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Abstract

We show here how the techniques based on homotopy pull backs and push
outs lead to simple proofs for apparently difficult (known or unknown) results.
They can be used not only in the category of topological spaces, but also in
any Quillen’s model category. Many of them rely on the two ‘join theorems’
we prove here. Further applications are the study of holonomy, or of the
Lusternik-Schnirelmann category.

Many of the usual constructions in topology are nothing else but homotopy pull
backs, homotopy push outs, or joins (which are a combination of the two formers).
Loop spaces, suspensions, mapping cones, Ganea spaces, Whitehead’s fat wedges,
holonomy, for instance, involve such constructions.

After having defined in section 1 ‘homotopy pull backs’ and ‘homotopy push
outs’ in the general context of a Quillen’s model category, we introduce in section 2
the ‘join’ and ‘smash product’ constructions and give their properties. Section 3 is
quite central as it is devoted to state and prove the two ‘join theorems’ which are
key theorems in the sequel. Section 4 gives applications of the join theorems. Some
known difficult results as those of Ganea (4.3) or Marcum (4.1) appear here are easy
consequences of the join theorems. In section 5 we go further with Ganea’s ‘fibre-
cofibre’ and Whitehead’s ‘fat wedge’ constructions. At last, we study the holonomy
of a join of fibration sequences in section 6. All this appears unified by the same kind
of techniques that rely on the same small amount of axioms and basic properties.
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1 Basic definitions and properties

In this section, we recall the definitions of homotopy pull back and homotopy push
out in topology, and extend them to Quillen’s model categories. We also give their
few basic properties ; everything in the sequel rely on the ‘prism lemma’, the ‘four
(co)fibrations lemma’ and the ‘cube axiom’ we state at the end of the section. We
keep the text self-contained and, as often as we know, we give references to similar
notions existing in the literature.

We denote by ∗ the base point of any pointed topological space X ; we denote
by I∗X the reduced cylinder on X. A pointed topological space is well-pointed if
the inclusion of the base point is a closed cofibration. Let us consider the category
Topw of well-pointed topological spaces and pointed continuous maps between them.
A map H : I∗X → Y is a pointed homotopy between pointed maps f and g if
H(x, 0) = f(x) and H(x, 1) = g(x). In this case we write H : f ∼ g. If H and G are
two such homotopies, a map K : I∗I∗X → Y is a pointed homotopy relative to (f, g)
between H and G if K(x, s, 0) = H(x, s), K(x, s, 1) = G(x, s), K(x, 0, t) = f(x), and
K(x, 1, t) = g(x). In this case we write K : H ∼ G.

A homotopy commutative diagram in Topw is a diagram of pointed continuous
maps where each two composites of maps, with same source and target spaces, is
equipped with a pointed homotopy between them –the homotopy between f and
itself being the obvious homotopy H(x, s) = f(x), that we also denote by f–, and
if two composites and/or sum of such homotopies are pointed homotopies between
the same two pointed maps f and g, then there is a pointed homotopy relative to
(f, g) between them.

Definition 1.1 ([21]) A homotopy commutative diagram

P
f1

g1

C

g

A
f

B

equipped with H : gf1 ∼ fg1, is called a homotopy pull back when for any homotopy
commutative diagram

D
f2

g2

C

g

A
f

B

equipped with G : gf2 ∼ fg2, the following properties hold :



Homotopy pull backs, homotopy push outs and joins 17

(i) there exists a map w : D → P (called whisker map) and homotopies K : f2 ∼
f1w and L : g1w ∼ g2 such that the whole diagram

D C

P

A B

with all maps and homotopies above is homotopy commutative (which means that
g ◦K +H ◦ w + f ◦ L ∼ G) ;

(ii) if there exists another map w′ : D → P and homotopies K ′ : f2 ∼ f1w
′ and

L′ : g1w
′ ∼ g2 such that g ◦K ′ +H ◦ w′ + f ◦ L′ ∼ G, then there exists a homotopy

M : w ∼ w′ such that the whole diagram with all maps and homotopies above is
homotopy commutative (wich means that K + f1 ◦M ∼ K ′ and g1 ◦M + L′ ∼ L).

The notion of homotopy pull back dualizes to the notion of homotopy push out.
‘Dualize’ means here ‘reverse the direction of arrows’.

There is a ‘standard’ construction of the homotopy pull back of any two maps
f : A→ B and g : C → B in Topw as the mapping track :

Ef,g ∼= {(a, ω, c) ∈ AΠBI ΠC | f(a) = ω(0) and g(c) = ω(1)}

(BI is the free paths space of B) with the obvious maps Ef,g → A and Ef,g → C
and homotopy H : I∗Ef,g → B : ((a, ω, c), t) 7→ ω(t).

