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Abstract

We give a very explicit formula for Igusa’s local zeta function Zf (s, χ)
associated to a polynomial f in several variables over the p-adic numbers
and to a character χ of the units of the p-adic integers (with conductor 1).
This formula holds when f is sufficiently non-degenerated with respect to its
Newton polyhedron Γ(f). Using this formula, we give a set of possible poles of
Zf (s, χ), together with upper bounds for their orders. Moreover this formula
implies that Zf (s) = Zf (s, χtriv ) has always at least one real pole.

1 Introduction

For p prime, denote the field of p-adic numbers by Qp, the ring of p-adic integers by
Zp, and the finite field of p elements by Fp. If R is a commutative ring with identity,
we will denote the set of its units by R×.

Definition 1.1. Let f(x) = f(x1, . . . , xn) ∈ Zp[x1, . . . , xn] with p prime. For z ∈
Qp, ord z ∈ Z ∪ {∞} denotes the valuation, |z| = p−ord z and ac (z) = p−ord zz
denotes the angular component. Let χ : Z×p → C× be a character of Z×p , i.e., a
group homomorphism with finite image. We formally put χ(0) = 0. To the above
data we associate the following two Igusa local zeta functions (the global and the
local one):
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Zf(s, χ) =
∫

Zn
p

χ(ac f(x))|f(x)|s|dx|,

and Zf,0(s, χ) =
∫

(pZp)n

χ(ac f(x))|f(x)|s|dx|,

for s ∈ C, Re (s) > 0, where |dx| denotes the Haar measure on Qn
p so normalized

that Zn
p has measure 1. If χ is the trivial character χtriv , then we write Zf(s)

(resp. Zf,0(s)) instead of Zf(s, χtriv ) (resp. Zf,0(s, χtriv )).

Igusa’s local zeta function Zf(s) is directly related to the numbers of solutions
of the congruences f(x) ≡ 0 mod pm, m = 1, 2, 3, . . . ; see, e.g., [Igu78, pp. 97–
98], [Den91, Section 1.2]. Using resolutions of singularities, Igusa [Igu74] proved
that Zf(s, χ) is a rational function of p−s (see also [Igu78]). An entirely different
proof was obtained ten years later by Denef [Den84] using p-adic cell decomposition
instead of resolutions of singularities. We denote the meromorphic continuation of
Zf (s, χ) again by Zf(s, χ).

We study the poles of Igusa’s local zeta function for a special but important
class of polynomials, namely the polynomials that are non-degenerated with respect
to their Newton polyhedron. This study was first started by Lichtin ans Meuser
[LM85] for polynomials in two variables.

Definition 1.2. Let f(x) = f(x1, . . . , xn) =
∑

ω∈Nn aωx
ω1
1 · · ·xωn

n be a non-zero poly-
nomial over Zp with f(0) = 0. Let R+ = {x ∈ R | x ≥ 0} and supp (f) = {ω ∈
Nn | aω 6= 0} the support of f . The Newton polyhedron Γ(f) of f is defined as the
convex hull in (R+)n of the set

⋃

ω∈supp (f)

ω + (R+)n.

The global Newton polyhedron Γgl(f) of f is defined as the convex hull of supp (f).
It is easy to verify that Γ(f) = Γgl(f) + (R+)n.

Because a Newton polyhedron is a polyhedron, every proper face is an exposed
face.1 So, every proper face of Γ(f) is the intersection of Γ(f) with a supporting
hyperplane [Roc70, pp. 99–100]. By the faces of Γ(f) we mean the proper
faces of Γ(f) and the Newton polyhedron Γ(f) itself.

Definition 1.3. Let p be a prime number. Let f be as in Definition 1.2. For each
face τ of the Newton polyhedron Γ(f) of f , we define

fτ (x) =
∑

ω∈τ

aωx
ω,

and the polynomial f̄τ (x) with coefficients in Fp by reducing each coefficient aω of fτ

modulo pZp.

1Face and exposed face in the sense of [Roc70, p. 162].
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We say f is non-degenerated over Fp with respect to all the faces of its Newton
polyhedron Γ(f) if for every2 face τ of Γ(f) the locus of the polynomial f̄τ has no
singularities in (F×p )n or equivalently the set of congruences

{

fτ (x) ≡ 0 mod p
∂fτ

∂xi
(x) ≡ 0 mod p, i = 1, . . . , n

has no solution in (Z×p )n.
We say f is non-degenerated over Fp with respect to the compact faces of its

Newton polyhedron, if we have the same condition, but only for the compact faces
of Γ(f).

See [DH01] for some remarks about the definition of non-degenerated. In the
same paper we can find an explicit formula for Zf(s) that holds if f is non-degenerated
over Fp with respect to all the faces of its Newton polyhedron. The actors in this
formula are the cones ∆τ associated to the faces τ of Γ(f) (see Definition 2.3) and
the numbers of elements Nτ of the sets {x ∈ (F×p )n | f̄τ (x) = 0}. In Theorem 3.4
below we extend this result to Zf(s, χ), where χ is a character of Zp with conductor
cχ = 1. The conductor cχ is the smallest c ∈ N \ {0} such that χ is trivial on
1 + pcZp. So, cχtriv

is also equal to 1. It si well known (see [Den91, Theorem 3.3])
that Zf(s, χ) is constant as a function of s for p� 0, if the conductor cχ > 1 and f
is a polynomial over Z. For the exact condition of a similar result for f a polynomial
aver Zp and p a fixed prime number, we refer to the same reference. So, we have an
explicit formula for Zf(s, χ) for the relevant cases. Zúñiga-Galindo [Zn99] obtained
the same formula, as a special case of a more general result. For the related work
of other authors we refer to [DH01] and the references therein.

