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1 Introduction

Fibrations are useful - even pervasive - in many areas of homotopy theory.
The Hurewicz fibration concept, i.e. the condition that a map satisfies the covering
homotopy property or CHP, is versatile and frequently used. It is probably the most
familiar version of the fibration idea.

Dold fibrations are maps that satisfy the weak covering homotopy property or
WCHP of [D], and have important technical advantages over Hurewicz fibrations.
They arise naturally when pasting procedures are used, and are invariant under fibre
homotopy equivalence or FHE.

Similar remarks apply to the role of equivariant fibrations in equivariant homo-
topy theory. Some of the deeper questions concerning the equivariant version of
Hurewicz fibrations - maps that satisfy the equivariant covering homotopy property
or equivariant CHP - are dealt with in [W1] and [W2].

With suitable base spaces, the non-equivariant Dold fibration concept is equiva-
lent to three other possible definitions of fibration ([D, Thm.6.4] and [B, Thm.6.3]),
including the appropriate homotopy version of local triviality. In this paper we con-
sider the equivariant version of Dold fibrations, i.e. maps that satisfy the equivariant
WCHP. We extend these results of [D] and [B] to the equivariant case. Thus we
determine conditions under which five potential or possible definitions of
equivariant fibration are equivalent. These are the equivariant WCHP, three
versions of the condition of being equivariantly local homotopy trivial or equivari-
ant LHT, and the equivariant homotopy induced property or equivariant HIP. The

Received by the editors March 2001.

Communicated by Y. Félix.

1991 Mathematics Subject Classification : 55R05, 55R91.

Key words and phrases : Dold Fibration, Equivariant Fibration, Equivariant Fibre Space,

WCHP.

Bull. Belg. Math. Soc. 9 (2002), 545–554



546 P. I. Booth – P. J. Hoskins

latter is the condition that the pullbacks of the given equivariant map, over any
pair of equivariantly homotopic equivariant maps into its codomain, are necessarily
equivariantly fibre homotopy equivalent or equivariant FHE.

Our argument incorporates a short and easy proof of the “local implies global”
result [D, Thm.5.12] for the non-equivariant WCHP. The proof of that result in [D]
utilizes the Section Extension Theorem [D, Thm.2.7], and constructs the required
covering homotopy by an iterative process. Our method uses routine properties of
fibrations, and the “local implies global” property of FHEs, i.e. [D, Thm.3.3].

One reason, for using this approach, is that it is easy to identify other situations
where it applies. We clarify this point, in section 2, by listing the fibration properties
required for such an argument.

In particular, the method of section 3 is extended to the equivariant case in sec-
tion 4. Thus the “local implies global” result for the equivariant FHE property [W1,
Prop.1.10], leads to our “local implies global” result for the equivariant WCHP (The-
orem 4.1). This allows us to prove our main results, Theorems 6.2 and 6.3, which
equate various equivariant fibration concepts.

The equivalence of alternative definitions of fibration result, as given in [B,
Thm.6.3], also applies to fibrations with extra structure, assuming that structure
preserving versions of the WCHP and FHE are used. Examples include sectioned
fibrations and principal fibrations. Our present equivariant results can be extended,
by similar techniques, to apply to equivariant fibrations with additional equivariant
structures, such as equivariant sectioned fibrations. However, that argument uses
equivariant fibred mapping spaces, and will be given in a paper that develops those
techniques.

The first named author would like to thank the referee, to another paper in an-
other journal (= [B]), for some comments that stimulated his interest in equivariant
fibrations.

2 Notations and Background Material

This non-equivariant section - as we explained previously - lists the notation
and results that are assumed in our proof of the “local implies global” theorem for
the WCHP, as well as being relevant to sections 5 and 6. In cases where no proofs
are referred to, these either follow easily from the definitions involved or can be
found in standard texts that discuss fibrations.

(2.1) If Y is a given space, then Y I will denote the space of all maps from I to Y ,
with the compact-open topology. Then e0 : Y I → Y , the function that evaluates at
0, is continuous.

(2.2) Given maps f : A → B and p : X → B, we will use X ×B A to denote the
corresponding pullback space, and f ∗p : X ×B A → A and p∗f : X ×B A → X to
denote the induced projections.