Dually there is a ‘standard’ construction of the homotopy push out of any two
maps f : B → A and g : B → C in Topw as the mapping torus :

Zf,g ∼= Aq I∗B q C / f(b) ∼ (b, 0) and g(b) ∼ (b, 1)

with the obvious maps A → Zf,g and C → Zf,g and homotopy K : I∗B → Zf,g :
(b, t) 7→ (b, t). (See also [21].)

Remark : The homotopy H is an essential data of the homotopy pull back ; for
instance, let ΩX be the loop space of X and consider the diagram

ΩX ∗

∗ X

Equipped with the homotopy H : I∗(ΩX) → X : (ω, t) 7→ ω(t), it is a homotopy
pull back. It is not a homotopy pull back equipped with the ‘static’ homotopy
G : I∗(ΩX)→ X : (ω, t) 7→ ∗.

The notions of homotopy pull back and homotopy push out can be extended
to 2-categories (see [9]), Quillen’s model categories (see [23]), Baues’ fibration and
cofibration categories (see [1]) or Majewski’s homotopical categories (see [19]).
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From now on, we will assume that C is a pointed Quillen’s model category.
‘Pointed’ means here that there is a zero object (i.e. both final and initial) in the
category, that we denote by ∗. The first axiom ‘M0’ of Quillen can be replaced by
the slightly weaker one : ‘the pull back of any fibration and any map (with same
target) exists and the push out of any cofibration and any map (with same source)
exists’ ; we will keep the terminology ‘model category’ in this case.

We say that an object X of C is fibrant (respectively cofibrant) if X → ∗ is a
fibration (respectively ∗ → X is a cofibration). Let f : A → B and g : C → B be
two maps in C ; let us build the following commutative diagram (†) :

A
f

'

B

'

C
g

'

A′ p B ′ C ′q

where A′, B ′, C ′ are fibrant, either p or q is a fibration, and the maps marked with
' are weak equivalences. Then the pull back P of p and q is called the homotopy
pull back of f and g. (See also [2], [1], [18], [6], [7], [16], [8].)

Remark : The condition ‘A′, B ′, C ′ fibrant’ is not necessary if C is proper (see
[2] 1.2), so in this case one can choose p = f or q = g.

The construction of the homotopy push out is dual. ‘Dualize’ in a model category
means ‘reverse the direction of arrows, keep weak equivalences, change fibrations to
cofibrations, pull backs to push outs, fibrant objects to cofibrant ones’.

The category Topw is a model category where the weak equivalences are the
homotopy equivalences, and all spaces are both fibrant and cofibrant objects (see
[25]). The standard homotopy pull back is a particular case of the above construction
(†) where p = f , C ′ = Eg ∼= {(ω, c) ∈ BI ΠC | g(c) = ω(1)}, q : Eg → B : (ω, c) 7→
ω(0) and P = Ef,g.

Remark : The construction (†) of the homotopy pull back in the model category
C does not necessarily give a homotopy commutative diagram

P C

A B

in C (even if it does in Topw). Indeed the map P → A′ (respectively P → C ′) can
not be ‘lifted’ to a map P → A (respectively P → C) because weak equivalences
are not necessarily homotopy equivalences. This makes the theory of homotopy pull
backs very unconfortable to build in C. However there exists such a commutative
diagram in the homotopy category Ho(C), and a homotopy commutative represen-
tative in Ccf –we describe Ho(C) and Ccf just below.
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The homotopy category Ho(C) of C is the category whose objects are the same
as those of C and whose maps are obtained from those of C by formally inverting
the weak equivalences ([23] I.1.12). Let Ccf be the full subcategory of C whose
objects are those of C which are both cofibrant and fibrant ; the category Ho(C) is
equivalent to the quotient category Ccf/ ∼ whose objects are those of Ccf and whose
maps are the homotopy classes of maps of Ccf . The obvious functor γ : C→ Ho(C)
carries weak equivalences to isomorphisms, and homotopy commutative diagrams to
commutative ones.

Remark : The functor γ does not carry a homotopy pull back in C to a pull back
in Ho(C). For instance, the zero object ∗ of C is also the zero object of Ho(C), so
for any X there is a pull back in Ho(C)

∗

p.b.

∗

∗ X

which is not the homotopy pull back ΩX of ∗ → X and ∗ → X.

As there is a homotopy equivalence relation in Ccf , the notion of homotopy
commutative diagram also exists in Ccf . The diagrams we shall draw from now on
are homotopy commutative diagrams in Ccf . The definition 1.1 of homotopy pull
back now gets sense for homotopy commutative squares in the setting of a model
category. The construction (†) in C above –or more precisely any representative in
Ccf of its image by γ in Ho(C), equipped with the appropriate homotopy– satisfies
this definition.

