
The glueing of near polygons

Bart De Bruyn∗

Abstract

In [7] a construction is given to derive so-called glued near polygons from
spreads of symmetry in generalized quadrangles. We show here that this
construction is also applicable to arbitrary near polygons and derive a similar
theory as in the case of the generalized quadrangles. We also show that many
new near polygons can be derived from a set of points in PG(5, 3) discovered
by Coxeter ([2]).

1 Basic definitions

A near polygon A = (P,L, I) is a partial linear space with the property that every
line L contains a unique point πL(p) nearest to any given point p. Here distances
are measured in the collinearity graph Γ. If d is the (finite) diameter of Γ, then the
near polygon is called a near 2d-gon. A near 0-gon consists of one point, a near
2-gon is a line, and the class of the near quadrangles coincides with the class of the
generalized quadrangles (GQ’s, [9]), which were introduced by Tits in [11]. Near
polygons themselves were introduced by Shult and Yanushka in [10] because of their
relationship with certain systems of lines in Euclidean spaces. For a point p and
a line K of A, let d(p, K) denote the minimal distance between p and a point of
K. For two lines K and L of A, let d(K, L) denote the minimal distance between
two points on respectively K and L. There are two possibilities. Either there exist
unique points k ∈ K and l ∈ L such that d(K, L) = d(k, l), or, for every point
k ∈ K there exists a unique l ∈ L such that d(K, L) = d(k, l). In the latter case K

and L are called parallel (K ‖L). A subspace B of A is called geodetically closed, if
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every point on a shortest path between two points of B is as well contained in B.
If every line of A is incident with at least three points, and if every two points at
distance 2 have at least two common neighbours, then every two points at distance δ

are contained in a unique geodetically closed sub near 2δ-gon, see Theorem 4 of [1].
The existence of geodetically closed sub near quadrangles, the so-called quads, was
already proven in [10]. The direct product A×B of two near polygons A = (P,L, I)
and B = (P ′,L′, I′) is the near polygon whose point set is the cartesian product
P ×P ′, with two points (x, y) and (x′, y′) collinear if and only if (x = x′ and y ∼ y′)
or (y = y′ and x ∼ x′).

In [7], it is explained how generalized quadrangles with a so-called spread of
symmetry can be used to construct new near 2d-gons. The case d = 3 is treated
more thoroughly in [6]. In the present paper, we show that the construction can
be generalized to all near 2d-gons with a spread of symmetry and derive a similar
theory as in [3]. Examples of near polygons with a spread of symmetry include
the near polygons with a linear representation. We take a closer look to these near
polygons in the following section.

2 Linear representations

Let Π∞ be a PG(n, q), n ≥ 0, which is embedded as a hyperplane in Π = PG(n+1, q),
and let K be a nonempty set of points of Π∞. With every point x of Π∞, we associate
an element iK(x) ∈ N ∪ {+∞}, called the K-index of x:

• if x 6∈ 〈K〉, then iK(x) = +∞,

• if x ∈ 〈K〉, then iK(x) = m, where m is the smallest integer with the property
that there are m points of K generating a subspace containing x.

The linear representation T ∗
n(K) is the geometry with point set Π \ Π∞, with lines

all the affine lines of Π through a point of K, and with incidence the one derived
from Π.

Theorem 1 ([8]). • If x and y are 2 different points of T ∗
n(K) and if z is the

intersection of xy with Π∞ then d(x, y) = iK(z), where d(·, ·) denotes the

distance in the collinearity graph of T ∗
n(K).

• T ∗
n(K) is a near polygon if and only if for every point x ∈ K and for every line

L of Π∞ through x, there is a unique point y ∈ L \ {x} with smallest K-index.

Theorem 2. (A) Consider in Π∞ two disjoint subspaces π1 and π2 of dimensions

n1 ≥ 0 and n2 ≥ 0 respectively, such that Π∞ = 〈π1, π2〉. Let Ki, i ∈ {1, 2},
be a set of points in πi and put K = K1 ∪ K2. If T ∗

ni
(Ki), i ∈ {1, 2}, is a near

2di-gon, then T ∗
n(K) is a near 2(d1 + d2)-gon isomorphic to the direct product

T ∗
n1

(K1)× T ∗
n2

(K2).

