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Abstract

Let X be a finite simply connected CW-complex. In this paper, we show
that the Lusternik-Schnirelmann category of the classifying space B aut X is
infinite if X = S" VY.

1 Introduction

In this paper X will denote a simply connected CW-complex of finite type, that
is, H"(X,Q) is a finite dimensional Q-vector space, for each n. Recall that the
Lusternik-Schnirelmann category of a topological space, cat(X), is the least integer
n such that X can be covered by (n + 1) open subsets contractible in X, and is
infinite if no such n exists. If H* denotes the cohomology with any coefficient ring,

we have .
cat(X) > nil H*(X), (1)

where nil denotes the index of nilpotency of a given ring.

Let f: X — Y be a continuous map. The category of f, denoted by cat(f), is
the least integer n such that X is covered by n + 1 open subsets Uy, Us,---, Upi1
such fy, is nullhomotopic. Note that cat(X) is equal to the category of the identity
map, and

cat(f) < min {cat(X), cat(Y)}. (2)
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Denote by Xy the localization of X at zero, the rational Lusternik-Schnirelmann
category, cato(X), is defined by cato(X) = cat(Xp). It verifies cato(X) < cat(X) [5].

An approximation of the category of a space is given by the "mapping theo-
rem”, which states that, if f : X — Y is such that 7.(f) ® Q is injective, then
caty(X) < cato(Y) [5].

In this paper we will use the theory of minimal models. The Sullivan minimal
model of X is a free commutative cochain algebra (AZ, d) such that dZ C A=%Z.
Moreover Z™ = Homy(m,(X), Q) [12, 9]. The Quillen minimal model of X is a free
chain Lie algebra (IL(V), §) satisfying 6V C L=?V and the graded vector space V is
related to the cohomology of X by V,, & H" (X, Q) [10, 1].

Fibrations of fibre in the homotopy type of X are obtained, up to fibre homotopy
equivalence, as pull back of the universal fibration X — Baut*X — BautX
[3, 4]; here aut X denotes the topological monoid of all self-homotopy equivalences
of X, aut®*X is the submonoid of aut X consisting of pointed self-homotopy equiva-

lences of X, and B is the Dold-Lashof functor [2]. Let Baut X Ni> Baut X be the
universal covering, the induced fibration X — Baut*X — Baut X is universal
for fibrations with simply connected base spaces [4, Proposition 4.2].

This work deals with the calculation of the Lusternik-Schnirelmann category
of Baut X under restrictions on X. The computation of cat(Baut X) is of great
interest as shown by the following results.

Proposition 1. Let X be a I-connected CW-complex and G a connected compact
Lie group acting on X. If cato(B aut X) is finite, then the Borel fibration X —
EG x¢ X — BG is rationally trivial.

Proof. Let f: BG — Baut X be the classifying map of the Borel fibration X —
EGxgX — BG. Consider the map H*(f, Q) : H*(Baut X, Q) — H*(BG,Q) =
AV, where V is concentrated in even degrees. Suppose now that cato(B aut X) is
finite. Then H*(f,Q) is trivial, otherwise the nilpotency index of H*(B aut X, Q)
is infinite.

Suppose that f : BG — Baut X is not rationally trivial. Denote by ¢ :
(AW, d) — (AV, 0) the Sullivan minimal model of f. Let n be the least positive

integer such that ¢(z) # 0, for some z € W™". But ¢ factors through (AW/AW <", d)
as (AW, d) & (AW/AW<", d) 2, (AV, 0), where p is the natural projection. But

H(¢) is not trivial as H(¢)([z]) # 0. ) o
By the mapping theorem cato(AW/AW <", d) is finite. Hence H*(¢) = 0, which
leads to a contradiction. Therefore ¢ is the trivial map, that is, f : BG — Baut X

is rationally trivial. n

Let X — E 2 B be a fibration. The genus of p, genus(p), is the least integer
n such that B can be covered by n 4+ 1 open subsets over each of which p is a
trivial fibration. The genus of p is equal to the category of the classifying map
B — Baut X. Hence cat(B aut X) is an upper bound for the genus of any fibration
of fibre X. If we put X = K(Z,2n), we get that B aut X has the rational homotopy
type of Sg*", which is of LS category 1 (see for instance [6]). Hence we get the
following
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Proposition 2. If B is simply connected, then every non trivial fibration K(Z,2n) —
E — B is of genus 1.

Although interesting applications arise when cat(B aut X) is finite, we do not
know if such can happen when X has the rational homotopy type of a finite CW-
complex. On the contrary, cat(B aut X) is infinite in many cases (see [6, 7, 8]). Our
goal is to prove that cat(B aut X) is infinite if X =Y v ",

2 Models of the classifying space

A model for the classifying space Baut X was first given by Sullivan in [12] and
later by Schlessinger-Stasheff [11] and Tanré [13].