Definitions and notations 1.2 The sign ' denotes an isomorphism in Ho(C).
We write P ' A×B C if there is a homotopy pull back

P
f1

g1 h.p.b.

C

g

A
f

B

The map f1 will be called homotopy base extension of f (by g). If B ' ∗, we write
P ' A×C. If C ' ∗, we call P (or the map g1) the homotopy fibre of f , and we call
the sequence of maps P → A→ B a fibration sequence. In particular ΩX = ∗×X ∗
is called the loops of X.

Dually, we write S ' A ∨B C if there is a homotopy push out

B

f h.p.o.

C

A S
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If C ' ∗, we call S the homotopy cofibre of f and we write S ' A/B. In particular
ΣX = ∗ ∨X ∗ ' ∗/X is called the suspension of X.

Although a homotopy pull back is not a pull back in Ho(C), it has a similar
behaviour : The homotopy base extension of an isomorphism in Ho(C) is an iso-
morphism in Ho(C) ; isomorphic maps in Ho(C) have isomorphic homotopy base
extensions in Ho(C) ; the homotopy pull back of maps with same target is symmetric
and associative up to isomorphism in Ho(C). This of course dualizes to homotopy
push outs.

The three properties we describe now are basic ones for the techniques using
homotopy pull back and push outs. We call them the prism lemma, the four
(co)fibrations lemma, and the cube axiom. We don’t give the proof here but we
give references for them.

Lemma 1.3 (Prism Lemma.) (Compare [21] lemmas 12 and 14, [7] 2.5.) Let be
a homotopy commutative diagram

A C

B

A′ C ′

B ′

where B − C − C ′ − B ′ is a homotopy pull back and the dotted map is the whisker
map. Then A−B −B ′−A′ is a homotopy pull back if and only if A−C −C ′−A′
is a homotopy pull back.

Note the particular case where A′ ' ∗. In this case, the lemma asserts that if
B−C −C ′−B ′ is a homotopy pull back, then the maps B → B ′ and C → C ′ have
common homotopy fibre A.

As another example, if A → B → C is a cofibration sequence, we see that the
homotopy cofibre of B → C is ΣA applying the dual lemma (called ‘prism lemma’,
too) to the diagram :

A B ∗

∗ C ΣA
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Lemma 1.4 (Four fibrations lemma.) ([3]) Let be a homotopy commutative di-
agram

D C

A B

D′ C ′

A′ B ′

D′′ C ′′

A′′ B ′′

where D′ − C ′ − B ′ − A′ and D′′ − C ′′ − B ′′ − A′′ are homotopy pull backs, the
sequences A→ A′ → A′′, B → B ′ → B ′′, and C → C ′ → C ′′ are fibration sequences,
and the maps D → D′ and D′ → D′′ are the whisker maps. Then D − C − B − A
is a homotopy pull back if and only if D → D′ → D′′ is a fibration sequence.

Note the particular case whereA ' A′ ' A′′ ' ∗. In this case the three horizontal
squares are fibration sequences, symmetrically to the three remaining vertical ones.

These two lemmas are plain transposition of properties of the true pull back
in any category, and are consequences of the axioms of model category. As these
axioms are autodual, the dual lemmas are also true. ‘Dualize’ here means ‘reverse
the directions of the arrows, replace homotopy pull backs by homotopy push outs,
fibration sequences by cofibration sequences’.

Definition 1.5 (Compare [8].) A cube-map is a map f : A→ B such that for any
homotopy base extension f ′ : A′ → B ′ of f and any homotopy commutative diagram

· ·

· A′

f ′

· ·

· B ′

where f ′ is the front map, if the bottom face is a homotopy push out, the four vertical
faces are homotopy pull backs, then the top face is a homotopy push out.

Note that the homotopy base extension of a cube-map is a cube-map, and that
the composite of cube-maps is a cube-map.

Now let us state :

Axiom 1.6 (Cube axiom.) All maps are cube-maps.
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The category Top∗ of pointed topological spaces, and in fact also the category
Topw of well-pointed topological spaces, satisfy the cube axiom ([21] theorem 25,
compare [6] chapter 6). Also the category S∗ of pointed simplicial sets satisfies the
cube axiom ([7] A.8). The category Chain of graded differential modules over a
ring R with unit (bounded below, differential of degree -1) satisfies both the cube
axiom and its dual ([6] chapter 6).