(2.3) If p : X → B and q : Y → B are maps and the homeomorphism k : X → Y
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is fibrewise, i.e. such that q ◦ k = p, then will write p ≡ q.

(2.4) Given maps p : X → B and q : Y → C, and homeomorphisms h : B → C and
k : X → Y such that q ◦ k = h ◦ p, then p ≡ h∗q.

(2.5) If f : A → B, g : B → C and q : Y → C are maps, then (g ◦ f)∗q ≡ f ∗(g∗q).

(2.6) If p : X → B is a Hurewicz fibration and f : A → B is a map, then f ∗p is a
Hurewicz fibration.

(2.7) If p is a Hurewicz fibration and f : A → B is a homeomorphism, then p∗f is
a homeomorphism.

(2.8) If p is a Hurewicz fibration and f : A → B is a homotopy equivalence, then
p∗f is a homotopy equivalence [BH, Cor.1.4].

(2.9) Let p : X → B and q : Y → B be maps and U be a subspace of B. Then
p|p−1(U) : p−1(U) → U will be denoted, more simply, as p|U : X|U → U .

If f : X → Y is a map over B, then the restriction of f over U will be denoted
by f |U : X|U → Y |U .

(2.10) If p : X → B is a map and j denotes the inclusion U ⊆ B, then j∗p ≡ p|U ,
via the projection and homeomorphism X ×B U → X|U .

(2.11) If p is a Hurewicz fibration and U ⊆ B, then p|U is a Hurewicz fibration.

(2.12) Given U ⊆ B, then BI |U will denote the subspace of BI with underlying set
{l ∈ BI | l(1) ∈ U}. The map ε0 : BI |U → B evaluates at 0.

(2.13) Let f : X → Y be a map. We recall the standard fact that f is a composite
φ(f) ◦ η(f), where η(f) is a homotopy equivalence and φ(f) a Hurewicz fibration.
Taking E(f) = X ×Y Y I to be the pullback space obtained using e0 : Y I → Y and
f , the maps η(f) and φ(f) are defined by
η(f) : X → E(f), x ; (x, cf(x)), where x ∈ X and cf(x) denotes the constant map
value f(x), and φ(f) : E(f) → Y, (x, l) ; l(1), where (x, l) ∈ E(f).

The last three results in our list assume a pair of maps p : X → B and q : Y → B,
and a map f : X → Y over B.

(2.14) If f is an FHE and q satisfies the WCHP, then p satisfies the WCHP.

(2.15) If p and q satisfy the WCHP and f is a homotopy equivalence, then f is a
fibre homotopy equivalence [D, Thm.6.1].

(2.16) If U is a numerable cover of B and, for all U ∈ U , f |U : X|U → Y |U is an
FHE, then f is an FHE [D, Thm.3.3.].
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3 On the “Local Implies Global” Property for the WCHP

We continue in the non-equivariant mode. Let p : X → B be a map and
j : U → B be the inclusion of a subspace U in B. Our argument starts with the
definition of four Hurewicz fibrations from this data.

(i) The Fibrations q : Q → U and q̂ : Q → U I . We define q to be the Hurewicz
fibration φ(p|U) : E(p|U) → U . Hence Q = E(p|U) is the pullback space that
is obtained using p|U and e0 : U I → U or, equivalently, p and j ◦ e0 : U I →
B (see (2.5) and (2.10)). The projections and induced Hurewicz fibrations
(e0)

∗(p|U) and (j ◦ e0)
∗p coincide. We denote this fibration by q̂ : Q → U I .

(ii) The Fibrations r : R → U and r̂ : R → BI |U . Recalling that the map φ(p) :
E(p) → B is a Hurewicz fibration, we define r : R → U to be the restriction
and Hurewicz fibration φ(p)|U : E(p)|U → U . Equivalently R = E(p)|U is the
pullback space obtained using p and ε0 : BI |U → B (see (2.12)). We define
r̂ : R → BI |U to be the projection, so it is the induced Hurewicz fibration
(ε0)

∗p.

We notice that Q ⊆ R, U I ⊆ BI |U and q̂ : Q → U I is the restriction
r̂|U I : R|U I → U I . So if α : U I → BI |U and β : Q → R denote the inclusions,
then there is commutative diagram as shown.

U R BI |U

U Q U I

q q̂

r̂r

1U αβ

� -

? ? ?