(B) Consider in Π∞ two subspaces π1 and π2 of dimensions n1 ≥ 0 and n2 ≥ 0
respectively, such that π1 ∩ π2 = {p} and Π∞ = 〈π1, π2〉. Let Ki, i ∈ {1, 2}, be

a set of points in πi containing p and put K = K1 ∪K2. If T ∗
ni

(Ki), i ∈ {1, 2},
is a near 2di-gon, then T ∗

n(K) is a near 2(d1 + d2 − 1)-gon.
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Proof. Part (A) of the theorem was proved in [8]. We now prove part (B). Let
L be a line of Π∞ containing a point x of K1 ∪ K2. We will prove that L \ {x}
contains a unique point with smallest (K1∪K2)-index. We may suppose that x ∈ K1

and L 6⊆ π1. For every point y of L \ (π1 ∪ π2) there exist points a1 ∈ π1 and
a2 ∈ 〈L, π1〉 ∩ π2 such that y ∈ 〈a1, a2〉 and iK1∪K2

(y) = iK1
(a1) + iK2

(a2). Let b2

be the unique point of (〈L, π1〉 ∩ π2) \ {p} with smallest K2-index. By (A), L \ {x}
contains a unique point with smallest (K1 ∪ {b2})-index, and this point is also the
unique point of L \ {x} with smallest (K1 ∪ K2)-index. �

A nonempty set of points in PG(n, q) is called indecomposable if it cannot be written
as K1 ∪K2 with K1 and K2 as in (A) or (B) of the previous theorem. The following
examples of indecomposable sets yield near polygons ([8]):

(1) the unique point of PG(0, q),

(2) a hyperoval in PG(2, 2h),

(3) the set {(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0,
1, 0), (0, 0, 0, 0, 0, 1), (0,−1,−1,−1,−1,−1), (1, 0, 1,−1,−1, 1), (1, 1, 0, 1,−1,−1),
(1,−1, 1, 0, 1,−1), (1,−1,−1, 1, 0, 1), (1, 1,−1,−1, 1, 0)} of 12 points in PG(5, 3)
discovered by Coxeter in [2] as a set of points with certain ”nice” properties.

Successive application of Theorem 2, (B) to the the third example yields an infinite
class of new near polygons. Concerning the classification of linear representations
of near 2d-gons, d ≤ 3, we have the following result.

Theorem 3 ([8]). Let K be an indecomposable set of points in PG(n, q), q ≥ 3,
different from (1), (2) and (3). If T ∗

n(K) is a near 2d-gon, d ≤ 3, then d = 3, n ≥ 7
and q = 2h with h ≥ 4.

The case d ≥ 4 has not yet been treated. The following theorem however suggests
a recursive approach.

Theorem 4 ([5]). If K is a nonempty set of points in PG(n, q), such that T ∗
n(K)

is a near polygon, then every geodetically closed sub near 2δ-gon, δ 6= 0, of T ∗
n(K) is

of the form T ∗
n∗(K∗) with K∗ ⊆ K, 〈K∗〉 ∩ K = K∗ and dim(〈K∗〉) = n∗.

3 Spreads of near polygons

Let A be a near polygon. For two lines K and L of A with K ‖L and d(K, L) = 1,
we define {K, L}⊥ as the set of all lines intersecting K and L, and {K, L}⊥⊥ as
the set of all lines meeting every line of {K, L}⊥. If {K, L}⊥ and {K, L}⊥⊥ cover
the same points of S, then the pair {K, L} is called regular. A spread S of A is
called admissible if every two lines of S are parallel. An admissible spread has a nice
property with respect to geodetically closed subgeometries.