Note the cube axiom is not a consequence of the axioms of model category : if it
was the case, the dual of the cube axiom would also be true in any model category,
but it is not. For instance, in the cube :

S2 × S3 S3

S2 ∗

∗ ·

· ·

where the top face is a homotopy pull back and the vertical faces are homotopy push
outs, the bottom face is not a homotopy pull back ; thus the dual of the cube axiom
is not true in Topw. So the cube axiom breaks the duality between homotopy pull
backs and homotopy push outs.

In order to obtain results valid also in categories where the cube axiom is not
satisfied, we will not assume that C satisfies it, and will always specify when we
need a map to be a cube-map. It is clear that isomorphisms in Ho(C), so weak
equivalences in C, are cube-maps. However, applications require that there are
‘as many cube-maps as possible’. Fortunately this is the case for all the model
categories we work with ; more precisely, algebraic categories where topological
spaces are modelized via a covariant functor have many cube-maps, while categories
where topological spaces are modelized via a contravariant functor have many dual
cube-maps (dual notion of 1.5).

Let S(r) be the category of r-reduced simplicial sets (r ≥ 1), and let be S a
multiplicative system in Z (S = {1} if r = 1). The category S(r) is a model
category where weak equivalences are maps f such that S−1π∗(f) is an isomorphism
(see [24] II.2). The maps f such that S−1πr(f) is surjective are cube-maps ([8]
proposition 11). Take S = Z − {0} ; the diagonal ∆ : Sr0 → Sr0 × Sr0 , where Sr0 is
the rational sphere of dimension r, is not a cube map.

Let R be a (commutative) principal ideal domain. Let DA∗(flat) be the category
of augmented differential algebras with unit over R (bounded below in degree 0,
differential of degree -1), which are flat as R-modules. The category DA∗(flat)
is a model category where weak equivalences are maps f such that H∗(f) is an
isomorphism (see [22], compare [1] I.7.10 and [7] A.15). The maps f such that
H0(f) is surjective are cube-maps ([7] A.15).

Let CDA∗(c0) be the category of augmented differential commutative algebras
over a field k of caracteristic 0 (bounded below in degree 0, differential of degree
+1), whose augmentation ε induces an isomorphism H0(ε). The category CDA∗(c0)
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is a model category where weak equivalences are maps f such that H∗(f) is an
isomorphism (see [13]). The maps f such that H0(f) is an isomorphism and H1(f)
is injective are dual cube-maps ([7] A.19).

2 Joins and smash products

This section is devoted to present the definitions and basic facts about joins and
smash products. It may serve as a reference for the next sections. Almost everything
here rely on the ‘prism lemma’ (1.3) and the ‘four (co)fibrations lemma’ (1.4).

Definition 2.1 Let A → B and C → B be two maps, and let P ' A ×B C,
J ' A ∨P C :

P C

J

A B

Then we call J (or the whisker map J → B) the join of A and C over B, and we
write J ' A 1B C. If B ' ∗, we just write J ' A 1 C.

Here is the dual notion :

Definition 2.2 Let B → A and B → C be two maps, and let S ' A ∨B C,
K ' A×S C :

B C

K

A S

Then we call K (or the whisker map B → K) the cojoin of A and C under B, and
we write K ' A3B C. If B ' ∗, we just write K ' A3 C.

Definition 2.3 An object X is B-sectioned if there is a homotopy commutative
diagram

B
1B

s

B

X
r

A map f : X → Y is said B-sectioned if X and Y are B-sectioned and the following
diagram is homotopy commutative

X

f

r

B

s

s′

B

Y
r′
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In particular, all objects and all maps are ∗-sectioned.

The notion we introduce now is a generalization of the smash product to B-
sectioned objects. In particular, this leads to the generalization of the decomposition
of Σ(A × C) to a decomposition of Σ(A ×B C) for B-sectionned objects A and C
(2.12).

Let A and C be B-sectioned. Using the prism lemma, we see that all squares in
the following diagram are homotopy push outs :

B C B

A A ∨B C A

B C B

Let us consider the following diagram :

A ∨B C C

A×B C

A B

where the exterior square is the homotopy push out above and the dotted map is
the whisker map of the pull back. Let P ' A ×B C and S ' A ∨B C . We have
P ' A 3S C and S ' A 1P C , and the whisker map S → P is both the join map
of A and C over P and the cojoin map of A and C under S.

Definition 2.4 Let A and C be B-sectioned. The homotopy cofibre of the map
A ∨B C → A ×B C above is called the smash pull back of A and C over B and
denoted by A ∧B C. If B ' ∗, we call it the smash product and denote it by A ∧C.

Dually, the homotopy fibre of the map A ∨B C → A×B C is denoted by A [B C.
If B ' ∗, we just note it A [ C.