Using the formula from Theorem 3.4 we obtain a set of candidate poles for
Zf(s, χ) together with their expected orders, i.e., upperbounds for the orders if these
candidate poles are actual poles (see Proposition 4.1, Definition 4.2, Proposition 4.6
and Proposition 4.9). This formula also enables us to prove Theorem 4.10, which
states that Zf(s) has always at least one real pole. In particular, this theorem gives
more information on the largest real pole of Zf(s): it is either −1 or −1/t0, where
(t0, t0, . . . , t0) is the intersection point of the diagonal D = {(t, t, . . . , t) ∈ Rn} with
Γ(f).

2 More about Newton polyhedra

In Definition 2.3, we will give a partition of (R+)n in sets that are closely related to
the Newton polyhedron of a polynomial f as in Definition 1.2. In order to define
these sets ∆τ and to know more about them, we will present a selection of some
well-known definitions and properties. Although all results in this section are well-
known, we provided some of them with a proof to make this material more easily
accessible.

Definition 2.1. Let f be as in Definition 1.2. For a ∈ (R+)n, we define

m(a) = inf
x∈Γ(f)

{a · x}

2Thus also for Γ(f).
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and we define the first meet locus of a as

F (a) = {x ∈ Γ(f) | a · x = m(a)}.

where a · x denotes the scalar product of a and x.

Note that the infimum in the definition of m(a) is attained and so m(a) =
minx∈Γ(f) {a · x}. This is clear, because we can take the infimum over the elements
in the closed and bounded set Γgl(f) instead of Γ(f) = Γgl(f) + (R+)n. Moreover,
we can take the minimum over the elements in supp (f) instead of Γ(f) or Γgl(f),
because Γgl(f) is the convex hull of the (finite) set supp (f).

Property 2.2. Let f be as in Definition 1.2 and a ∈ (R+)n. Then F (a), the first
meet locus of a, is a face of Γ(f). In particular F (0) = Γ(f) and F (a) is a proper face
of Γ(f), if a 6= 0. Moreover, F (a) is a compact face if and only if a ∈ (R+ \ {0})n.

Definition 2.3. We define an equivalence relation on (R+)n by

a ∼ a′ if and only if F (a) = F (a′).

If τ is a face of Γ(f), we define the cone associated to τ as

∆τ = {a ∈ (R+)n | F (a) = τ}.

Note that ∆Γ(f) = {0}. We will now study the other equivalence classes ∆τ in
order to give an interesting description of them in Proposition 2.8.

Lemma 2.4. Let f be as in Definition 1.2 and τ be a proper face of Γ(f). Then

(i) ∆τ is a relatively open subset of (R+)n.

(ii) ∆̄τ = {a ∈ (R+)n | F (a) ⊃ τ} and is a polyhedral cone.

(iii) The function m is linear on ∆̄τ .

Proof. Suppose that Γ(f) is the convex hull of the points P1, . . . , Ps and the di-
rections of recession e1, . . . , en, where {e1, . . . , en} is the standard basis of Rn. By
[Roc70, Theorem 18.3], we may suppose that τ is the convex hull of the points
{P1, . . . , Pr} = τ∩{P1, . . . , Pr, Pr+1, . . . , Ps} and the directions of recession e1, . . . , ek

with r ≤ s and k ≤ n. Now, one easily proves that ∆τ = {a = (a1, . . . , an) ∈ Rn |
a · P1 = a · P2 = · · · = a · Pr, a · P1 < a · Pr+1, . . . , a · P1 < a · Ps, ai = 0 for i =
1, . . . , k, aj > 0 for j = k + 1, . . . , n}, which is clearly a relatively open set. Now, it
follows that ∆̄τ = {a ∈ Rn | a ·P1 = a ·P2 = · · · = a ·Pr, a ·P1 ≤ a ·Pr+1, . . . , a ·P1 ≤
a·Ps, ai = 0 for i = 1, . . . , k, aj ≥ 0 for j = k+1, . . . , n} = {a ∈ (R+)n | F (a) ⊃ τ}.
Finally, (ii) implies that m(a) = a · xτ for every a ∈ ∆̄τ , where xτ is a fixed element
of τ . This shows that m is linear on ∆̄τ . �
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Definition 2.5. A fan F is a finite set of rational polyhedral cones such that

1. every (non-empty) face of a cone of F is contained in F and

2. the intersection of two arbitrary cones Ci and Cj in F is a face of both Ci and
Cj.

Lemma 2.6. Let f be as in Definition 1.2. The closures ∆̄τ of the cones associated
to the faces of Γ(f) form a fan in (R+)n. Moreover, we have the following.

(i) Let τ be a proper face of Γ(f). Then the order-reversing map

{faces of Γ(f) that contain τ} → {(non-empty) faces of ∆̄τ} : σ 7→ ∆̄σ

is one to one and onto.

(ii) Let τ1, τ2 be faces of Γ(f). Suppose that τ1 is a facet3 of τ2. Then ∆̄τ2 is a
facet of ∆̄τ1 .

Proof. We first prove (i) and that the cones ∆̄τ form a fan. Fix a face σ 6= τ of Γ(f)
that contains the face τ . Suppose that Γ(f) is the convex hull of the points

P1, . . . , Pk, Pk+1, . . . , Pk+t, . . . , Pl (1)

and the directions of recession

e1, . . . , ed, ed+1, . . . , ed+s, . . . , en, (2)

with P1, . . . , Pk (resp. P1, . . . , Pk+t) the only points from (1) that belong to τ (resp. σ)
and with e1, . . . , ed (resp. e1, . . . , ed+s) the only vectors from (2) that are directions
of recession of τ (resp. σ). Now one proves that ∆̄σ is a face of ∆̄τ : the equation of
the supporting hyperplane is

x · ((Pk+1 − P1) + · · ·+ (Pk+t − P1) + ed+1 + · · ·+ ed+s) = 0.