Theorem 5. Let S be an admissible spread of a near polygon A, let L ∈ S, and let

H be a geodetically closed subgeometry of A through L. Then every line of S which

meets H is completely contained in H.
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Proof. Suppose there is a line M of S which meets H in exactly one point m, and let
l ∈ L such that d(l, m) = d(m, L) + 1. The unique point of M at distance d(m, L)
from l is then on a geodetically closed path from l to m, a contradiction. �

An admissible spread S of A is called regular if {K, L} is regular and {K, L}⊥⊥ ⊆ S

for all K, L ∈ S with d(K, L) = 1. A spread S of A is a spread of symmetry if for
every K ∈ S and every k1, k2 ∈ K, there exists an automorphism of A fixing each
line of S and mapping k1 to k2.

Theorem 6. Every spread of symmetry is a regular spread.

Proof. Let S be a spread of symmetry of A. For every two lines K, L ∈ S, the
distance d(k, L) is independent of the chosen point k ∈ K. Hence, K and L are
parallel. Suppose now that d(K, L) = 1, and let M be a line meeting K and L. If
G denotes the full group of automorphisms fixing each line of S, then {K, L}⊥ =
{Mg|g ∈ G} and {K, L}⊥⊥ = {mG|m ∈ M} is a subset of S, proving that S is
regular. �

We now consider two cases.

(A) If A is the direct product of a line L with a near polygon B = (P,L, I), then
S = {Lx|x ∈ P} with Lx := {(y, x)|y ∈ L} is a spread of A. Every spread obtained
this way is called trivial. Clearly, every trivial spread is a spread of symmetry.

(B) Let Π∞ be a PG(n, q) which is embedded as a hyperplane in Π = PG(n + 1, q),
and let K be a nonempty set of points of Π∞ such that T ∗

n(K) is a near polygon.
For every point x of K, the set of all affine lines through x determines a spread Sx

of T ∗
n(K).

Theorem 7. The spread Sx is a spread of symmetry.

Proof. The points of T ∗
n(K) are the points of AG(n + 1, q). Let K ∈ Sx and

k1, k2 ∈ K. There exists then a unique translation T of AG(n + 1, q) mapping k1 to
k2. Clearly T defines an isomorphism of T ∗

n(K) which fixes each line of Sx. �

Theorem 8. If q ≥ 3, then the spreads Sx, x ∈ K, are the only regular spreads of

T ∗
n(K).

Proof. By Theorems 6 and 7, every spread Sx, x ∈ K, is regular. Conversely, suppose
that S is a regular spread. We prove that every two lines K and L of S determine
the same point at infinity. If d(K, L) = 1, then the lines K and L are contained
in a quad Q. By Theorem 4 the points of Q are the points of α \ Π∞ where α is a
two- or threedimensional subspace. If dim(α) = 2, then |α ∩ K| = 2, Q is a grid,
and K and L determine the same point at infinity. If dim(α) = 3, then α ∩ K is a
hyperoval and the result follows from Theorem 3.3.4 of [9]. If d(K, L) = k > 1, then
there exist lines M0, . . . , Mk ∈ S such that M0 = K, Mk = L and d(Mi−1, Mi) = 1
for every i ∈ {1, . . . , k}. Since Mi−1 ∩ Π∞ = Mi ∩ Π∞ for every i ∈ {1, . . . , k}, K

and L determine the same point at infinity. �
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4 Two groups related to an admissible spread

Let S be an admissible spread of a near 2d-gon A = (P,L, I). The full group of
automorphisms of A fixing each line of S is denoted by GS. For every two lines K

and L of S, one can define the projection P K
L from the point set of K to the point

set of L: pK
L (x) denotes the unique point on L nearest to x ∈ K. For a line K ∈ S,

we call ΠS(K) = 〈P M
K ◦ P L

M ◦ P K
L |L, M ∈ S〉 the group of projectivities of K with

respect to S.

Theorem 9. (a) The group ΠS(K) is trivial if and only if S is trivial.

(b) If ΠS(K) is not the trivial group, then for all x1, x2 ∈ K, there exists an

element of ΠS(K) mapping x1 to x2.