Proposition 2.5 Let A and C be B-sectioned. Then there is a cofibration sequence :

B → A 1B C → Σ(A ∧B C).
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Proof. Apply the four cofibrations lemma to

A ∨B C C

A B

A×B C C

A A 1C B

A ∧B C ∗

∗ Σ(A ∧B C)

�

Corollary 2.6 For any objects A and C, A 1 C ' Σ(A ∧ C).

The dual of the previous proposition 2.5 also holds :

Proposition 2.7 Let A and C be B-sectioned. Then there is a fibration sequence :

Ω(A [B C)→ A3B C → B.

Corollary 2.8 For any objects A and C, A3 C ' Ω(A [ C).

Proposition 2.9 Let A be B-sectioned and let X → Y be a B-sectioned map. Let
S ' Y ∨X B. If A→ B is a cube-map, then there is a cofibration sequence

A ∧B X → A ∧B Y → A ∧B S.

Proof. By the prism lemma, we have a homotopy push out (†) :

A ∨B X A

A ∨B Y A ∨B S

On the other hand, as A×BS → S is the base extension of the cube-map A→ B,
the top square of the following cube is a homotopy push out (‡) :

A×B X A

A×B Y A×B S

X B

Y S
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Finally apply the four cofibrations lemma where (†) is the first horizontal face, (‡)
is the second horizontal face and the third horizontal face is the expected homotopy
push out. �

If X is B-sectioned, we note ΣBX = B ∨X B, and ΩBX = B ×X B.

Corollary 2.10 Let A and X be B-sectioned. If A → B is a cube-map, then
Σ(A ∧B X) ' A ∧B (ΣBX).

Proof. Apply the previous proposition to the B-sectioned map r : X → B. �

Corollary 2.11 For any objects A and X, if A → ∗ is a cube-map, then we have
Σ(A ∧X) ' A ∧ (ΣX).

Proposition 2.12 Let A and C be B-sectioned. Then

Σ(A×B C) ' (A 1B C) ∨B (B/A) ∨B (B/C).

Proof. Immediate by lemmas 2.16 and 2.18 below. �

Corollary 2.13 For any objects A and C,

Σ(A× C) ' (A 1 C) ∨ ΣA ∨ ΣC.

The dual of the above proposition 2.12 also holds :

Proposition 2.14 Let A and C be B-sectioned, and let F and F ′ be the homotopy
fibres of B → A and B → C respectively. Then

Ω(A ∨B C) ' (A3B C)×B F ×B F ′.

Corollary 2.15 For any objects A and C,

Ω(A ∨ C) ' (A3 C)× ΩA× ΩC.

We say that a map f : X → Y factorizes through B if there is a homotopy
commutative diagram :

X
f

Y

B

In particular, f is said to be null-homotopic if f factorizes through ∗.

Lemma 2.16 If A and C are B-sectioned, then the maps A → A 1B C and C →
A 1B C in the homotopy push out

A×B C

h.p.o.

C

A A 1B C

factorize through B.

Proof. Look at the top cube of the diagram in the proof of proposition 2.5. �
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Lemma 2.17 If X → Y factorizes through B, then (Y/X) ' (B/X) ∨B Y .

Proof. Use the prism lemma. �

Lemma 2.18 Let S ' X ∨Y Z a homotopy push out, and assume the maps X → S
and Z → S factorize through B. Then ΣY ' (B/X) ∨B (B/Z) ∨B S.

Proof. As S ' X ∨Y Z, we have Z/Y ' S/X, and as X → S factorizes through B,
we have S/X ' (B/X) ∨B S. Recall from the Puppe sequence that the homotopy
cofibre of Z → Z/Y is ΣY . As Z → S factorizes through B, so does Z → Z/Y .
Thus we have ΣY ' (B/Z) ∨B (Z/Y ) ' (B/Z) ∨B (B/X) ∨B S. �

3 Join theorems

In this section, we prove two main theorems about joins. They will be key theorems
in the sequel. The first one asserts that the ‘join of homotopy pull backs’ is a
homotopy pull back. The second asserts that the ‘join of a homotopy pull back and
a homotopy push out’ is a homotopy push out. The ‘cube axiom’ –or the notion of
‘cube-map’ (1.5)– plays an essential role here.

Theorem 3.1 (Join theorem I.) (Compare [7], 2.7.) Let B → B ′ be a cube-map,
and let be two homotopy pull backs

A

h.p.b.

B

h.p.b.

C

A′ B ′ C ′

Then we have a homotopy pull back

A 1B C

h.p.b.

B

A′ 1B′ C
′ B ′

Moreover we have two homotopy pull backs

A

h.p.b.

A 1B C

A′ A′ 1B′ C
′

and

C

h.p.b.

