Linear spaces of quadrics and new good codes

Andries E. Brouwer

Abstract

A conjecture of Mario de Boer about the weights occurring in a space of quadrics is proved. Some record-breaking codes are constructed.

Let V be a vector space of dimension m over \mathbb{F}_q and consider the space F of all quadratic forms on V. Then dim $F = \binom{m+1}{2}$. If Q is a quadratic form on V with radical R, then we can define a nondegenerate form \overline{Q} on V/R by $\overline{Q}(x+R) = Q(x)$ for $x \in V$. We shall call Q elliptic, parabolic or hyperbolic when \overline{Q} is. The rank of Q is the dimension of V/R.

Theorem

For $0 \le t \le \frac{1}{2}m$ there do exist linear subspaces F_t of F such that

(i) these subspaces form a chain: $F_{t+1} \subseteq F_t$ for all t,

(*ii*) dim $F_t = \binom{m+1}{2} - mt$,

(iii) all nonzero quadrics in F_t have rank at least 2t (indeed, the associated symmetric bilinear forms all have rank at least 2t),

(iv) the nonzero hyperbolic quadrics in F_t have rank at least 2t + 2,

(v) if m is odd, then the elliptic quadrics in F_t have rank at least 2t + 2,

(vi) if m = 2t, then the nonzero quadrics in F_t are all elliptic.

Parts (i)-(iv),(vi) are due to Mario de Boer [1]. Part (v) was conjectured by him. One may construct a linear code C from F (and C_t from F_t), by fixing one

representative x in each projective point (1-space) $\langle x \rangle$ in the projective space PV, and use evaluation to get for each quadratic form $Q \in F_t$ a code word $c_Q = (Q(x))_x$. Its weight is the number of projective points outside the quadric defined by Q. Clearly, this code has word length |PV| and dimension dim F_t .

Bull. Belg. Math. Soc. 5 (1998), 177-180

Received by the editors September 1997.

Communicated by Albrecht Beutelspacher.

¹⁹⁹¹ Mathematics Subject Classification. 51A, 51E22.

Key words and phrases. linear spaces, quadrics, codes.

Lemma

The quadric defined by Q in PV has

$$\frac{q^{m-1}-1}{q-1} + \varepsilon q^{\frac{1}{2}(m+r)-1}$$

points, where $r = \dim \operatorname{Rad} Q$ and $\varepsilon = -1, 0, 1$ when Q is elliptic, parabolic or hyperbolic, respectively.

It follows that

Corollary

For $0 \le t \le \frac{1}{2}m$ there do exist linear subcodes C_t of C with parameters

$$\left[\frac{q^m - 1}{q - 1}, \ \binom{m + 1}{2} - mt, \ q^{m - 1} - q^{m - t - 2}\right]$$

and these codes form a chain: $C_{t+1} \subseteq C_t$ for all t.

If m is even, then C_t has at most m - 2t + 2 nonzero weights (precisely m + 1 if t = 0); if m is odd, then C_t has at most m - 2t nonzero weights.

The smallest of these codes in fact have a larger minimum distance: if $t = \frac{1}{2}(m-1)$ then C_t has parameters

$$[\frac{q^m - 1}{q - 1}, m, q^{m - 1}]$$

and if $t = \frac{1}{2}m$ then C_t has parameters

$$\left[\frac{q^m-1}{q-1}, \ \frac{1}{2}m, \ q^{m-1}+q^{\frac{1}{2}m-1}\right].$$

In these last two cases, C_t is equidistant.

(In [2] it is claimed incorrectly that for m = 2t + 1 the code C_t is a 2-weight code.)

The code C (a 2nd order projective Reed-Muller code) is not very good, but for t > 0 the codes C_t are often the best codes known, given their word length and dimension. Mario de Boer conjectures that C_t has the largest possible dimension among the linear subcodes of C not containing hyperbolic quadrics of rank at most 2t except in case q = 2, m = 2, t = 1. This would mean that in all cases C_t is the largest possible linear subcode of C with its minimum distance.

Proof (of the theorem). Take $V = \mathbb{F}_{q^m}$. Then we have

$$F = \{\sum_{i,j} a_{ij} x^{q^i} x^{q^j} \mid a_{ij} \in \mathbb{F}_{q^m}, \ a_{i+1,j+1} = a_{ij}^q \}$$

where the sum is over the unordered pairs i, j in $\{0, ..., m-1\}$, regarded as the additive group of integers modulo m. Let F_t be the subspace of F defined by $a_{ij} = 0$ for |i - j| < t. Then (i) and (ii) hold.

Note that for odd m the elements of F can be written as

$$Q(x) = \text{Tr}\left(\sum_{0 \le j < m/2} a_{0j} x^{1+q^j}\right)$$

where Tr is the trace function from \mathbb{F}_{q^m} to \mathbb{F}_q , while if m = 2n is even, we have

$$Q(x) = \operatorname{Tr}\left(\sum_{0 \le j < m/2} a_{0j} x^{1+q^j}\right) + \operatorname{tr}\left(a_{0n} x^{1+q^n}\right)$$

where tr is the trace function from \mathbb{F}_{q^n} to \mathbb{F}_q (and $a_{0n}x^{1+q^n}$ actually lies in \mathbb{F}_{q^n}).