� -

Lemma 3.1 The inclusion β is an FHE from q to r.

Proof. If k ∈ BI |U , then we define ck(1) ∈ U I to be the constant map value k(1). The
map BI |U → U I , k ; ck(1), is clearly a homotopy inverse to α, so α is a homotopy
equivalence.

The commutative square r̂ ◦ β = α ◦ q̂ is a pullback space (2.10), so it follows by
(2.8) that β is a homotopy equivalence. Now r ◦ β = q, so we see via (2.15) that β
is an FHE over U .

Theorem 3.2 (see [D, Thm.5.12]). Let p : X → B be a map and U be a numerable
cover of B. If, for each U ∈ U , the map p|U : X|U → U satisfies the WCHP, then
so also does p.

Proof. Let U be a given member of U . We recall that there are homotopy equiva-
lences η(p) : X → E(p) and η(p|U) : X|U → E(p|U), both defined by x ; (x, cp(x)),
where x is in X or X|U , respectively.
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Now β : Q → R is the inclusion, so η(p)|U : X|U → E(p)|U is the composite
β ◦ η(p|U). Further, η(p|U) is an FHE from p|U to q (2.15), and β is an FHE from
q to r (Lemma 3.1), so η(p)|U is an FHE from p|U to r = φ(p)|U .

It follows, by (2.16), that η(p) : p → φ(p) is an FHE. Now φ(p) is a Hurewicz
fibration, so we see via (2.14) that p satisfies the WCHP.

Remarks We notice that if the proper analogues of the results of section 2 are
valid, for a theory of fibrations, then there will be a corresponding version of our
Theorem 3.2 for that theory. This applies, for example, to structured fibrations
in the sense of [B], including sectioned fibrations and principal fibrations. The
appropriate analogue of (2.16) is then [B, Thm.5.3]. However, a version of Theorem
3.2 has already been proved for those theories [B, Thm.4.7], and our main concern
here is the equivariant case.

4 On the “Local Implies Global” Property for the Equivariant

WCHP

Dold proved “local implies global” theorems for FHE, the CHP and the WCHP.
Waner did the same for equivariant versions of FHE [W1, Thm.1.10] and the CHP
[W2, Lem.3.2.4]. We prove the remaining case here.

We assume, from this point on, that G is a compact Lie group and work in the
category of left G-spaces and G-maps.

The spaces, maps and homotopies of section 2 can now be replaced by the cor-
responding G-spaces, G-maps and G-homotopies. Thus G acts trivially on I, G-
subspaces have G-invariant underlying sets, G-pullbacks have the diagonal action
and so on. If Y is a G-space, then so too is Y I , under the action (g, l) ; g.l, where
(g.l)(t) = g.(l(t)), g ∈ G and l ∈ Y I .

Let A and B be G spaces and F : A × I → B be a G-homotopy. Then F will
be said to be stationary on A × [0, 1/2] if, for all a ∈ A and t ∈ [0, 1/2], F (a, t) =
F (a, 0).

Let p : X → B be a G-map. Then p will be said to satisfy the G-WCHP if,
for all choices of a G-space A, a G-map f : A × {0} → X, and a G-homotopy
F : A× I → B that is stationary on A× [0, 1

2
] and satisfies p ◦ f = F |A×{0}, there

is a G-homotopy H : A× I → X such that p ◦H = f and H|A× {0} = f .

A G-cover is a cover by G-invariant sets. An open G-cover U will be said to be
G-numerable if there is a locally finite partition of unity {λU}U∈U such that each λU

is a G-map, with U = λ−1
U (0, 1].

The results of section 2 are valid equivariantly. For (2.1) ... (2.15) this is straight-
forward, the equivariant version of (2.16) is [W1, Prop.1.10].

Theorem 4.1 Let p : X → B be a G-map and U be a G-numerable G-cover of B.
If, for all U ∈ U , p|U : X|U → U satisfies the G-WCHP, then so also does p.
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Proof. The arguments of section 3 carry over directly to the equivariant case.

We remind the reader of [L, Lem.1.12], which asserts that:

(4.2) every open G-cover of a paracompact G-space has a G-numerable refinement.

It follows that, if B is a paracompact space, the requirement that the open G-cover
is G-numerable can be deleted from Theorem 4.1.