Proof.

(a) Suppose that ΠS(K) is trivial. For every point x ∈ K, the set ∆x := {y ∈
P| d(y, x) = d(y, K)} is a subspace of A, i.e. a set of points of A intersecting
each line in either the empty set, a singleton or the whole line. If x, y and
z are points such that x ∈ K, y ∈ ∆x, d(y, z) = 1 and yz 6∈ S, then there
exists an element of ΠS(K) mapping x to the unique point of K nearest to z,
proving that z ∈ ∆x. Hence, for every point y ∈ P \∆x, there exists a unique
point Px(y) ∈ ∆x collinear with y. If y1, y2 ∈ P \ ∆x such that d(y1, y2) = 1
and y1y2 6∈ S, then also Px(y1) and Px(y2) are collinear. Hence all subspaces
∆x, x ∈ K, are isomorphic, and the result follows immediately.

(b) Let x ∈ K and θ ∈ ΠS(K) such that xθ 6= x. It is sufficient to prove that
the orbit of x under ΠS(K) is equal to K. So, let x̃ be an arbitrary point of
K. There exists a path x = x0, x1, . . . , xk = xθ in A such that d(xi, xi+1) = 1
and xixi+1 6∈ S for all i ∈ {0, . . . , k − 1}. Take now the smallest i such that
x is not the unique point of K nearest to xi, and let y be the unique point
of xi−1xi nearest to x̃. Since xi−1xi and K are parallel, x̃ is the unique point
of K nearest to y. If L and M are the elements of S through xi−1 and y,
respectively, then P M

K ◦ P L
M ◦ P K

L maps x to x̃, proving the result. �

Remark. If θ ∈ GS fixes a point x ∈ K, then θ also fixes every point of xΠS(K).
Hence, if S is nontrivial, then only the trivial element of GS has fixpoints.

The relation between the groups GS and ΠS(K) is the same as the one of Theorem
5.3 in [3].

Theorem 10. If θ ∈ GS then θ induces a permutation θ̄ on the point set of K that

commutes with each element of ΠS(K). Conversely, if a permutation φ on the point

set of K commutes with each element of ΠS(K), then φ = θ̄ for some θ ∈ GS.

Just as in Section 5 of [3], this implies the following result.
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Theorem 11. If K is a line of a nontrivial admissible spread S of a near polygon,

then the following statements are equivalent:

(1) S is a spread of symmetry,

(2) ΠS(K) acts regularly on the set of points of K,

(3) GS acts regularly on the set of points of K.

We also have the following result.

Theorem 12. If ΠS(K) is commutative, then S is a spread of symmetry.

Proof. We may suppose that ΠS(K) is not trivial. Since ΠS(K) is commutative,
every element of ΠS(K) can be extended to an element of GS (Theorem 10). Since
ΠS(K) acts transitively on the set of points of K (Theorem 9), S is a spread of
symmetry. �

We now consider the case when the near polygon has a linear representation. So,
let Π∞ be a PG(n, q) which is embedded as a hyperplane in Π = PG(n + 1, q) and
let K be a nonempty set of points of Π∞ such that T ∗

n(K) is a near polygon. For
every point 〈x̄〉 ∈ K, the set of all affine lines through 〈x̄〉 determines a spread S〈x̄〉

of T ∗
n(K). Let K1 = 〈x̄, ā〉 be a fixed line of S〈x̄〉.

Theorem 13. (a) The group ΠS〈x̄〉
(K1) is either trivial or isomorphic to the ad-

ditive group of the finite field GF(q).

(b) If ΠS〈x̄〉
(K1) is the trivial group, or equivalently, if S〈x̄〉 is a trivial spread, then

〈K \ {〈x̄〉}〉 is a hyperplane of Π∞ which does not contain 〈x̄〉.

Proof.

