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Abstract
A conjecture of Mario de Boer about the weights occurring in a space of

quadrics is proved. Some record-breaking codes are constructed.

Let V be a vector space of dimension m over Fq and consider the space F of all

quadratic forms on V . Then dimF =
(
m+1

2

)
. If Q is a quadratic form on V with

radical R, then we can define a nondegenerate form Q on V/R by Q(x+R) = Q(x)
for x ∈ V . We shall call Q elliptic, parabolic or hyperbolic when Q is. The rank of
Q is the dimension of V/R.

Theorem

For 0 ≤ t ≤ 1
2
m there do exist linear subspaces Ft of F such that

(i) these subspaces form a chain: Ft+1 ⊆ Ft for all t,

(ii) dimFt =
(
m+1

2

)
−mt,

(iii) all nonzero quadrics in Ft have rank at least 2t (indeed, the associated sym-
metric bilinear forms all have rank at least 2t),

(iv) the nonzero hyperbolic quadrics in Ft have rank at least 2t + 2,
(v) if m is odd, then the elliptic quadrics in Ft have rank at least 2t + 2,
(vi) if m = 2t, then the nonzero quadrics in Ft are all elliptic.
Parts (i)-(iv),(vi) are due to Mario de Boer [1]. Part (v) was conjectured by him.
One may construct a linear code C from F (and Ct from Ft), by fixing one

representative x in each projective point (1-space) 〈x〉 in the projective space PV ,
and use evaluation to get for each quadratic form Q ∈ Ft a code word cQ = (Q(x))x.
Its weight is the number of projective points outside the quadric defined by Q.
Clearly, this code has word length |PV | and dimension dimFt.
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Lemma

The quadric defined by Q in PV has

qm−1 − 1

q − 1
+ εq

1
2

(m+r)−1

points, where r = dim RadQ and ε = −1, 0, 1 when Q is elliptic, parabolic or
hyperbolic, respectively.

It follows that

Corollary

For 0 ≤ t ≤ 1
2
m there do exist linear subcodes Ct of C with parameters

[
qm − 1

q − 1
,

(
m + 1

2

)
−mt, qm−1 − qm−t−2]

and these codes form a chain: Ct+1 ⊆ Ct for all t.
If m is even, then Ct has at most m− 2t+ 2 nonzero weights (precisely m+ 1 if

t = 0); if m is odd, then Ct has at most m− 2t nonzero weights.
The smallest of these codes in fact have a larger minimum distance: if t =

1
2
(m− 1) then Ct has parameters

[
qm − 1

q − 1
, m, qm−1]

and if t = 1
2
m then Ct has parameters

[
qm − 1

q − 1
,

1

2
m, qm−1 + q

1
2
m−1].

In these last two cases, Ct is equidistant.
(In [2] it is claimed incorrectly that for m = 2t + 1 the code Ct is a 2-weight

code.)
The code C (a 2nd order projective Reed-Muller code) is not very good, but for

t > 0 the codes Ct are often the best codes known, given their word length and
dimension. Mario de Boer conjectures that Ct has the largest possible dimension
among the linear subcodes of C not containing hyperbolic quadrics of rank at most
2t except in case q = 2, m = 2, t = 1. This would mean that in all cases Ct is the
largest possible linear subcode of C with its minimum distance.

Proof (of the theorem). Take V = Fqm . Then we have

F = {
∑
i,j

aijx
qixq

j | aij ∈ Fqm , ai+1,j+1 = aqij}

where the sum is over the unordered pairs i, j in {0, ..., m − 1}, regarded as the
additive group of integers modulo m. Let Ft be the subspace of F defined by aij = 0
for |i− j| < t. Then (i) and (ii) hold.
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Note that for odd m the elements of F can be written as

Q(x) = Tr (
∑

0≤j<m/2
a0jx

1+qj)

where Tr is the trace function from Fqm to Fq, while if m = 2n is even, we have

Q(x) = Tr (
∑

0≤j<m/2
a0jx

1+qj) + tr (a0nx
1+qn)

where tr is the trace function from Fqn to Fq (and a0nx
1+qn actually lies in Fqn).