5 On Equivariant Local Homotopy Triviality

Let H be a closed subgroup of G, and F be a left H-space. Then the equivariant
map

pF : G×HF → G/H, [g, x] ; gH,

where g ∈ G and x ∈ F , is an equivariant fibration in the sense that it satisfies the
G-CHP [tD, p.54, Ex.7]. Any such fibration will be referred to as a G-model trivial
fibration.

Let B be a G-space and U be an open G-invariant subspace of B. Then U will be
said to be a tube in B if it is the image GV of a G-embedding (= G-homeomorphism
into)

µ : G×H V → B, [g, v] ; gv,

where V is an H-invariant subspace of B, g ∈ G and v ∈ V .

Let F and W be left H-spaces. Then, using the diagonal action of H on W ×F ,
there is a G-map

pW×F : G×H (W × F ) → G×H W, [g, (w, x)] ; [g, w],

where g ∈ G, w ∈ W and x ∈ X. We see by the following Lemma that it is a
G-fibration, and will refer to it as a G-trivial fibration

Lemma 5.1 (i) The G -map pW×F is the pullback of the model trivial
G-fibration pF : G ×H F → G/H over pW : G ×H W → G/H, i.e. we have
pW×F ≡ (pW )∗(pF ) in the equivariant sense.

(ii) pW×F satisfies the G-CHP.

Proof. (i) The required G-homeomorphism

G×H (W × F ) → (G×H W )×G/H (G×H F )

over G×H W , is determined by the rule [g, (w, x)] ; ([g, w], [g, x]) where g ∈ G, w ∈
W and x ∈ F .

(ii) We know that pF satisfies the G-CHP; the result follows by G-(2.6).



On Equivariant Fibrations 551

Let the G-space T be a tube, i.e. relative to a closed subgroup H of G, the
H-invariant subspace V of T and the G-homeomorphism µ : G×H V → GV = T . If
q : Y → T is a G-map that is G-FHE to the G-fibration µ◦pV×F : G×H (V ×F ) → T ,
then q will be said to be a G-homotopy trivial fibration.

We notice, via G-(2.14), that such a q necessarily satisfies the G-WCHP.

If p : X → B is a G-map and U is an open G-cover of tubes for B such that, for
each U ∈ U , p|U is a G-homotopy trivial fibration, then p will be said to be G-locally
homotopy trivial or G-LHT.

If the cover U is G-numerable, then p will be said to be G-numerably locally
homotopy trivial or G-numerably LHT.

Note that we are not insisting on a fixed fibre F ; thus if the restriction of p over
one tube in the cover utilizes a fibre F1, then the restriction of p over another such
tube may involve a quite different fibre F2.

If G acts on the space B and b ∈ B, then we will use the standard notation that
Gb denotes the isotropy subgroup of G at b. The following, alternative, definition of
G-local homotopy triviality is similar to that used, by Bierstone, for differentiable
G-fibre bundles [Bi, p.619-620].

Let p : X → B be a G-map. We will write that p is G-locally homotopy trivial in
the sense of Bierstone or G-BLHT if, for all b ∈ B, there is a Gb-invariant neigh-
bourhood Vb of b such that p|Vb is Gb-FHE to a projection and Gb-map Vb×Fb → Vb,
where Fb is a Gb-space and Gb acts diagonally on Vb × Fb.

Proposition 5.2 Let p : X → B be a G-map.
(i) If p is G-LHT, then p is G-BLHT.
(ii) If B is completely regular, then the converse argument holds, and the two

G-local homotopy triviality conditions on B are equivalent.

Proof. Similar results are given in [L, Lem.1.1 and Lem.1.3], but for G-A-fibre bun-
dles. If we take those proofs, forget about A, allow the fixed fibre F to be replaced
by a variable fibre Fb, where b ∈ B, and remember that we are now dealing with
G-FHEs rather than fibrewise G-homeomorphisms, the arguments of [L] extend to
our case without difficulty.

6 On Alternative and Equivalent Definitions of Equivariant Fi-

bration

We now give a further possible definition of equivariant fibration. Let p : X → B
be a G-map. If, for all choices of a G-space A and a pair of G-homotopic G-maps f
and g from A to B, the induced G-maps f ∗p and g∗p are necessarily G-FHE, then
p will be said to satisfy the G-homotopy induced property or G-HIP.