(a) Let K2, K3 ∈ S〈x̄〉 such that K1 6= K2 6= K3 6= K4 := K1. The plane 〈Ki, Ki+1〉,
i ∈ {1, 2, 3}, intersects Π∞ in a line 〈x̄, ūi〉. We may suppose that 〈ūi〉 is the
unique point of 〈x̄, ūi〉\{〈x̄〉} with smallest index. Let λ1, λ2, λ3 ∈ GF(q) such
that 〈ā + λ1ū1 + . . . + λiūi〉 ∈ Ki+1 for all i ∈ {1, 2, 3}. If Φ := pK3

K1
◦ pK2

K3
◦ pK1

K2
,

then Φ maps the point 〈ā+δx̄〉 of K1 to the point 〈ā+δx̄+λ1ū1 +λ2ū2 +λ3ū3〉
of K1. Hence there exists a µ ∈ GF(q) such that λ1ū1 +λ2ū2 +λ3ū3 = µx̄, and
Φ(〈ā+δx̄〉) = 〈ā+(δ+µ)x̄〉 for all δ ∈ GF(q). As a consequence ΠS〈x̄〉

(K1) is a
subgroup of the additive group of GF(q). If ΠS〈x̄〉

(K1) is not the trivial group,
then, by (b) of Theorem 9, ΠS〈x̄〉

(K1) is isomorphic to the additive group of
the finite field GF(q).

(b) Suppose that ΠS〈x̄〉
(K1) is trivial. Let L1, L2 and L3 be three different coplanar

lines of Π∞ through 〈x̄〉. Let 〈ūi〉, i ∈ {1, 2, 3}, be the unique point of Li\{〈x̄〉}
with smallest index. Choose now λ1, λ2, λ3, µ ∈ GF(q) such that λ1ū1 +λ2ū2 +
λ3ū3 = µx̄. Put K2 = 〈x̄, ā + λ1ū1〉 and K3 = 〈x̄, ā + λ1ū1 + λ2ū2〉, then
Φ := pK3

K1
◦ pK2

K3
◦ pK1

K2
maps 〈ā + δx̄〉 to 〈ā + (δ + µ)x̄〉 for all δ ∈ GF(q).

Since ΠS(K1) is trivial, µ = 0 and 〈ū1〉, 〈ū2〉 and 〈ū3〉 are collinear. Hence
the set of all points 〈r̄〉 6= 〈x̄〉 of Π∞ with the property that 〈r̄〉 is the unique
point of 〈r̄, x̄〉 \ {〈x̄〉} with smallest index, is a hyperplane ∆ of Π∞. Clearly
K\{〈x̄〉} ⊆ ∆ and hence 〈K\{〈x̄〉}〉 ⊆ ∆. Since T ∗

n(K) is connected, it follows
by Theorem 1 that 〈K〉 = Π∞. This implies that 〈K \ {〈x̄〉}〉 = ∆. �
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5 Glued near polygons

5.1 Construction

Let X denote a set with order |X| ≥ 2. For every i ∈ {1, 2}, consider the following
objects:

(a) a near polygon Ai,

(b) an admissible spread Si = {L
(i)
1 , . . . , L(i)

αi
} of Ai,

(c) a bijection θi : X → L
(i)
1 .

The line L
(i)
1 , i ∈ {1, 2}, is called the base line of Si. For all i ∈ {1, 2} and all

j, k ∈ {1, . . . , αi}, let p
(i)
j,k denote the projection from the line L

(i)
j to the line L

(i)
k .

We put Φ
(i)
j,k := p

(i)
k,1 ◦ p

(i)
j,k ◦ p

(i)
1,j. Consider the following graph Γ with vertex set

X × S1 × S2. Two vertices (x, L
(1)
i1

, L
(2)
j1

) and (y, L
(1)
i2

, L
(2)
j2

) are adjacent if and only
if exactly one of the following three conditions is satisfied:

(a) L
(1)
i1

= L
(1)
i2

, L
(2)
j1

= L
(2)
j2

and x 6= y,

(b) L
(2)
j1

= L
(2)
j2

, d(L
(1)
i1

, L
(1)
i2

) = 1 and Φ
(1)
i1,i2

◦ θ1(x) = θ1(y),

(c) L
(1)
i1

= L
(1)
i2

, d(L
(2)
j1

, L
(2)
j2

) = 1 and Φ
(2)
j1,j2

◦ θ2(x) = θ2(y).

