A note on small complete caps in the Klein quadric

Aart Blokhuis

Péter Sziklai*

Abstract

We give a lower bound for the size of a cap being contained and complete in the Klein quadric in $\operatorname{PG}(5, q)$, or equivalently, for the size of a set \mathcal{L} of lines in $\mathrm{PG}(3, q)$ such that no three of them are concurrent and coplanar in the same time, and being also maximal for this property.

The Klein quadric is a quadric hypersurface in $\operatorname{PG}(5, q)$, the points of which correspond to the lines of $\operatorname{PG}(3, q)$, see e.g. [5]. Three points of the Klein quadric are collinear if and only if their corresponding lines are concurrent and coplanar in $\mathrm{PG}(3, q)$.

A cap in $\mathrm{PG}(n, q)$ is a set of points, no three of which are collinear. In this paper we are interested in caps being contained and complete in the Klein quadric, which correspond to maximal sets \mathcal{L} of lines in $\mathrm{PG}(3, q)$ such that no three of them are concurrent and coplanar at the same time.

If you take a point P of $\operatorname{PG}(3, q)$ then the lines of \mathcal{L} through P (more precisely: their residues with respect to P, in design theory terminology) form an arc. So there are at most $q+1$ or $q+2$ lines through any point according as q is odd or even. This implies the upper bound

$$
|\mathcal{L}| \leq(q+1)\left(q^{2}+1\right) \text { if } 2 \nless q \text { or }|\mathcal{L}| \leq(q+2)\left(q^{2}+1\right) \text { if } 2 \mid q \text {. }
$$

For q odd this bound is sharp, see Glynn [4]. We remark that the extremal example comes from a full Singer line orbit. There is an embedding-type result for q even,

[^0]see Ebert, Metsch and Szőnyi [3]. For q even it is conjectured that the upper bound cannot be reached.

Here we will examine the 'other side', i.e. small complete caps. We give a lower bound for the size of a cap being contained and complete in the Klein quadric in PG(5,q).

Our motivation is the following: Cossidente, Hirschfeld and Storme in [1, 2] constructed a cap of size $2\left(q^{2}+q+1\right)$ which is complete on the Klein quadric. We want to prove a lower bound for the size of such a cap. The trivial lower bound is $q^{3 / 2}$, which can be shown by the following easy argument:

Let \mathcal{L} be a set of lines in $\mathrm{PG}(3, q)$ such that no three of them are concurrent and coplanar in the same time, and suppose that \mathcal{L} is complete for this property. It means that the intersecting pairs of lines from \mathcal{L} 'block' all the other lines being concurrent and coplanar with them, i.e. $q-1$ lines, and the intersecting pairs from \mathcal{L} block all the lines not in \mathcal{L}. As $\operatorname{PG}(3, q)$ has roughly q^{4} lines, and the number of intersecting pairs of lines is at most $\binom{|\mathcal{L}|}{2}$, the bound of magnitude $q^{3 / 2}$ follows.

Theorem 1 Let \mathcal{L} be a set of lines in $\mathrm{PG}(3, q)$ such that no three of them are concurrent and coplanar at the same time, and let \mathcal{L} be also maximal for this property. Then $|\mathcal{L}| \geq$ const $\cdot q^{12 / 7}$.

This is equivalent to the following.
Theorem 2 Any complete cap on the Klein quadric has size at least const $\cdot q^{12 / 7}$.
Proof. Let $G(V, E)$ be the graph with the lines of \mathcal{L} as vertices, and $\left(l_{i}, l_{j}\right) \in E$ if and only if the lines are intersecting. Let $n=|V|=|\mathcal{L}|, e=|E|$ and let d_{i} the degree of the vertex (line) l_{i}.

1. Claim: $e \geq q^{3}$. Proof: the intersecting pairs block the lines not in \mathcal{L}, their number is greater than q^{4}, one pair blocks $q-1$ other lines.

2 . We estimate the number Q of quintuples $\left(l_{0} ; l_{1}, l_{2}, l_{3}, l_{4}\right)$, where

- $l_{i} \in \mathcal{L}$;
- l_{0} meets l_{1}, l_{2}, l_{3} and l_{4};
- $l_{1}, l_{2}, l_{3}, l_{4}$ are pairwise skew and they are not contained in a regulus.

We get a lower bound for this number in the following way: after choosing l_{0} with degree d, one may choose l_{1} in d ways, then l_{2} in at least $d-2 q$ ways (as any two intersecting lines can have at most $2 q$ common neighbours), then l_{3} in at least $d-4 q$ ways, finally l_{4} in at least $d-7 q+2$ ways (because you have to exclude the $q-2$ remaining lines of the regulus determined by l_{1}, l_{2} and $\left.l_{3}\right)$. So

$$
\begin{gathered}
Q \geq \sum_{i} d_{i}\left(d_{i}-2 q\right)\left(d_{i}-4 q\right)\left(d_{i}-7 q+2\right) \geq \sum_{i}\left(d_{i}-7 q\right)^{4} \geq \\
\frac{\left(\sum\left(d_{i}-7 q\right)\right)^{4}}{n^{3}} \geq \frac{(2 e-7 q n)^{4}}{n^{3}} \geq \frac{\left(2 q^{3}-7 q n\right)^{4}}{n^{3}} .
\end{gathered}
$$

On the other hand, we get an upper bound in the following way: one may choose l_{1}, l_{2}, l_{3} and l_{4} in less than n^{4} ways. Finally at most two lines can be chosen as l_{0},
because if there were three lines meeting l_{1}, l_{2} and l_{3}, then all the other lines (so l_{4} as well) meeting these three lines would be in the regulus determined by l_{1}, l_{2} and l_{3}. This is less than $2 n^{4}$ in total.

So we have

$$
2 n^{4} \geq Q \geq \frac{\left(2 q^{3}-7 q n\right)^{4}}{n^{3}}
$$

and the desired inequality follows.
To end this note we remark that if such a configuration of lines exists, with significantly less than q^{2} lines, then it has some interesting properties; for example it contains "large" parts from "many" reguli.

Acknowledgement. The second author is most grateful for the hospitality of the Technische Universiteit, Eindhoven, where this work was done.

References

[1] A. Cossidente, J. W. P. Hirschfeld and L. Storme. Applications of line geometry, III: The quadric Veronesean and the chords of a twisted cubic. Australas. J. Combin. 16 (1997), 99-111.
[2] A. Cossidente. Private communication.
[3] G. L. Ebert, K. Metsch and T. Szőnyi. Caps embedded in Grassmanian surfaces. Manuscript.
[4] D. G. Glynn. On a set of lines of $\operatorname{PG}(3, q)$ corresponding to maximal cap contained in the Klein quadric of $\mathrm{PG}(5, q)$. Geom. Dedicata 26 (1988), 273280.
[5] J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford University Press, Oxford (1985).

Aart Blokhuis
Technische Universiteit Eindhoven
Den Dolech 2
P.O.Box 513

NL-5600 MB
Eindhoven
The Netherlands
e-mail: aartb@win.tue.nl
Péter Sziklai
Mathematical Institute of the Hungarian Academy of Sciences
Reáltanoda u. 13-15.
Budapest, H-1364
Hungary
e-mail: sziklai@cs.elte.hu

[^0]: *Research was partially supported by OTKA Grants F016302 and T-014302
 Received by the editors September 1997.
 Communicated by James Hirschfeld.
 1991 Mathematics Subject Classification. 51E22.
 Key words and phrases. caps, Klein quadric.

