Linear spaces of quadrics and new good codes

Andries E. Brouwer

Abstract

A conjecture of Mario de Boer about the weights occurring in a space of quadrics is proved. Some record-breaking codes are constructed.

Let V be a vector space of dimension m over \mathbb{F}_{q} and consider the space F of all quadratic forms on V. Then $\operatorname{dim} F=\binom{m+1}{2}$. If Q is a quadratic form on V with radical R, then we can define a nondegenerate form \bar{Q} on V / R by $\bar{Q}(x+R)=Q(x)$ for $x \in V$. We shall call Q elliptic, parabolic or hyperbolic when \bar{Q} is. The rank of Q is the dimension of V / R.

Theorem

For $0 \leq t \leq \frac{1}{2} m$ there do exist linear subspaces F_{t} of F such that
(i) these subspaces form a chain: $F_{t+1} \subseteq F_{t}$ for all t,
(ii) $\operatorname{dim} F_{t}=\binom{m+1}{2}-m t$,
(iii) all nonzero quadrics in F_{t} have rank at least $2 t$ (indeed, the associated symmetric bilinear forms all have rank at least $2 t$),
(iv) the nonzero hyperbolic quadrics in F_{t} have rank at least $2 t+2$,
(v) if m is odd, then the elliptic quadrics in F_{t} have rank at least $2 t+2$,
(vi) if $m=2 t$, then the nonzero quadrics in F_{t} are all elliptic.

Parts (i)-(iv), (vi) are due to Mario de Boer [1]. Part (v) was conjectured by him.
One may construct a linear code C from F (and C_{t} from F_{t}), by fixing one representative x in each projective point (1-space) $\langle x\rangle$ in the projective space $P V$, and use evaluation to get for each quadratic form $Q \in F_{t}$ a code word $c_{Q}=(Q(x))_{x}$. Its weight is the number of projective points outside the quadric defined by Q. Clearly, this code has word length $|P V|$ and dimension $\operatorname{dim} F_{t}$.

[^0]
Lemma

The quadric defined by Q in $P V$ has

$$
\frac{q^{m-1}-1}{q-1}+\varepsilon q^{\frac{1}{2}(m+r)-1}
$$

points, where $r=\operatorname{dim} \operatorname{Rad} Q$ and $\varepsilon=-1,0,1$ when Q is elliptic, parabolic or hyperbolic, respectively.

It follows that

Corollary

For $0 \leq t \leq \frac{1}{2} m$ there do exist linear subcodes C_{t} of C with parameters

$$
\left[\frac{q^{m}-1}{q-1},\binom{m+1}{2}-m t, q^{m-1}-q^{m-t-2}\right]
$$

and these codes form a chain: $C_{t+1} \subseteq C_{t}$ for all t.
If m is even, then C_{t} has at most $m-2 t+2$ nonzero weights (precisely $m+1$ if $t=0$); if m is odd, then C_{t} has at most $m-2 t$ nonzero weights.

The smallest of these codes in fact have a larger minimum distance: if $t=$ $\frac{1}{2}(m-1)$ then C_{t} has parameters

$$
\left[\frac{q^{m}-1}{q-1}, m, q^{m-1}\right]
$$

and if $t=\frac{1}{2} m$ then C_{t} has parameters

$$
\left[\frac{q^{m}-1}{q-1}, \frac{1}{2} m, q^{m-1}+q^{\frac{1}{2} m-1}\right] .
$$

In these last two cases, C_{t} is equidistant.
(In [2] it is claimed incorrectly that for $m=2 t+1$ the code C_{t} is a 2 -weight code.)

The code C (a 2nd order projective Reed-Muller code) is not very good, but for $t>0$ the codes C_{t} are often the best codes known, given their word length and dimension. Mario de Boer conjectures that C_{t} has the largest possible dimension among the linear subcodes of C not containing hyperbolic quadrics of rank at most $2 t$ except in case $q=2, m=2, t=1$. This would mean that in all cases C_{t} is the largest possible linear subcode of C with its minimum distance.
Proof (of the theorem). Take $V=\mathbb{F}_{q^{m}}$. Then we have

$$
F=\left\{\sum_{i, j} a_{i j} x^{q^{i}} x^{q^{j}} \mid a_{i j} \in \mathbb{F}_{q^{m}}, a_{i+1, j+1}=a_{i j}^{q}\right\}
$$

where the sum is over the unordered pairs i, j in $\{0, \ldots, m-1\}$, regarded as the additive group of integers modulo m. Let F_{t} be the subspace of F defined by $a_{i j}=0$ for $|i-j|<t$. Then (i) and (ii) hold.

Note that for odd m the elements of F can be written as

$$
Q(x)=\operatorname{Tr}\left(\sum_{0 \leq j<m / 2} a_{0 j} x^{1+q^{j}}\right)
$$

where Tr is the trace function from $\mathbb{F}_{q^{m}}$ to \mathbb{F}_{q}, while if $m=2 n$ is even, we have

$$
Q(x)=\operatorname{Tr}\left(\sum_{0 \leq j<m / 2} a_{0 j} x^{1+q^{j}}\right)+\operatorname{tr}\left(a_{0 n} x^{1+q^{n}}\right)
$$

where tr is the trace function from $\mathbb{F}_{q^{n}}$ to \mathbb{F}_{q} (and $a_{0 n} x^{1+q^{n}}$ actually lies in $\mathbb{F}_{q^{n}}$).
The symmetric bilinear form B corresponding to Q is given by $B(x, y)=\sum a_{i j}\left(x^{q^{i}}\right.$ $\left.y^{q^{j}}+x^{q^{j}} y^{q^{i}}\right)=\operatorname{Tr}(x L(y))$ where $L(y)=2 a_{00} y+\sum_{j>0} a_{0 j} y^{q^{j}}$ for all m.