It easily follows from Lemma 2.4(ii) that the mentioned map in the assertion is one
to one and order-reversing. We now prove that it is also onto. Fix an arbitrary face
γ of ∆̄τ and an x in the relative interior of γ. Put σ = F (x). Then σ is a face of
Γ(f) that contains τ , because x ∈ γ ⊂ ∆̄τ = {a ∈ (R+)n | F (a) ⊃ τ}. Now, the
faces γ and ∆̄σ of ∆̄τ must be equal, because their relative interiors have a common
element, x (see [Roc70, Corollary 18.1.2]).

Finally, suppose that τ1, τ2 are faces of Γ(f). Then ∆̄τ1 ∩ ∆̄τ2 = ∆̄τ3 with τ3 the
smallest face of Γ(f) that contains τ1 ∪ τ2, i.e., the intersection of all the faces of
Γ(f) that contain τ1 ∪ τ2.

Assertion (ii) follows from (i). The cone ∆̄τ2 is clearly a (proper) face of ∆̄τ1 .
So, if it is not a facet, there exists a facet F of ∆̄τ1 such that ∆̄τ2  F  ∆̄τ1 .
Then there exists a face γ of Γ(f) that contains τ1 and satisfies F = ∆̄γ . But then
τ2 ! γ ! τ1, which is not possible.

�

3Recall that a facet is an (n− 1)-dimensional face.
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Definition 2.7. A vector a ∈ Rn is called primitive if the components of a are
integers whose greatest common divisor is 1.

Recall that ∆Γ(f) = {0}. The following proposition gives the geometry of the
other equivalence classes ∆τ . Note that because a Newton polyhedron is a polyhe-
dron, we can prove that every proper face τ of Γ(f) is contained in a facet of Γ(f).
Moreover, every proper face τ of Γ(f) is the (finite) intersection of the facets of Γ(f)
that contain τ . One can also prove that for every facet of Γ(f) there exists a unique
primitive vector in Nn \ {0} that is perpendicular to that facet.

Proposition 2.8. Let f be as in Definition 1.2. Let τ be a proper face Γ(f) and
γ1, . . . , γr be the facets of Γ(f) that contain τ . Let a1, . . . , ar be the unique primitive
vectors in Nn \ {0} that are perpendicular to respectively γ1, . . . , γr. Then the cones
∆̄τ and ∆τ are the following convex cones:

∆̄τ =

{

r
∑

i=1

λiai | λi ∈ R, λi ≥ 0

}

and ∆τ =

{

r
∑

i=1

λiai | λi ∈ R, λi > 0

}

.

Moreover, dim ∆τ = dim ∆̄τ = codim τ = n− dim τ .

Proof. The fact that dim ∆̄τ = codim τ = n−dim τ follows from Lemma 2.6. Indeed,
suppose that dim τ = k. Then there exist faces τ = τ k, τk+1, . . . , τn = Γ(f) of Γ(f)
with dim τ i = i, such that

τ = τ k ⊆ τ k+1 ⊆ · · · ⊆ τn = Γ(f).

Therefore,
∆̄τ = ∆̄τk ⊇ ∆̄τk+1 ⊇ · · · ⊇ ∆̄Γ(f) = {0}.

So, by Lemma 2.6(ii), we know that dim τ +dim ∆̄τ = dim τ k+1 +dim ∆̄τk+1 = · · · =
dim Γ(f)+dim{0} = n. The assertion for ∆̄τ follows now from Lemma 2.9, Lemma
2.6 and the fact that ∆̄γi

= R+ai for i = 1, . . . , r. The assertion for ∆τ follows from
the assertion for ∆̄τ , by Lemma 2.4(i), [Roc70, Theorem 6.2] and [Roc70, Theorem
6.9]. �

Lemma 2.9. Let C be a polyhedral cone in Rn such that the origin is a face of
C. Then the rays generated by a minimal set of generators are exactly the one-
dimensional faces of C.

Proof. [Ful93, Sect. 1.2]. �

Definition 2.10. If a1, . . . , ar ∈ R
n \ {0}, we call cone (a1, . . . , ar) = {

∑r
i=1 λiai |

λi ∈ R, λi > 0} the cone strictly positively spanned by the vectors a1, . . . , ar. Fix a
cone ∆. If there exist linearly independent vectors a1, . . . , ar ∈ R

n \ {0} such that
∆ = cone (a1, . . . , ar), then ∆ is called a simplicial cone. If moreover one can choose
a1, . . . , ar ∈ Z

n (or in Qn), we say ∆ is a rational simplicial cone.

Let τ be a proper face of Γ(f) and let a1, . . . , ar be as in Proposition 2.8. Follow-
ing from Proposition 2.8 and Lemma 2.11, one can partition the cone ∆τ associated
to the face τ into a finite number of rational simplicial cones such that each ∆i

is spanned by vectors from the set {a1, . . . , ar}. We call such a decomposition a
rational simplicial decomposition of ∆τ without introducing new rays.
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Lemma 2.11. Let ∆ be the cone strictly positively spanned by the vectors a1, . . . ,
ar ∈ (R+)n \ {0}. Then there exists a finite partition of ∆ into cones ∆i, such that
each ∆i is strictly positively spanned by some vectors from the set {a1, . . . , ar} that
are linearly independent over R.