Proposition 6.1 Let p : X → B be a G-map. The conditions that p satisfies: (i)
the G-numerably LHT property, (ii) the G-WCHP, and (iii) the G-HIP are related
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according to the scheme (i) ⇒ (ii) ⇒ (iii).

Proof. (i) ⇒ (ii). We are assuming a G-numerable cover U and that, for each U ∈ U ,
p|U is a G-homotopy trivial fibration. Hence, as remarked in section 5, each p|U
satisfies the G-WCHP. The result follows by Theorem 4.1.

(ii) ⇒ (iii). This follows from the (ii) ⇒ (iii) argument in the proof of [B,
Prop.6.2], and the proof of [B, Lem.4.1], on which that Proposition depends. We sim-
ply interpret spaces, maps and homotopies as G-spaces, G-maps and G-homotopies,
and ignore references to base points and E-structures.

Let B be a G-space. Then B will be said to be G-numerably contractible if it has
a G-numerable G-cover U of tubes such that, for all U ∈ U , the inclusion U → B is
G-homotopic to a G-map of U into a single orbit Q of B, where Q may vary with U .

Theorem 6.2 Let G be a compact Lie group and B be a G-numerably contractible
space. If p : X → B is a G-map, then the G-numerably LHT, G-WCHP and G-HIP
assumptions concerning p are equivalent.

Proof. It follows from Proposition 6.1 that we just have to show that, if p satisfies
the G-HIP, then it also satisfies the G-numerably LHT property.

Let U be a member of a G-numerably contractible G-cover of B. We will use
j : U → B to denote the inclusion, and k : U → Q ⊆ B to denote a G-map into an
orbit Q in B, such that j and k are G-homotopic.

Selecting b ∈ Q, we have Q = Gb, and will use H to denote the isotropy subgroup
Gb of G at b. Then, according to [Br, prop.4.1, p.40], there is a G-homeomorphism
α : G/H → Q, gH ; g.b. We have G-maps p|Q : X|Q → Q and k : U → Q,
and will define F = (p|Q)−1α(eH) and W = k−1(α(eH)). Then, according to
[Br, Prop.3.2, p.80], there are G-homeomorphisms φF : G ×H F → X|Q and φW :
G×H W → U over Q. In fact there is a commutative diagram as shown, where pF

and pW are the obvious model trivial fibrations.

X|Q Q U

G×H F G/H G×H W
pF pW

p|Q k

∼= ∼= ∼=φF φWα

- �

? ? ?

- �

Then p|U ≡ j∗p by G-(2.10)

is G-FHE to k∗p by the G-HIP

= k∗(p|Q) since k(U) ⊆ Q

≡ k∗(α−1)∗(pF ) by G-(2.4)
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≡ (α−1 ◦ k)∗(pF ) by G-(2.5)

≡ (pW ◦ φ−1
W )∗(pF ) since α−1 ◦ k = pW ◦ φ−1

W

≡ (φ−1
W )∗(pW )∗(pF ) by G-(2.5)

≡ (φ−1
W )∗(pW×F ) by Lemma 5.1

≡ φW ◦ (pW×F ) by G-(2.7).

Hence p|U is G-FHE to φW ◦ (pW×F ), and p|U is a G-homotopy trivial fibration.
Hence p is G-numerably LHT.

Theorem 6.3 Let G be a compact Lie group and the G-space B be paracompact.
Further, let B have an open G-cover U such that, for each U ∈ U , the inclusion
U → B is G-homotopic to a G-map U → Q ⊆ B, where Q is a single orbit in B
that may vary with U .

Then five conditions that a G-map p : X → B might satisfy, ie. the G-numerably
LHT property, the G-LHT property, the G-BLHT property, the G-WCHP and the
G-HIP, are equivalent.

Proof. We know, via (4.2), that every open cover of B has a G-numerable refinement.
Hence the G-LHT and G-numerably LHT conditions are equivalent. Also, B must
be G-numerably contractible, so Theorem 6.2 applies and the G-numerably LHT
condition, the G-WCHP and the G-HIP are equivalent.

A paracompact space is defined to be Hausdorff, and is known to be normal [W,
Thm.20.10], so it is completely regular [W, Ex.15.3(a)]. It follows by Proposition
5.2(ii) that p satisfies the G-LHT condition if and only if it satisfies the G-BLHT
condition.
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