A 1B C

C ′ A′ 1B′ C
′



28 J.-P. Doeraene

Proof. Let us consider the following construction :

P C

A Q B

P ′ C ′

A′ J ′ B ′

where P ′ ' A′×B′ C ′, J ′ ' A′∨P ′ C ′ ' A′ 1B′ C
′, Q ' J ′×B′ B and P ' P ′×A′ A.

By the prism lemma, we have also A ' A′×J ′Q, C ' C ′×J ′Q and P ' P ′×C′C ,
P ' A×B C . The map Q→ J ′ is a cube map as it is the homotopy base extension
of the cube-map B → B ′. So P − C − Q − A is a homotopy push out. Thus
Q ' A 1B C . �

Theorem 3.2 (Join theorem II.) Let C ′ → B ′ be a cube-map, and let be a ho-
motopy push out and a homotopy pull back

A

h.p.o.

B

h.p.b.

C

A′ B ′ C ′

(i.e. B ′ ' A′ ∨A B and C ' C ′ ×B′ B). Then we have a homotopy push out

A 1B C

h.p.o.

B

A′ 1B′ C
′ B ′

Moreover we have a homotopy push out

A

h.p.o.

A 1B C

A′ A′ 1B′ C
′
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Proof. Let us consider the following construction :

P C

A J B

P ′ C ′

A′ S B ′

where P ' A×B C , J ' A ∨P C ' A 1B C , S ' A′ ∨A J and P ′ ' A′ ×B′ C ′.
By the prism lemma, we have P ' A ×A′ P ′ and B ′ ' S ∨J B. As C ′ → B ′

is a cube map, P − C − C ′ − P ′ is a homotopy push out. So by the prism lemma,
S ' A′ ∨P ′ C ′. Thus S ' A′ 1B′ C

′. �

4 Applications of the join theorems

In this section, we give a collection of applications of the join theorems in the model
category C. In the category Topw, most are known results, but with our approach,
they appear as direct consequences of the join theorems. Note that none of these
results are dualizable, because they all rely on the cube axiom (or cube maps).

Theorem 4.1 (Compare [20] theorem 1.3.) Let P → A and P → B be any two
maps, M ' A ∨P B, and let N → M be a cube-map and N → C be any map. Let
us build the following diagram

Q F

E N C

P A

B M X

where E ' B ×M N , F ' A ×M N , Q ' P ×B E ' P ×A F and X ' M ∨N C.
Finally, let be Z ' P ∨Q F ' P 1A F and Y ' B ∨E C. Then there is a homotopy
push out

Z

h.p.o.

Y

A X
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Proof. Let J ' B ∨E N ' B 1M N . By the join theorem II, we have M ' A ∨Z J
(†). Now by the prism lemma, Y ' B ∨E C ' J ∨N C . Applying the prism lemma
again in the diagram

N J M

C Y X

we get X ' M ∨J Y (‡). Finally apply the prism lemma to (†) and (‡) to get
X ' A ∨Z Y . �

Proposition 4.2 Let F → E → B and F ′ → E ′ → B be two fibration sequences.
If ∗ → B is a cube-map, then there is a fibration sequence

F 1 F ′→ E 1B E
′ → B.

Proof. Immediate by the join theorem I. �

In particular :

Corollary 4.3 (Compare [10] theorem 1.1.) Let F → E → B be a fibration se-
quence. If ∗ → B is a cube-map, then there is a fibration sequence

F 1 ΩB → E 1B ∗ → B.

Proposition 4.4 Let A → B → C be a cofibration sequence and let F → E → C
be a fibration sequence. If E → C is a cube-map, then the join of B and E over C
is

E 1C B ' C ∨ (F 1 A)

and the join map is the obvious map C ∨ (F 1 A)→ C.

Proof. By the join theorem II, we have the following homotopy push outs

A

h.p.o.

F 1 A

h.p.o.

∗

B E 1C B C

But by lemma 2.16 we know that A→ F 1 A is null-homotopic, so the left homotopy
push out splits into the two ones :

A

h.p.o.

∗

h.p.o.

F 1 A

B C E 1C B

�
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Corollary 4.5 (Compare [5] proposition 2.1.) Let A → B → C be a cofibration
sequence and F → E → C be a fibration sequence. Let P ' E ×C B. If E → C is
a cube-map, then there is a cofibration sequence

F 1 A→ B/P → C/E.

Proof. First note that, as E 1C B ' E ∨P B, the maps P → B and E → E 1C B
have common homotopy cofibre B/P . Now apply the four cofibrations lemma to
the following diagram :

∗ E

∗ E

F 1 A E 1C B

∗ C

F 1 A B/P

∗ C/E

�

Proposition 4.6 Let A and C be B-sectioned, and B → A and B → C be cube-
maps. Then we have a homotopy pull back :

ΩBA 1B ΩBC

h.p.b.