Proof. [Den95, Lemma 2]. We cite the proof here, because the algorithm is used in
the proof of Proposition 4.9. Let ∆̄ be the closure of ∆. Thus ∆̄ is a closed convex
polyhedral cone. If γ is a closed convex cone, we denote by ri γ the relative interior
of γ (i.e., the interior in the linear space generated by γ). The proof is by induction
on dim(Ra1 + · · · + Rar). We may suppose that R+a1 is a face of ∆̄. It is easy to
see that ∆ is the disjoint union of cones of the form

W = {λ1a1 + b | λ1 ∈ R, λ1 > 0, b ∈ ri γ},

where γ is a proper face of ∆̄ such that W is not contained in a facet of ∆̄. By
induction, we have that ri γ is the disjoint union of cones wi with the required
property. But then, W is the disjoint union of cones

Wi = {λ1a1 + b | λ1 ∈ R, λ1 > 0, b ∈ wi}.

�

Definition 2.12. Let a1, . . . , ar be vectors in Zn that are linearly independent over
Q. We define the multiplicity of a1, . . . , ar as the index of the lattice Za1 + · · ·+Zar

in the group of the points with integral coordinates of the vector space generated by
a1, . . . , ar.

Remark: It is easy to verify that the multiplicity of a1, . . . , ar equals the number
of elements in the set

Zn ∩

{

r
∑

i=1

λiai | 0 ≤ λi < 1 for i = 1, . . . , r

}

.

Proposition 2.13. Let a1, . . . , ar be vectors in Zn that are linearly independent over
Q.

(i) The multiplicity of a1, . . . , ar equals the greatest common divisor of the deter-
minants of all r × r-matrices obtained by omitting columns from the matrix
with rows a1, . . . , ar.

(ii) The multiplicity of a1, . . . , ar equals the volume of the parallelepiped spanned by
a1, . . . , ar with respect to ωA, where ωA is the volume form on the vector space
vctA generated by A = {a1, . . . , ar}, normalized such that the parallelepiped
spanned by a lattice basis of Zn ∩ vctA has volume 1.
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3 An explicit formula for Zf(s, χ)

In Theorem 3.4, we will give a formula for Zf(s, χ) that holds if f is non-degenerated
over Fp with respect to all the faces of its Newton polyhedron. In [DH01], we
already obtained the result for χ = χtriv and we extend it now to the case where
the conductor cχ of χ is equal to 1. The conductor cχ of the character χ of Z×p is
defined as the smallest c ∈ N\{0} such that χ is trivial on 1+pcZp. So, cχtriv

is also
equal to 1. Lemma 3.1 and Proposition 3.2 are special cases of more general results
[Den91, Theorem 3.4], but for convenience of the reader we will give a direct proof.

Lemma 3.1. Let p be a prime number and f(x) = f(x1, . . . , xn) ∈ Zp[x1, . . . , xn].
Let χ : Z×p → C× be a non-trivial character of Z×p . Suppose that a ∈ Zn

p such that
f(a) ≡ 0 mod p and such that the set of congruences (∂f/∂xi)(x) ≡ 0 mod p, i =
1, . . . , n has no solution in a+ (pZp)

n. Then
∫

a+(pZp)n

χ(ac f(x))|f(x)|s|dx| = 0.

Proof. From the condition in the statement of Lemma 3.1, it follows that there exists
an i ∈ {1, . . . , n} such that (∂f/∂xi)(a) 6≡ 0 mod p. Put

ψ : Zn
p → Zn

p

(x1, . . . , xn) 7→ (v1, . . . , vn),

where

vj =

{

p−1(f(a+ px)− f(a)) for j = i
xj for j 6= i.

Then ψ is a measure-preserving bi-analytic map of Zn
p to itself. Therefore, we get

∫

a+(pZp)n

χ(ac f(x))|f(x)|s|dx| = p−n
∫

Zn
p

χ(ac f(a+ px))|f(a+ px)|s|dx|

= p−n
∫

Zn
p

χ(ac (f(a) + pvi))|f(a) + pvi|
s|dv|

= p−n
∫

Zp

χ(ac (f(a) + pvi))|f(a) + pvi|
s|dvi|

= p−n−s
∫

Zp

χ(ac (vi))|vi|
s|dvi|,

because the translation over f(a)/p ∈ Zp is a measure-preserving bi-analytic map
of Zp to itself. The last integral is equal to zero. Indeed, because χ is a non-trivial
character, there exists an u ∈ Z×p , such that χ(u) 6= 1. Hence

χ(u)
∫

Zp

χ(ac (vi))|vi|
s|dvi| =

∫

Zp

χ(ac (uvi))|uvi|
s|dvi|

=
∫

Zp

χ(ac (yi))|yi|
s|dyi|.

�

Proposition 3.2. Let p be a prime number and f(x) = f(x1, . . . , xn) ∈ Zp[x1, . . . , xn].
Let χ : Z×p → C× be a non-trivial character of Z×p and let cχ be the conductor of χ.
Suppose that the set of congruences

{

f(x) ≡ 0 mod p
∂f
∂xi

(x) ≡ 0 mod p, i = 1, . . . , n
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has no solution in (Z×p )n. Then

∫

(Z×p )n

χ(ac f(x))|f(x)|s|dx| = p−ncχ
∑

a ∈ (Z×p )n

a mod pcχ

f(a) 6≡ 0 mod p

χ(f(a)).

Proof. It is clear that
∫

(Z×p )n

χ(ac f(x))|f(x)|s|dx| =
∑

a ∈ (Z×p )n

a mod pcχ

f(a) 6≡ 0 mod p

∫

a+(pcχZp)n

χ(ac f(x))|f(x)|s|dx|

+
∑

a ∈ (Z×p )n

a mod p

f(a) ≡ 0 mod p

∫

a+(pZp)n

χ(ac f(x))|f(x)|s|dx|.

By Lemma 3.1, we know that the integral
∫

a+(pZp)n

χ(ac f(x))|f(x)|s|dx| is zero for

every a ∈ Z×p with f(a) ≡ 0 mod p, which implies the assertion. �

Definition 3.3. For k = (k1, . . . , kn) ∈ R
n, we define

σ(k) =
n

∑

i=1

ki.