We have $\operatorname{Rad} Q \subseteq \operatorname{Rad} B$, and $y \in \operatorname{Rad} B$ if and only if $L(y)=0$. But if $Q \in F_{t}$, then $L(x)=M(x)^{q^{t}}$, where M has degree at most $q^{m-2 t}$, so $|\operatorname{Rad} B| \leq q^{m-2 t}$ and $\operatorname{dim} \operatorname{Rad} B \leq m-2 t$, unless $M=0$, i.e., $B=0$, so that q is even, $t=0$, and Q is the square of a linear form. This proves (iii).

Each nonzero polynomial Q in F_{t} has degree at most $q^{m-1}+q^{m-1-t}$ and has smallest degree term of degree at least $1+q^{t}$ (unless $q=2, t=0$). Put $\hat{Q}(x)=$ $Q(x) / x^{q^{t}}$. Then every root of Q is a root of \hat{Q} so that Q defines a quadric with at most $\left(q^{m-1}+q^{m-1-t}-q^{t}-1\right) /(q-1)$ projective points, and we see that F_{t} does not contain hyperbolic quadrics Q with $r=\operatorname{dim} \operatorname{Rad} Q \geq m-2 t$. If $t=\frac{1}{2} m$, then we see that the nonzero quadrics Q in F_{t} have fewer than $\frac{q^{m-1}-1}{q-1}$ points, hence are all elliptic. This proves (iv) and (vi).

Assume that m is odd, and consider the field $W=\mathbb{F}_{q^{2 m}}$ as a vector space of dimension m over $\mathbb{F}_{q^{2}}$. Each quadric $Q(x)=\sum_{k, l} b_{k, l} x^{q^{2 k}} x^{q^{2 l}}$ on W has restriction $\sum_{i, j} a_{i, j} x^{q^{i}} x^{q^{j}}$ to $\mathbb{F}_{q^{m}}$, where $a_{2 k, 2 l}=b_{k, l}$ (subscripts modulo m). If this restriction is an elliptic (or hyperbolic) quadric with radical of dimension $m-2 t$ (over \mathbb{F}_{q}), and $a_{i j}=0$ for $|i-j|<t$, then Q is a hyperbolic quadric with radical of the same dimension, and $b_{k, l}=a_{2 k, 2 l}($ subscripts $\bmod m)$. But for the coefficients we still need that they vanish when the indices differ by less than t, and this was lost. Choose h such that $2^{h} \equiv 1(\bmod m)$. Go to the field $\mathbb{F}_{q^{N}}$ with $N=2^{h} m$. Then the equation is the same again $\left(Q(x)=\sum_{i, j} a_{i, j} x^{z^{i}} x^{z^{j}}\right.$ where $z=q^{2^{h}}$), and the quadric is hyperbolic. Contradiction. This proves (v).

The above codes are good, as we mentioned - usually they are as good as the best codes known, given length and dimension. A little bit of fiddling yields improvements in the tables.

We can enlarge our codes by adding the all-1 vector. Let $D_{t}=C_{t}+\langle 1\rangle$. Then $\operatorname{dim} D_{t}=\operatorname{dim} C_{t}+1$. What about the minimum distance?

The largest weight occurring in C_{t} is $q^{m-1}+q^{m-t-2}$ if m is odd, and $q^{m-1}+q^{m-t-1}$ if m is even. Thus, if $q=2$ and m is odd, we find a $\left[2^{m},\binom{m+1}{2}-m t+1,2^{m-1}-2^{m-t-2}\right]-$ code (extending D_{t} by one extra position 0 where the quadratic forms vanish and the nonzero constants do not). This is an extended BCH code.

If q is odd, then the nonzero positions of Q are partitioned into the x for which $Q(x)$ is a square and those for which it is a nonsquare. If Q is a hyperbolic or elliptic quadric, then both parts have the same size $\left(q^{m-1}-\varepsilon q^{\frac{1}{2}(m+r)-1}\right) / 2$. If Q is parabolic, then $Q(x)$ is a square or a non-square for $\left(q^{m-1}+\eta q^{(m+r-1) / 2}\right) / 2$ points
x, where $\eta= \pm 1$. In particular, for $q=3$ we find that D_{t} has minimum distance (at least) $3^{m-1}-\left(3^{m-t-1}+1\right) / 2$, that is $\delta=\left(3^{m-t-2}+1\right) / 2$ smaller than the minimum distance of C_{t}. This means that we can lengthen D_{t}, adding δ ones to the all- 1 vector, and obtain ternary $\left[\left(3^{m}+3^{m-t-2}\right) / 2,\binom{m+1}{2}-m t+1,3^{m-1}-3^{m-t-2}\right]$ - codes. For example, with $m=5, t=1$ we find ternary $[126,11,72]$-codes, while the current record holder was a $[126,11,68]$-code. It seems likely that we can do even better by adjoining a random vector to C_{t}, instead of the all-1 vector.

References

[1] M. A. de Boer. Codes: Their parameters and geometry. Ph. D. thesis, Eindhoven Univ. Techn., 1997.
[2] M. A. de Boer. Codes spanned by quadratic and Hermitian forms. IEEE Trans. Inf. Th. 42 (1996) 1600-1604.
A. E. Brouwer

Tech. University Eindhoven
P.O. Box 513

5600 MB Eindhoven
The Netherlands
e-mail: aeb@win.tue.nl

[^0]: Received by the editors September 1997.
 Communicated by Albrecht Beutelspacher.
 1991 Mathematics Subject Classification. 51A, 51E22.
 Key words and phrases. linear spaces, quadrics, codes.