The symmetric bilinear form B corresponding to Q is given by $B(x, y) = \sum a_{ij}(x^{q^i})$ $y^{q^j} + x^{q^j}y^{q^i} = \operatorname{Tr}(xL(y))$ where $L(y) = 2a_{00}y + \sum_{j>0} a_{0j}y^{q^j}$ for all m.

We have $\operatorname{Rad} Q \subseteq \operatorname{Rad} B$, and $y \in \operatorname{Rad} B$ if and only if L(y) = 0. But if $Q \in F_t$, then $L(x) = M(x)^{q^t}$, where M has degree at most q^{m-2t} , so $|\operatorname{Rad} B| \leq q^{m-2t}$ and dim $\operatorname{Rad} B \leq m - 2t$, unless M = 0, i.e., B = 0, so that q is even, t = 0, and Q is the square of a linear form. This proves (iii).

Each nonzero polynomial Q in F_t has degree at most $q^{m-1} + q^{m-1-t}$ and has smallest degree term of degree at least $1 + q^t$ (unless q = 2, t = 0). Put $\hat{Q}(x) = Q(x)/x^{q^t}$. Then every root of Q is a root of \hat{Q} so that Q defines a quadric with at most $(q^{m-1} + q^{m-1-t} - q^t - 1)/(q - 1)$ projective points, and we see that F_t does not contain hyperbolic quadrics Q with $r = \dim \operatorname{Rad} Q \ge m - 2t$. If $t = \frac{1}{2}m$, then we see that the nonzero quadrics Q in F_t have fewer than $\frac{q^{m-1}-1}{q-1}$ points, hence are all elliptic. This proves (iv) and (vi).

Assume that m is odd, and consider the field $W = \mathbb{F}_{q^{2m}}$ as a vector space of dimension m over \mathbb{F}_{q^2} . Each quadric $Q(x) = \sum_{k,l} b_{k,l} x^{q^{2k}} x^{q^{2l}}$ on W has restriction $\sum_{i,j} a_{i,j} x^{q^i} x^{q^j}$ to \mathbb{F}_{q^m} , where $a_{2k,2l} = b_{k,l}$ (subscripts modulo m). If this restriction is an elliptic (or hyperbolic) quadric with radical of dimension m - 2t (over \mathbb{F}_q), and $a_{ij} = 0$ for |i - j| < t, then Q is a hyperbolic quadric with radical of the same dimension, and $b_{k,l} = a_{2k,2l}$ (subscripts mod m). But for the coefficients we still need that they vanish when the indices differ by less than t, and this was lost. Choose h such that $2^h \equiv 1 \pmod{m}$. Go to the field \mathbb{F}_{q^N} with $N = 2^h m$. Then the equation is the same again $(Q(x) = \sum_{i,j} a_{i,j} x^{z^i} x^{z^j}$ where $z = q^{2^h}$), and the quadric is hyperbolic. Contradiction. This proves (v).

The above codes are good, as we mentioned — usually they are as good as the best codes known, given length and dimension. A little bit of fiddling yields improvements in the tables.

We can enlarge our codes by adding the all-1 vector. Let $D_t = C_t + \langle 1 \rangle$. Then dim $D_t = \dim C_t + 1$. What about the minimum distance?

The largest weight occurring in C_t is $q^{m-1}+q^{m-t-2}$ if m is odd, and $q^{m-1}+q^{m-t-1}$ if m is even. Thus, if q = 2 and m is odd, we find a $[2^m, \binom{m+1}{2} - mt + 1, 2^{m-1} - 2^{m-t-2}]$ -code (extending D_t by one extra position 0 where the quadratic forms vanish and the nonzero constants do not). This is an extended BCH code.

If q is odd, then the nonzero positions of Q are partitioned into the x for which Q(x) is a square and those for which it is a nonsquare. If Q is a hyperbolic or elliptic quadric, then both parts have the same size $(q^{m-1} - \varepsilon q^{\frac{1}{2}(m+r)-1})/2$. If Q is parabolic, then Q(x) is a square or a non-square for $(q^{m-1} + \eta q^{(m+r-1)/2})/2$ points

x, where $\eta = \pm 1$. In particular, for q = 3 we find that D_t has minimum distance (at least) $3^{m-1} - (3^{m-t-1} + 1)/2$, that is $\delta = (3^{m-t-2} + 1)/2$ smaller than the minimum distance of C_t . This means that we can lengthen D_t , adding δ ones to the all-1 vector, and obtain ternary $[(3^m + 3^{m-t-2})/2, {m+1 \choose 2} - mt + 1, 3^{m-1} - 3^{m-t-2}]$ - codes. For example, with m = 5, t = 1 we find ternary [126, 11, 72]-codes, while the current record holder was a [126, 11, 68]-code. It seems likely that we can do even better by adjoining a random vector to C_t , instead of the all-1 vector.

References

- M. A. de Boer. Codes: Their parameters and geometry. Ph. D. thesis, Eindhoven Univ. Techn., 1997.
- M. A. de Boer. Codes spanned by quadratic and Hermitian forms. *IEEE Trans.* Inf. Th. 42 (1996) 1600-1604.

A. E. Brouwer
Tech. University Eindhoven
P.O. Box 513
5600 MB Eindhoven
The Netherlands
e-mail: aeb@win.tue.nl