Theorem 3.4. Let p be a prime number. Let f be as in Definition 1.2. Suppose
that f is non-degenerated over the finite field Fp with respect to all the faces of its
Newton polyhedron Γ(f). Let χ be a character of Z×p with conductor cχ = 1. Denote
for each face τ of Γ(f) by Nτ the number of elements in the set

{a ∈ (F×p )n | f̄τ (a) = 0}.

Let s be a complex variable with Re (s) > 0. Then

Zf(s, χ) =
∑

τ face

of Γ(f)

LτS∆τ
,

with

Lτ =











p−n
(

(p− 1)n − pNτ
ps−1

ps+1−1

)

for χ = χtriv ,

p−n ∑

a∈(F×p )n

χ (fτ (a)) for χ 6= χtriv ,

and
S∆τ

=
∑

k∈Nn∩∆τ

p−σ(k)−m(k)s,

for each face τ of Γ(f) (including τ = Γ(f)).
It is clear that S∆Γ(f)

= 1. The other S∆τ
can be calculated as follows. Take a

partition of the cone ∆τ associated to the proper face τ into rational simplicial cones
∆i. Then clearly S∆τ

=
∑

i S∆i
, where the summation is over the rational simplicial

cones ∆i and
S∆i

=
∑

k∈Nn∩∆i

p−σ(k)−m(k)s.
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Let ∆i be the cone strictly positively spanned by the linearly independent vectors
a1, . . . , ar ∈ N

n \ {0}. Then

S∆i
=

∑

h
pσ(h)+m(h)s

(pσ(a1)+m(a1)s − 1) · · · (pσ(ar)+m(ar)s − 1)
,

where h runs through the elements of the set

Zn ∩







r
∑

j=1

λjaj | 0 ≤ λj < 1 for j = 1, . . . , r







.

(We recall that m(·) and σ(·) are defined as in Definition 2.1 and Definition 3.3).

Remarks:

1. To obtain the formula for S∆τ
we only need f to be a non-zero polynomial in

n variables over an arbitrary commutative ring with f(0) = 0, p > 1 a real
number and Re (s) > 0. Remark that S∆τ

is a rational function in p−s. We
also denote its meromorphic continuation by S∆τ

.

2. By a similar argument as in the proof below, we can prove that

Zf,0(s, χ) =
∑

τ compact face
of Γ(f)

LτS∆τ
,

with Lτ and S∆τ
as in the statement of the theorem above. For this formula,

we only need f to be non-degenerated over the finite field Fp with respect to
the compact faces of Γ(f).

Proof. For the case of χ = χtriv , we refer to [DH01, Theorem 4.2]. The proof
for the case of χ 6= χtriv is completely similar by using Proposition 3.2 instead
of [DH01, Corollary 3.2]. Remark that Proposition 3.2 implies that the integral
∫

(Z×p )n χ(ac (fτ (u) + pf̃τ,k(u))|fτ(u) + pf̃τ,k(u)|
s|du| is independent of f̃τ,k for cχ = 1,

where f̃τ,k(u) is the polynomial as defined in the proof of [DH01, Theorem 4.2]. �

4 The candidate poles of Zf(s, χ) and their expected orders

Proposition 4.1. Suppose that the prime number p, the polynomial f and the char-
acter χ satisfy the conditions of Theorem 3.4. Let γ1, . . . , γr be all the facets of Γ(f)
and let a1, . . . , ar be the unique primitive vectors in Nn \ {0} that are perpendicular
to respectively γ1, . . . , γr. Then the following holds:

(i) If s1 is a pole of Zf(s), then

s1 = −1 + i k2π
loge p

with k ∈ Z, or

s1 = −
σ(aj )

m(aj )
+ i k2π

m(aj ) loge p
,

with k ∈ Z and j ∈ {1, . . . , r} such that m(aj) 6= 0.
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(ii) If s1 is a pole of Zf(s), then Re (s1) is −1 or Re (s1) is of the form −1/t1, where
(t1, t1, . . . , t1) is the intersection point of the diagonal D = {(t, t, . . . , t) ∈ Rn}
with the supporting hyperplane of a facet of Γ(f).

(iii) Suppose that s1 is a pole of Zf (s, χ) with χ 6= χtriv , then

s1 = −
σ(aj)

m(aj)
+ i

k2π

m(aj) loge p
,

with k ∈ Z and j ∈ {1, . . . , r} such that m(aj) 6= 0. Moreover, Re (s1) is of
the form −1/t1, where (t1, t1, . . . , t1) is the intersection point of the diagonal
D = {(t, t, . . . , t) ∈ Rn} with the supporting hyperplane of a facet of Γ(f).

Remarks:

1. The same is true for Zf,0(s) and Zf,0(s, χ). Of course, then we only need f to
be non-degenerated over Fp with respect to all the compact faces of Γ(f) (see
Remark 2 after Theorem 3.4).

2. We call the complex numbers in Proposition 4.1(i) and (iii) the candidate poles
of Zf(s) and Zf (s, χ) respectively. The first candidate poles in (i) (with real
part equal to −1) come from the Lτ , the second ones in (i) and the ones in
(iii) come from the S∆τ

. In the next section, we will give more information
about the largest real candidate pole coming from the S∆τ

.

Proof. This result can be derived from the material in Section 2 and Section 3, see
[DH01, Proposition 5.1]. It is also a special case of [Zn99, Theorem A]. The case of
Zf(s) is a direct consequence of [Den95]. �

Looking at the formula from Theorem 3.4, we can give upperbounds for the
orders of the poles of Zf(s, χ).