B

A ∨B C A×B C

Proof. Let P ' A×B C . We have B ' A×P C by the prism lemma, so A 1P C '
A ∨B C , as we did already notice above. The map C → P is a cube-map, as it is
the homotopy base extension of B → A ; thus the map B → P is a cube-map, as
it is the composite of B → C and C → P . Now the join theorem I applied to the
diagram

ΩBC

h.p.b.

B

h.p.b.

ΩBA

A P C

gives the result. �
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Corollary 4.7 For any objects A and C, if ∗ → A and ∗ → C are cube-maps, then

A [ C ' ΩA 1 ΩC.

To end this section, we show that the associativity of the join construction also
rely on the join theorems.

Theorem 4.8 (Associativity of the join.) (Compare [15] 3.74.) Let be two cube-
maps A→ D and C → D and any third map B → D. Then

(A 1D B) 1D C ' A 1D (B 1D C).

Proof. Let us consider the following construction :

Q E

F N C

P B

A M D

where P ' A×DB, E ' B×D C , F ' A×D C , Q ' P ×A F ' P ×B E ' F ×C E,
M ' A∨PB ' A 1D B, and N ' M×DC . As C → D is a cube-map, N ' F 1C E
by the join theorem I.

Let X ' M ∨N C ' M 1D C ' (A 1D B) 1D C . Now let Z ' P 1A F and
Y ' B ∨E C ' B 1D C . As A → D is a cube-map, Z ' A ×D Y by the join
theorem I.

Note that N → M is a cube-map because it is the homotopy base extension
of the cube-map C → D. Applying theorem 4.1 to the interior cube of the above
diagram prolonged by the homotopy push out X 'M∨N C , we obtain X ' A∨Z Y .
Since Z ' A×D Y , we have X ' A 1D Y ' A 1D (B 1D C). �

5 Ganea and fat wedge constructions

Ganea spaces and Whitehead’s fat wedges play a crucial role in the study of the
Lusternik-Schnirelmann category. In fact, they are not else but some particular join
constructions. We present here these notions in a model category. (See also [7], [14],
[3], [4], [5] for further development.)

Definition 5.1 For any object B, the nth Ganea object GnB and Ganea map gn :
GnB → B are defined inductively by : g0 : G0B ' ∗ → B and

gn : GnB ' Gn−1B 1B ∗ → B

is the join of gn−1 and g0.

Proposition 5.2 If ∗ → B is a cube-map, then Gm+n+1B ' GmB 1B GnB.

Proof. This is just the associativity of the join. �
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Proposition 5.3 If ∗ → B is a cube-map, then there is a fibration sequence

ΩB 1 ΩB 1 . . . 1 ΩB (n+ 1 times)→ GnB → B.

Proof. First note that ΩB → ∗ is a cube-map as it is the homotopy base extension
of ∗ → B, so the join of loops is associative. Now the result follows directly from
corollary 4.3 by recursivity. �

Let us define the diagonals ∆n : B → Bn ' B × B × . . .× B (n times) of any
object B, inductively by ∆0 : B → ∗ and ∆n is the whisker map induced by the
maps 1B : B → B and ∆n−1 : B → Bn−1 and the following homotopy pull back :

Bn ' B ×Bn−1

h.p.b.

Bn−1

B ∗

Definition 5.4 For any object B, the nth fat wedge TnB and fat wedge map tn :
TnB → Bn+1 are defined inductively by : t0 : T0B ' ∗ → B and

tn : TnB ' Bn 1Bn+1 (Tn−1B × B)→ Bn+1

is the join of the obvious (whisker) maps Bn ' Bn × ∗ → Bn × B ' Bn+1 and
Tn−1B × B → Bn ×B ' Bn+1.

Theorem 5.5 (Compare [12] 4.3, [7] 3.11.) Assume ∆n : B → Bn is a cube-map
for all n ≥ 1. Then for all n ≥ 1 there is a homotopy pull back

GnB

gn h.p.b.

TnB

tn

B
∆n+1

Bn+1

Proof. By induction on n. The case n = 0 is immediate as g0 = t0 and ∆1 is the
identity. Assume the result is known to be true for n = m− 1.

Applying the prism lemma in the diagram

Gm−1B Tm−1B × B Tm−1B

B
∆m+1

Bm × B Bm

we obtain that the left square is a homotopy pull back (†).
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On the other hand, applying the prism lemma in the diagram

∗ Bm ∗

B
∆m+1

Bm × B B

we obtain that the left square is a homotopy pull back (‡).
Now apply the join theorem I to (†) and (‡) to get the result for n = m. �

Corollary 5.6 Assume ∆n : B → Bn is a cube-map for all n ≥ 1. Then for all n ≥
1, gn has a homotopy section if and only if ∆n+1 admits a homotopy factorization
through tn.