The symmetric bilinear formB corresponding toQ is given byB(x, y) =
∑
aij(x

qi

yq
j

+ xq
j
yq

i
) = Tr (xL(y)) where L(y) = 2a00y +

∑
j>0 a0jy

qj for all m.
We have RadQ ⊆ RadB, and y ∈ RadB if and only if L(y) = 0. But if Q ∈ Ft,

then L(x) = M(x)q
t
, where M has degree at most qm−2t, so |RadB| ≤ qm−2t and

dim RadB ≤ m− 2t, unless M = 0, i.e., B = 0, so that q is even, t = 0, and Q is
the square of a linear form. This proves (iii).

Each nonzero polynomial Q in Ft has degree at most qm−1 + qm−1−t and has
smallest degree term of degree at least 1 + qt (unless q = 2, t = 0). Put Q̂(x) =
Q(x)/xq

t
. Then every root of Q is a root of Q̂ so that Q defines a quadric with at

most (qm−1 + qm−1−t− qt− 1)/(q− 1) projective points, and we see that Ft does not
contain hyperbolic quadrics Q with r = dim RadQ ≥ m − 2t. If t = 1

2
m, then we

see that the nonzero quadrics Q in Ft have fewer than qm−1−1
q−1

points, hence are all

elliptic. This proves (iv) and (vi).
Assume that m is odd, and consider the field W = Fq2m as a vector space of

dimension m over Fq2. Each quadric Q(x) =
∑
k,l bk,lx

q2k
xq

2l
on W has restriction∑

i,j ai,jx
qixq

j
to Fqm , where a2k,2l = bk,l (subscripts modulo m). If this restriction

is an elliptic (or hyperbolic) quadric with radical of dimension m − 2t (over Fq),
and aij = 0 for |i− j| < t, then Q is a hyperbolic quadric with radical of the same
dimension, and bk,l = a2k,2l (subscripts mod m). But for the coefficients we still need
that they vanish when the indices differ by less than t, and this was lost. Choose h
such that 2h ≡ 1 (mod m). Go to the field FqN with N = 2hm. Then the equation is

the same again (Q(x) =
∑
i,j ai,jx

zixz
j

where z = q2h), and the quadric is hyperbolic.
Contradiction. This proves (v). �

The above codes are good, as we mentioned — usually they are as good as
the best codes known, given length and dimension. A little bit of fiddling yields
improvements in the tables.

We can enlarge our codes by adding the all-1 vector. Let Dt = Ct + 〈1〉. Then
dimDt = dimCt + 1. What about the minimum distance?

The largest weight occurring in Ct is qm−1+qm−t−2 if m is odd, and qm−1+qm−t−1

ifm is even. Thus, if q = 2 and m is odd, we find a [2m,
(
m+1

2

)
−mt+1, 2m−1−2m−t−2]-

code (extending Dt by one extra position 0 where the quadratic forms vanish and
the nonzero constants do not). This is an extended BCH code.

If q is odd, then the nonzero positions of Q are partitioned into the x for which
Q(x) is a square and those for which it is a nonsquare. If Q is a hyperbolic or

elliptic quadric, then both parts have the same size (qm−1 − εq 1
2

(m+r)−1)/2. If Q is
parabolic, then Q(x) is a square or a non-square for (qm−1 + ηq(m+r−1)/2)/2 points
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x, where η = ±1. In particular, for q = 3 we find that Dt has minimum distance (at
least) 3m−1 − (3m−t−1 + 1)/2, that is δ = (3m−t−2 + 1)/2 smaller than the minimum
distance of Ct. This means that we can lengthen Dt, adding δ ones to the all-1
vector, and obtain ternary [(3m + 3m−t−2)/2,

(
m+1

2

)
−mt+ 1, 3m−1−3m−t−2]- codes.

For example, with m = 5, t = 1 we find ternary [126, 11, 72]-codes, while the current
record holder was a [126, 11, 68]-code. It seems likely that we can do even better by
adjoining a random vector to Ct, instead of the all-1 vector.
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