Definition 4.2. Suppose that the prime number p, the polynomial f and the char-
acter χ satisfy the conditions of Theorem 3.4. Suppose that s1 is a candidate pole
of Zf(s, χ), i.e., a number from the set described in Proposition 4.1. We define the
expected order of the candidate pole s1 for Zf(s, χ) (according to the formula for
Zf(s, χ) in Theorem 3.4) as

Max {order of the pole s1 for LτS∆τ
| τ a face of Γ(f)},

where the order of the pole s1 is defined as 0, if it is no pole, and where Lτ and S∆τ

are defined as in Theorem 3.4.

Remarks:

1. If Re(s1) 6= −1 or χ 6= χtriv , we omit Lτ in LτS∆τ
.

2. It is clear that the actual order of the pole s1 for Zf(s, χ) will not be larger
than the expected order of s1.

3. We can give a similar definition for the expected order of a candidate pole s1

for Zf,0(s, χ). Then τ runs through the compact faces of Γ(f).
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4.1 The largest real candidate pole coming from the S∆τ

Definition 4.3. Let f(x1, . . . , xn) be a non-zero polynomial with f(0) = 0. We
denote the unique intersection point of the diagonal D = {(t, t, . . . , t) ∈ Rn} with
the boundary of the Newton polyhedron Γ(f) of f by (t0, t0, . . . , t0). Denote the
smallest face of Γ(f) that contains (t0, t0, . . . , t0) by τ0 and its codimension in Rn by
κ. Put ρ = −1/t0.

Note that κ ≥ 1, because dim τ0 ≤ n− 1. Moreover, ρ ∈ Q.
We search for more information about the largest real candidate pole of Zf(s)

and Zf(s, χ) coming from the S∆τ
. The next lemma implies that this is ρ and

Proposition 4.6 shows that the expected order of ρ for Zf(s) and Zf (s, χ) is either
κ or κ + 1.

Lemma 4.4. Let f(x) = f(x1, . . . , xn) be a non-zero polynomial with f(0) = 0. For
every a ∈ (R+)n it holds that σ(a) − m(a)(1/t0) ≥ 0 with equality if and only if
τ0 ⊂ F (a) (or equivalently a ∈ ∆̄τ0).

Proof. See [DH01, Lemma 5.3]. �

Lemma 4.5. Let f(x1, . . . , xn) be a non-zero polynomial with f(0) = 0. Suppose
that τ is a proper face of Γ(f) and let S∆τ

be as in Theorem 3.4. Then we have the
following:

(i) lims→ρ(p
s−ρ − 1)κS∆τ

≥ 0.

(ii) If τ 6⊂ τ0, then, if ρ is a pole of S∆τ
, its order is < κ. Otherwise, ρ is a pole

of S∆τ
of order κ.

Proof. See [DH01, Lemma 5.4]. �

Proposition 4.6. Suppose that the prime number p, the polynomial f and the char-
acter χ satisfy the conditions of Theorem 3.4. Then for every pole s1 of Zf(s, χ) one
has Re (s1) ≤ ρ if χ 6= χtriv ; otherwise, Re (s1) = −1 or Re (s1) ≤ ρ. Moreover, the
expected order of the candidate pole ρ for Zf(s, χ) equals κ+ 1 if χ = χtriv , ρ = −1
and there is a face τ ⊂ τ0 such that Nτ 6= 0; otherwise, its expected order will be
κ. Remember that the actual order is not larger than the expected order, which is
defined in Definition 4.2.

Proof. See [DH01, Proposition 5.5] or [Zn99]. The case of trivial character is also a
direct consequence of the material in [Den95]. �

4.2 The expected order of an arbitrary pole of Zf(s, χ)

Definition 4.7. Suppose that the prime number p, the polynomial f and the char-
acter χ satisfy the conditions of Theorem 3.4. Suppose that s1 is a candidate pole
of Zf(s, χ), i.e., a number from the set described in Proposition 4.1. We say that
a vector a ∈ (R+)n \ {0} or a facet F (a) contributes to the candidate pole s1 if
pσ(a)+m(a)s1 = 1, or equivalently, Re (s1) = −σ(a)/m(a) and there exists a k ∈ Z
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such that Im (s1) = k2π/(m(a) loge p) . We say a face of Γ(f) is a face of pure
contribution to the candidate pole s1 if every facet that contains τ contributes to
this candidate pole s1. We define κ(s1) as the maximum of the codimensions of such
faces. We call such a face of codimension κ(s1) a face of Γ(f) of maximal pure
contribution to the candidate pole.

Remarks:

1. It can occur that not all faces of Γ(f) of maximal pure contribution to the
candidate pole s1 are disjoint. See Section 5.

2. If s1 = ρ, then κ(s1) = κ and τ0 is the only face of Γ(f) of maximal pure
contribution to the candidate pole ρ of Zf(s, χ).

3. It is easy to see that κ(s1) ≤ κ(Re (s1)).

Lemma 4.8. Suppose that the prime number p, the polynomial f and the character
χ satisfy the conditions of Theorem 3.4. Suppose that s1 is a candidate pole of
Zf(s, χ), i.e., a number from the set described in Proposition 4.1. Suppose that µ
is a face of Γ(f) of pure contribution to the candidate pole s1 and suppose that its
codimension is k.

(i) If a ∈ ∆̄µ, then a contributes to the pole s1, i.e., pσ(a)+m(a)s1 = 1.

(ii) There exists a constant cµ > 0, independent of p, such that

lim
s→s1

(

ps−s1 − 1
)k
S∆µ

= cµ.

Define the half-space H−
1 = {x ∈ Rn |

∑n
i=1 xi ≤ 1} and define ω∆̄µ

as the
volume form on the vector space vct ∆̄µ generated by ∆̄µ, normalized such that
the parallelepiped spanned by a lattice basis of Zn∩vct ∆̄µ has volume 1. Then

cµ = k!|Re (s1)|
kVol ω∆̄µ

(∆̄µ ∩H
−
1 ),

where the volume is taken with respect to ω∆̄µ
.