Proof. The section s : B → GnB of gn is the whisker map induced by 1B : B → B,
the map l : B → TnB in the factorization of ∆n+1 and the homotopy pull back of
the theorem 5.5. �

6 Holonomy

This section is devoted to study the relation between join and holonomy. The main
theorem 6.2 here asserts that the holonomy of the ‘join of fibration sequences’ is the
‘join of the holonomies’ of the fibration sequences.

Let F → E → B be a fibration sequence. Let us consider the following dia-
gram (†) :

ΩB × F
h

ΩB

F ∗

F ∗

E B

where the map h : ΩB×F → F is the whisker map of the front homotopy pull back
F ' E ×B ∗. The prism lemma shows that the top and left faces of the cube are
homotopy pull backs.

Definition 6.1 The whisker map h : ΩB × F → F in the diagram above is called
the holonomy of the fibration sequence F → E → B.
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Let be a homotopy commutative diagram

A

f

B

g

C

h

A′ B ′ C ′

The obvious (whisker) map A 1B C → A′ 1B′ C
′ is called the join of f and h over

g.

Theorem 6.2 Let F → E → B and F ′ → E ′ → B be two fibration sequences, and
let h : ΩB×F → F and h′ : ΩB×F ′ → F ′ respectively be their holonomies. If ∗ → B
if a cube-map, then the holonomy of the fibration sequence F 1 F ′ → E 1B E

′ → B
is the join of the holonomies h and h′ over ΩB → ∗.

Proof. Let us consider the join

J ' (ΩB × F ) 1ΩB (ΩB × F ′)
of the maps ΩB × F → ΩB and ΩB × F ′→ ΩB in the diagram (†) above, and the
corresponding one with primes. Let us also consider the join of the maps F → ∗
and F ′ → ∗. Putting all this together we get the following diagram (‡) :

ΩB × (F × F ′) ΩB × F ′

ΩB × F J ΩB

F × F ′ F

F F 1 F ′ ∗
where the five vertical squares are homotopy pull backs and the two horizontal
squares are homotopy push outs. Indeed this diagram is nothing else but the con-
struction of the join theorem I applied to the two top faces of the diagram (†) and
of the corresponding one with primes. By construction (and the prism lemma), the
maps ΩB×F → F and ΩB×F ′ → F ′ are the holonomies and the map J → F 1 F ′

is their join.
Furthermore, let us consider the join of the maps E → B and E ′ → B. Applying

(four times) the join theorem I to the diagram (†) of homotopy pull backs above,
and the corresponding one with primes, we get the diagram :

J
x

ΩB

F 1 F ′ ∗

F 1 F ′ ∗

E 1B E
′ B
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where the front, top, rear and bottom faces are homotopy pull backs. By the prism
lemma, the left face is also a homotopy pull back. Thus by definition, the map
x : J → F 1 F ′ is the holonomy of the fibration sequence F 1 F ′→ E 1B E

′ → B.
�

Corollary 6.3 Let F → E → B be a fibration sequence. If ∗ → B if a cube-map,
then the holonomy of the fibration sequence F 1 ΩB → E 1B ∗ → B is the join of
the holonomies ΩB × F → F and ΩB × ΩB → ΩB over ΩB → ∗.
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[17] Lusternik L., Schnirelmann L., Méthodes topologiques dans les problèmes vari-
ationnels, Hermann, Paris (1934).

[18] Majewski M., Tame homotopy theory via polynomial forms, Diplomarbeit, Freie
Universität Berlin (1988).

[19] Majewski M., A cellular Lie algebra model for spaces and its equivalence with
the models of Quillen and Sullivan, Thesis, Freie Universität Berlin (1996).

[20] Marcum H.J., Fibrations over double mapping cylinders, Illinois Journ. of Math.
24-2 (1980), 344-358.

[21] Mather M., Pull-backs in Homotopy Theory, Can. J. Math. 28-2 (1976), 225-
263.

[22] Munkholm H., DGA algebras as a Quillen model category, J. Pure Appl. Alge-
bra 13 (1978), 221-232.

[23] Quillen D., Homotopical Algebra, Lecture Notes in Math. 43, Springer Verlag
(1967).

[24] Quillen D., Rational Homotopy theory, Ann. of Math. 90 (1969), 205-295.

[25] Strøm A., The homotopy category is a homotopy category, Arch. Math. 23
(1972), 435-441.
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