The diameter of Γ equals d1 + d2 − 1 if Ai is a near 2di-gon, i ∈ {1, 2}. Similarly as
in Lemma 1 of [7], one can prove that every two adjacent vertices of Γ are contained
in a unique maximal clique. Considering these maximal cliques as lines, we obtain a
partial linear space A. If A is a near polygon, then it is called a glued near polygon.
This precisely happens when the condition in the following theorem is satisfied. The
proof is similar as the one of Theorem 1 in [7].

Theorem 14. The partial linear space A is a glued near hexagon if and only if

[θ−1
1 ΠS1

(L
(1)
1 )θ1, θ

−1
2 ΠS2

(L
(2)
1 )θ2] is the trivial group.

This condition is always satisfied if S1 or S2 is trivial. If S1 is trivial, then A1 ' L×B
with L a line and B a near 2(d1 − 1)-gon. In that case A ' B ×A2.

Suppose now that S1 and S2 are not trivial and that the condition in the previous
theorem is satisfied. By Theorem 10 every element of θ2θ

−1
1 ΠS1

(L
(1)
1 )θ1θ

−1
2 extends

to an automorphism of A2 fixing each line of S2. By Theorem 9, S2 is a spread of
symmetry of A2. Similarly, S1 is a spread of symmetry of A1. Summarizing we have
the following result.

Theorem 15. If A is a near polygon and if S1 and S2 are not trivial, then S1 and

S2 are spreads of symmetry in the respective near polygons.

In the construction of A the lines L
(1)
1 and L

(2)
1 of the spreads S1 and S2 seem to

play a special role. If A is a near polygon, then A can be obtained starting with
two arbitrary base lines (one in each spread). The maps θi, i ∈ {1, 2}, needed to
obtain A will then depend on the chosen base lines.
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5.2 Spreads of symmetry in glued near polygons

We use the same notations as in Section 5.1. Suppose that A is a glued near polygon.
For every (i, j) ∈ {1, . . . , α1} × {1, . . . , α2}, Li,j := {(x, L

(1)
i , L

(2)
j )|x ∈ X} is a line

of A. Clearly T = {Li,j|1 ≤ i ≤ α1, 1 ≤ j ≤ α2} is a spread of A.

Theorem 16. The spread T is a spread of symmetry if and only if the following

two conditions are satisfied:

(a) S1 and S2 are spreads of symmetry,

(b) if S1 and S2 are not trivial, then θ−1
1 ΠS1

(L
(1)
1 )θ1 and θ−1

2 ΠS2
(L

(2)
1 )θ2 are equal.

Hence, by Theorem 14, both groups are commutative.

Proof. Consider the line L1,1 of T . One calculates that ΠT (L1,1) is generated by

θ−1
1 ΠS1

(L
(1)
1 )θ1 and θ−1

2 ΠS2
(L

(2)
1 )θ2. The theorem follows then from Theorem 11. �

5.3 Glued near polygons with a linear representation

Part (B) of Theorem 2 can be improved as follows.

Theorem 17. Let Π∞ be a PG(n, q) which is embedded as a hyperplane in Π =
PG(n + 1, q). Consider in Π∞ two subspaces π1 and π2 of dimensions n1 ≥ 0 and

n2 ≥ 0 respectively, such that π1∩π2 = {p} and Π∞ = 〈π1, π2〉. If Ki, i ∈ {1, 2}, is a

set of points of πi containing p such that T ∗
ni

(Ki) is a near polygon, then T ∗
n(K1∪K2)

is a glued near polygon.

Proof.