Proof. Assertion (i) follows by the fact that all generators of ∆̄µ contribute to the
pole s1 and the fact that σ and m are linear on ∆̄µ.

We now prove Assertion (ii). Suppose that ∪i∆i is a finite partition of ∆µ into
rational simplicial cones. Then S∆µ

=
∑

i S∆i
. From the formula for S∆i

in Theorem
3.4 and (i), it follows that lims→s1(p

s−s1 − 1)kS∆i
> 0 if and only if k generators of

∆i belong to ∆̄µ, or equivalently, dim ∆i = k; otherwise this limit is zero. Moreover,
if ∆i is a cone from this partition with dim ∆i = k, then vct ∆̄i = vct ∆̄µ and hence
ω∆̄i

= ω∆̄µ
. So, it suffices to prove that for such a cone ∆i one has

lim
s→s1

(ps−s1 − 1)kS∆i
= k!|Re (s1)|

kVol ω∆̄i
(∆̄i ∩H

−
1 ),

where the volume is taken with respect to ω∆̄i
. Suppose that ∆i is the cone strictly

positively spanned by a1, . . . , ak, linearly independent vectors in Zn ∩ ∆̄µ. Then we
know from the formula for S∆i

in Theorem 3.4 that

S∆i
=

∑

h p
σ(h)+m(h)s

(pσ(a1)+m(a1)s − 1) · · · (pσ(ak)+m(ak)s − 1)
,
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where h runs through the elements of the set

Zn ∩







k
∑

j=1

λjaj | 0 ≤ λj < 1 for j = 1, . . . , k







. (3)

We know that pσ(h)+m(h)s1 = 1, for every h of the set (3), because every h belongs
to ∆̄µ. Consequently,

lim
s→s1

(ps−s1 − 1)kS∆i
=

multiplicity of a1, . . . , ak

m(a1) · · ·m(ak)

= |Re (s1)|
k multiplicity of a1, . . . , ak

σ(a1) · · ·σ(ak)
.

It follows by Proposition 2.13 that this equals |Re (s1)|
k times the volume of the

parallelepiped spanned by a1/σ(a1), . . . , ak/σ(ak) with respect to ω∆̄i
. Moreover,

∆̄i∩H
−
1 is the convex hull of {0, a1/σ(a1), . . . , ak/σ(ak)}. So, lims→s1(p

s−s1−1)kS∆i

also equals k!|Re (s1)|
kVol ω∆̄i

(∆̄i ∩H
−
1 ). �

Proposition 4.9. Suppose that the prime number p, the polynomial f and the char-
acter χ satisfy the conditions of Theorem 3.4. Suppose that s1 is a candidate pole
of Zf(s, χ), i.e., a number from the set described in Proposition 4.1.

(i) If τ is a face of Γ(f) that is not contained in any face of Γ(f) of maximal pure
contributions to the candidate pole s1, then, if s1 is a pole of S∆τ

, its order is
< κ(s1).

(ii) If ps1+1 6= 1 or χ 6= χtriv , then the expected order of the candidate pole s1 of
Zf(s, χ) is κ(s1). Otherwise the expected order is either κ(s1) or κ(s1) + 1.

(iii) If s1 is a pole of Zf(s, χ) of order k with ps1+1 6= 1 or χ 6= χtriv , then it is
necessary that there exists a face of codimension k that is a face of Γ(f) of
pure contribution to the candidate pole s1. If s1 is a pole of Zf(s) of order
k with ps1+1 = 1, then it is necessary that there exists a face of codimension
(k − 1) that is a face of Γ(f) of pure contribution to the candidate pole s1.

Remark: Result (iii) also holds for Zf,0(s, χ). We have to be more careful for an
analogue of (ii) for the case of Zf,0(s, χ). If s1 is a candidate pole of Zf,0(s) with
ps1+1 6= 1 and one of the faces of Γ(f) of maximal pure contributions to the candidate
pole s1 is compact, then its expected order is κ(s1); otherwise we can only state that
its expected order is ≤ κ(s1). (A similar remark holds if ps1+1 = 1 and χ = χtriv .)
Indeed, if for example, s1 is a real number that is not the largest real candidate pole
of an S∆τ

, it can occur that lims→s1 (ps−s1 − 1)
κ(s1)

S∆i
> 0, for some cone ∆i in a

partition of ∆τ into rational simplicial cones and lims→s1 (ps−s1 − 1)
κ(s1)

S∆j
< 0 for

another cone ∆j in this partition. So, in contrast to the case of ρ, it is not certain
that s1 is a pole of S∆τ

of order κ(s1), if τ is a face contained in one of the faces of
Γ(f) of maximal pure contribution to the candidate pole s1.

Proof. Because Lemma 4.8(ii) is true for µ a face of maximal pure contribution to
the candidate pole s1, for Assertion (ii), it suffices to verify that, if s1 is a pole of
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S∆τ
with τ a face of Γ(f), then its order is ≤ κ(s1). Or it is sufficient to prove that

there exists a partition of ∆τ into rational simplicial cones ∆i such that at most
κ(s1) generators of ∆i contribute to the candidate pole s1. To prove Assertion (i),
we have to verify that, if τ is not contained in a face of maximal pure contribution,
there exists a partition of ∆τ into rational simplicial cones ∆i such that < κ(s1)
generators of ∆i contribute to s1. We prove by induction on dim ∆τ that we can
even do this without introducing new rays. It is clear that the property is true if
dim ∆τ = 1. Suppose now that dim ∆τ > 1 and that the property is true for cones
of smaller dimension. If all generators of ∆τ contribute to the pole s1, then it is easy
to see that a partition without introducing new rays is an appropriate partition of
∆τ . If there exists a generator that does not contribute to the pole s1, we then use
this vector as a1 in the algorithm described in the proof of Lemma 2.11. Then the
property follows by the fact that it is true for cones of smaller dimension.