We briefly recall the construction of the model of Schlessinger-Stasheff.

Define the Lie algebra of derivations (DerL(V), D) as follows: DerL(V) =
e Deri(L(V)), where Der,(L(V)) is the vector space of derivations which in-

crease the degree by k, with the restriction that Der;(IL(V)) is the vector space of
derivations of degree one which commute with the differential ¢.

Given two derivations 6 and @', the Lie bracket is defined by [6,60'] = 00" —
(—1)19199 and the differential D is defined by D@ =[5, 4].

Define the differential Lie algebra (sL(V) @ Derl(V), D) as follows:

e sL(V) @ DerL(V) is isomorphic to sL(V) @ DerlL(V) as a graded vector
space,

e If 0,0 € Der (V) and sz, sy € sLL(V), then [0, 0] = 60 — (=1)19171g'9,
[0, s2] = (1)1 s0(x), [sz,sy] = 0,

e D(0) = [6,6],D(sz) = —sdz + adz, where adz is the derivation of L(V)
defined by (ad z)(y) = [z, y].

Theorem 3. [11, 13] A model of the universal fibration X — B aut*X — Baut X
15 given by

(L(V),6) — (DerL(V), D) — (sL(V) © DerL(V), D).

A model of Baut X from derivations of the Sullivan minimal model of X is
described in [12].

We will suppose henceforth that X is a finite simply connected CW-complex.
We know that the LS category of B aut X is not finite in various cases, among them
when X is an elliptic space (i.e. m,.(X)®Q is finite dimensional), a wedge of spheres
or a product space X =Y x Z [6, 7].

One may expect, by duality, the LS-category of Baut X to be infinite when
X =Y V Z. We show that it is the case if Z is a wedge of spheres.
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3 The theorem

Theorem 4. The Lusternik-Schnirelmann category of Baut X is infinite if X =
Y V Z, where Z is a wedge of spheres.

Proof of the theorem

Casel: X =Y Vv §%,

Let FF — E — B be a fibration, then cat(E) < (cat(B) + 1).(cat(F) + 1) — 1.
Applying this to the universal fibration X — B aut®* X — B aut X, we get
cat(B aut®*X) < (cat(B aut X) +1).(cat(X) + 1) — 1.

As cat(X) is finite, we deduce that cat(Baut X) is infinite whenever cat(Baut®X)
is infinite.

The Quillen minimal model of X is (L(V),d) = (L(W & Q.x2,-1),6) where
d(z2n-1) = 0 and §(W) C L(W).

Let 6 be the derivation defined by 0(xon,—1) = [T2n-1, T2n-1], (W) = 0. Let us
show that 6 is a cycle in (DerL(V'), D). Obviously [0, 0](z2,-1) = 0 and if w € W,
then [§,0](w) = 60(w) + 0(dw) = O(dw). But §(w) € L(W), therefore §(dw) = 0.
Moreover, # cannot be a boundary. If it is, then there exists a derivation 6’ such
that [0, 0'](zon—1) = 06’ (z2n—1) = 0(x2n—1) = [T2n-1, T2n—1]; What should imply that
[Z9n—1, Tan—1] is a boundary in (L(V), ).

As [0,0] = 0, the injection of the Lie subalgebra generated by 6 provides a
morphism K (Q,2n) — (B aut® X), that induces an injective map in homotopy.
Therefore, applying the mapping theorem [5], cat(B aut® X) is infinite.

Case2: X =Y v ¥t
The Quillen minimal model of X is (L(V'),d) I L(z,0) with |z| = 2n.

1. Suppose that Heyen (L(V), ) = 0 and let [a] € H,(L(V'), §) where ¢ is odd. De-
fine a sequence of derivations 6,, of (L(V'),d)IIL(x,0) by 6,(V) =0, 60,(x) =
la, [a, -+ e, 2] -+ -], n > 1. The derivation 6, is a cycle but cannot be a
—_—

boun(igry. Moreover, [0,,,0,] = 0. Therefore {6,,},>1 generate an abelian Lie
algebra, which we denote by Ab(6,, n > 1). The inclusion Ab(#,, n > 1) —
Der(L(V) I L(z)) induces an injective map in homology, hence the corre-
sponding mapping

Hn2152n|o¢|+1 — B aut® X

induces an injective map in rational homotopy.

2. Suppose that Heyen(L(V),0) # 0. Take [5] € Hy(L(V),d) where ¢ is even.
For each n > 1, define a derivation =, of (L(V),d) II L(z,0) by 7,.(V) =
0, nlzx)=1[6,[6,"-,[0,x] -] and argue as in the previous case.
—_———

n
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3. If H,(IL(V),8) = 0, then X has the rational homotopy type of S?"t1. A

direct computation shows that (B aut X')p has the rational homotopy type of
K(Q, 2n +2).
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