(a) Let a be a fixed point of Π\Π∞. For each i ∈ {1, 2}, let Ai be the near polygon
T ∗

ni
(Ki) determined by the embedding πi ⊆ 〈a, πi〉, let Si be the spread of Ai

determined by the point p at infinity, let L
(i)
1 be the line X := pa, and let θi

be the identical permutation of X. By Theorems 13 and 14, the associated
incidence structure A is a glued near polygon.

(b) We prove that for every α ∈ Π \ Π∞, there exists a unique α̃ ∈ 〈a, π1〉 such
that d(α, γ) = d(α, α̃) + d(α̃, γ) for every γ ∈ 〈a, π1〉. We may suppose that
α 6∈ 〈a, π1〉. The unique point ᾱ of (〈a, α, π1〉∩π2)\{p} with smallest (K1∪K2)-
index is also the unique point of (〈a, α, π1〉∩Π∞)\π1 with smallest (K1∪K2)-
index, proving that {α̃} := αᾱ∩〈a, π1〉 is the unique point of 〈a, π1〉 nearest to
α. For every other point γ 6= α̃ of 〈a, π1〉, the points α̃γ∩Π∞, αγ∩Π∞ and ᾱ are
on the same line, implying that iK1∪K2

(αγ∩Π∞) = iK1∪K2
(ᾱ)+iK1∪K2

(α̃γ∩Π∞)
or d(α, γ) = d(α, α̃) + d(α̃, γ).

(c) For every point x of T ∗
n(K1 ∪ K2), let φ0(x) denote the unique point of pa

nearest to x, and let φi(x) = 〈x, π3−i〉 ∩ 〈a, πi〉, i ∈ {1, 2}. We now prove that
the bijection θ : x 7→ (φ0(x), φ1(x), φ2(x)) is actually an isomorphism between
T ∗

n(K1 ∪K2) and A. Since both geometries have order (q− 1, |K1 ∪K2| − 1), it
suffices to prove that θ preserves adjacency. So, let x1 and x2 be two different
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adjacent points in T ∗
n(K1 ∪ K2). If p is on the line x1x2, then φ1(x1) = φ1(x2)

and φ2(x1) = φ2(x2), proving that θ(x1) and θ(x2) are collinear. Suppose
therefore that the line x1x2 meets Π∞ in a point u ∈ K1 \ K2. We have
φ2(x1) = φ2(x2) and d(φ1(x1), φ1(x2)) = 1 since the plane 〈φ1(x1), φ1(x2)〉
meets π1 in the line pu. From 1 + d(x2, x̃2) ≥ d(x1, x̃2) = d(x1, x̃1) + d(x̃1, x̃2)
and 1 + d(x1, x̃1) ≥ d(x2, x̃2) + d(x̃1, x̃2), it follows d(x̃1, x̃2) ≤ 1. Since x̃1 ∈

φ1(x1) and x̃2 ∈ φ1(x2), d(x̃1, x̃2) = 1, or equivalently ”Φ
(1)
i1,i2

◦ θ1(x) = θ1(y)”
with the notations of Section 5.1. �

Theorem 18. Every glued near polygon with a linear representation is obtained as

described in Theorem 17.

Proof. Let A be a glued near polygon arising in the way as described in Section
5.1 from near polygons Ai, spreads Si and bijections θi, i = 1, 2. Suppose also that
A ' T ∗

n(K) where K is a set of points in Π∞ = PG(n, q). Let Ki, i ∈ {1, 2}, denote
a fixed line of Si. All the points of A with Ki, i ∈ {1, 2}, as (i + 1)-th coordinate
determines a geodetically closed sub near polygon B3−i ' A3−i. By Theorem 4,
there exists a subspace πi of Π∞ such that Ki = πi ∩ K and Bi ' Tni

(Ki) with
ni = dim(πi). Since B1 and B2 intersect in a line L, π1 ∩ π2 is a point of K. Every
line through a point x ∈ L is contained in either B1 or B2, proving that K = K1∪K2.
By Theorem 1, 〈K〉 = Π∞ and hence also 〈π1, π2〉 = Π∞. �
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