By the same argument, it is clear that we can find a partition of ∆τ into rational
simplicial cones ∆i such that the set of generators of ∆i that contribute to the
candidate pole s1 belong to some cone ∆̄µi

, where µi is a face of Γ(f) of pure
contribution to the candidate pole s1. This implies (iii). �

4.3 Zf(s) has always at least one real pole

The following proposition shows that Zf (s) has always a real pole, if f satisfies the
conditions to use the formula for Zf(s) from Theorem 3.4. In particular, it gives
more information on the largest real pole of Zf(s) and its order.

Theorem 4.10. Suppose that the prime number p, the polynomial f and the char-
acter χ satisfy the conditions of Theorem 3.4.

(i) Suppose that ρ > −1.
Then ρ is the largest real pole of Zf (s) and its order is κ.

(ii) Suppose that ρ < −1.
If there exists a face τ of Γ(f) such that Nτ 6= 0, then −1 will be the largest
real pole of Zf(s) and its order will be 1. Otherwise, ρ will be the largest real
pole of Zf (s) and its order will be κ.

(iii) Suppose that ρ = −1.
Then ρ = −1 will be the largest real pole of Zf (s). If there exists a face τ ⊂ τ0
of Γ(f) such that Nτ 6= 0, then its order will be κ + 1. Otherwise, its order
will be κ.

We recall that ρ, κ and τ0 are defined in Definition 4.3.

Remark: A similar result holds for Zf,0(s): one has to replace “face” everywhere
by “compact face”.

Proof. Case (i) is well known, see e.g., [DH01, Proposition 5.5].
First note that we can use the formula for Zf(s) from Theorem 3.4. Thus

Zf(s) =
∑

τ face
of Γ(f)

LτS∆τ
,
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with Lτ and S∆τ
as in this theorem.

It is easy to see that

Lτ = p−n(p− 1)n > 0, if Nτ = 0,
lims→−1(p

s+1 − 1)Lτ = p−n(1− 1
p
)pNτ > 0, if Nτ 6= 0.

(4)

We know by Lemma 4.5 that lims→ρ(p
s−ρ− 1)κS∆τ

> 0 for faces τ ⊂ τ0. Otherwise,
this limit will be equal to 0. By a similar argument as in the proof of Lemma 4.5(i),
we can prove that lims→ρ(p

s−ρ−1)κ−1S∆τ
≥ 0 for faces τ 6⊂ τ0. The second assertion

for Case (ii) and the assertion for Case (iii) follows now from (4).
Suppose that ρ < −1. Fix a proper face τ of Γ(f) and fix a partition of the cone

∆τ into rational simplicial cones ∆i. Then

lim
s→−1

S∆τ
=

∑

i

lim
s→−1

S∆i
> 0. (5)

Indeed, let ∆i be the cone strict positively spanned by linearly independent vectors
a1, . . . , ar ∈ N

n \ {0}. Then we know that

S∆i
=

∑

h
pσ(h)+m(h)s

(pσ(a1)+m(a1)s − 1) . . . (pσ(ar)+m(ar)s − 1)
,

where h runs through the elements of the set

Zn ∩







r
∑

j=1

λjaj | 0 ≤ λj < 1 for j = 1, . . . , r







.

Hence,

lim
s→−1

S∆i
=

∑

h
pσ(h)−m(h)

(pσ(a1)−m(a1) − 1) . . . (pσ(ar)−m(ar) − 1)
> 0,

because σ(ai) − m(ai) > 0 by Lemma 4.4 and the fact that −1 > ρ. The first
assertion for Case (ii) follows now from (4) and (5). �

5 Examples

We use Theorem 3.4 to calculate Igusa’s local zeta function in the following example.
To find the cones associated to the proper faces of the Newton polyhedron, we use
Lemma 2.8. More examples can be found in [HL00] and [DH01].

Let f(x, y, z) = xy + xz2 + yz2. The Newton polyhedron Γ(f) of f is defined by
the system of linear inequalities



















































x ≥ 0
y ≥ 0
z ≥ 0
2x+ 2y + z ≥ 4
2y + z ≥ 2
2x+ z ≥ 2
x + y ≥ 1.
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t4

t2
t1

t3

t5 t6

t7

(0,1,2)

(1,1,0)

(1,0,2)

x y

z

0

2

1 1

Figure 1: Newton polyhedron of xy + xz2 + yz2

We denote by τ1, . . . , τ7 the facets with supporting hyperplanes given by the corre-
sponding equalities in the inequalities above. A picture of the Newton polyhedron
of f is given in Figure 1.

There are 19 proper faces. One easily verifies that f is non-degenerated over Fp

with respect to all the faces of its Newton polyhedron, for every prime p 6= 2. So,
we can use the formula for Zf(s) from Theorem 3.4 for those primes. According
to this formula, the candidate real poles of Zf(s) are −1, −5/4, −3/2 and −2, all
with expected order 1. The set of faces of Γ(f) of maximal pure contribution to
the candidate poles −5/4, −3/2, −2 are {τ4}, {τ5, τ6} and {τ7} respectively (see
Definition 4.2, Definition 4.7 and Proposition 4.9). Remark that this example shows
that two faces of Γ(f) of maximal pure contribution to the same candidate pole
don’t have to be disjoint. However −3/2 and −2 are not actual poles of Zf(s).
Indeed, by using the formula for Zf(s) from Theorem 3.4 (see [HL00]), we get

Zf (s) =
p2s(p− 1)(p5+3s + p2+s − p2+2s − p1+s + p− 1)

(p1+s − 1)(p5+4s − 1)
.

In [Hoo01] we explain why this happens.
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