation plane π(Σ′,Σ,F) as follows. The points are either
the points of Σ′ \Σ or the elelemts of F . The lines are either the planes of Σ′ which
intersects Σ in a line of F or Σ. The incidence is the natural one. As F is regular, the
plane π(Σ′,Σ,F) is isomorphic to the desarguesian plane PG(2, q2) (see [1], [4]). A
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Baer subline of PG(2, q2) is represented in π(Σ′,Σ,F) either by a line or by a conic
in a plane α which contains a line m of F . In the last case the line m is external to
the conic (see [10]).

Let O be an ovoid of a hyperplane Ω of Σ′, and suppose that the plane Σ ∩ Ω
is tangent at O in a point p. If s is the line of F incident with p and r a point of
s different from p, let U be the cone which projects O from r. Then the points of
U \ {s} together with the point of π(Σ′,Σ,F) represented by s define a unital U of
π(Σ′,Σ,F) ([5] §4, Remark (4)) called a Buekenhout−Metz unital.

If β is a fixed isomorphism from PG(2, q2) to π(Σ′,Σ,F), denote by l∞ the line
of PG(2, q2) mapped by β in the line represented by Σ. A classical unital, which
is parabolic with respect to the line l∞, is represented in π(Σ′,Σ,F) by an elliptic
cone U of Σ′ such that Σ∩U = s is a line of F , and each plane of Σ′ which contains
a line of F either is tangent to U or intersects U in a conic which represents a Baer
subline of of π(Σ′,Σ,F) (see [5])

Let α be a plane of Σ′ which represents a line of π(Σ′,Σ,F). Then α intersects Σ
in a line m of F . It has been proved in [7] that there is a conic C of α disjoint from
m which is not a Baer-subline of π(Σ′,Σ,F). Let s be a fixed line of F different from
m. If p is a fixed point of s, then there is an elliptic quadric Q−(3, q) of < p, α >
containing C and p. If M is the elliptic cone which projects Q−(3, q) from a point
of s different from p, then M defines a non-classical Buekenhout-Metz unital of
π(Σ′,Σ,F) (see [7]). In this paper we give a simple proof the following theorem
proved in [6]

Theorem Let U be a Buekenhout-Metz unital of π(Σ′,Σ,F) defined by an elliptic
cone U of Σ′. Then there is a regular spread F ′ of Σ, such that U defines a clas-
sical unital of the plane π(Σ′,Σ,F ′) which is parabolic with respect to the line of
π(Σ′,Σ,F ′) represented by Σ.

Proof. Let Λ∗ = PG(5, q2) and let (x0, x1, x2, x3, x4, x5) be the homogeneous coor-
dinates of a point of Λ∗. Denote by σ the involutory collineation of Λ∗ defined by
(x0, x1, x2, x3, x4, x5)σ = (x̄3, x̄4, x̄5, x̄0, x̄1, x̄2) where ā = aq for all a in GF(q2). The
points fixed by σ belong to Λ = {(x0, x1, x2, x̄0, x̄1, x̄2) | x0, x1, x2 ∈ GF(q2)} which
is a subgeometry of Λ∗ isomorphic to PG(5, q).

Let π be the plane of Λ∗ with equations x3 = x4 = x5 = 0.
Then π is disjoint from Λ and the plane π̄ = πσ has equations x0 = x1 = x2 = 0.

For each point x of π, let l(x) be the line joining the points x and xσ. Then l(x)∩Λ is
a line of Λ, i.e. l(x) contains exactly q+1 point of Λ. If l(x) and l(y) are not disjoint,
then < x, y, xσ, yσ) > is a plane. This is impossible because the line < x, y > of π
and the line < xσ, yσ > of πσ are disjoint, we conclude that S = {l(x) | x ∈ π} is a
line-spread of Λ = PG(5, q).

For each line m of π let Sm = {l(x) | x ∈ m}. Then Sm is a regular spread of the
3−dimensional subspace < m,mσ > ∩Λ of Λ (see [3]). If a 3−dimensional subspace
Σ of Λ contains two lines l(x) and l(y) of S, and m is the line of π joining the points
x and y, then Σ =< m,mσ > ∩Λ and

SΣ = {n ∈ S | n ∩ Σ 6= ∅} = Sm
is a regular spread of Σ. Hence the incidence structure

Π = (S, {Sm | m is a line of π})
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is isomorphic to π = PG(2, q2) via the map τ : x 7→ l(x) (see [2]).
If Σ′ is a hyperplane of Λ, then there is exactly one 3−dimensional subspace Σ of

Σ′ such that SΣ is a (regular) spread of Σ. Then the map ρ from Π to π(Σ′,Σ,SΣ),
which maps the line l(x) of S into l(x) ∩ Σ′, is an isomorphism.

LetQ+(5, q2) be the hyperbolic quadric of Λ∗ = PG(5, q2) defined by the equation
x0x5 + x1x4 + x2x3 = 0. Then the plane π and πσ are contained in Q+(5, q2),
and Q+(5, q2) ∩ Λ = Q−(5, q) is the elliptic quadric of Λ defined by the equation
x0x

q
2 + x1+q

1 + x2x
q
0 = 0, which is quadratic over GF(q).

If a line l(x) of S contains a point of Q−(5, q), then l(x) is contained in Q−(5, q)
because it is incident with three points of Q+(5, q2). This implies that H = {l(x) |
l(x) ∩ Q−(5, q) 6= ∅} is a spread of Q−(5, q) 1. If a 3−dimensional subspace Σ of Λ
contains two lines of H, then SΣ is a regular spread of Σ, and Q−(5, q) intersects Σ
in a non-singular hyperbolic quadric Q+(3, q). Thus there are exactly q + 1 lines of
the spread SΣ contained in H and these lines form a regulus of Σ (see [8]). Moreover
H(3, q2) = {x = (a0, a1, a2, 0, 0, 0) ∈ π | l(x) ∈ H} is the hermitian curve of π
defined by the equation a0a

q
2 + a1+q

1 + a2a
q
0 = 0 (see [8]).

Let s = U ∩Σ be the line of F contained in Σ. Embed Σ′ in Λ in such a way that
Σ′ is the tangent hyperplane of Q−(5, q) at the vertex of U , and Σ′ ∩ Q−(5, q) = U .
Then s belongs to Q−(5, q), and Σ is the polar of s with respect to Q−(5, q).

If s = l(x) and m is the line of π tangent to H(2, q2) at x, then Γ =< m,mσ > ∩Λ
is a 3−dimensional subspace of Σ′ such that Sm is a regular spread of Γ. Therefore
s is the unique line of H contained in Γ, and < m,mσ > intersects Q+(5, q2) in the
planes < m, s > and < mσ, s > . Hence Γ is the polar of the line s with respect to
Q−(5, q), and Σ = Γ. This implies that H is mapped into U by the isomorphism ρ
from Π and π(Σ′,Σ,Sm). Hence we have proved that U defines a classical unital of
π(Σ′,Σ,Sm). �
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